CMSC 724: Database Management Systems
Query Processing and Optimization

Instructor: Amol Deshpande

amol@cs.umd.edu

Outline

» Part 1 Slides

o Query evaluation techniques for large databases, Skew Avoidance, Query
compilation/vectorization

o Query Optimization: Overview, How good are the query optimizers,
really?, Reordering for Outerjoins, Query Rewriting

» Adaptive Query Processing
o Eddies
o Progressive Query Optimization

> Compilation and adaptivity
» Worst case optimal joins

» Froid: Databases and UDFs

Traditional Optimization not Robust Enough

» In traditional settings:
° Queries over many tables
> Unreliability of traditional cost estimation
o Success, maturity make problems more apparent, critical
» In new environments:
o e.g. data integration, web services, streams, P2P...
> Unknown dynamic characteristics for data and runtime
> Increasingly aggressive sharing of resources and computation
° Interactivity in query processing
» Note two distinct themes lead to the same conclusion:

> Unknowns: even static properties often unknown in new environments and often
unknowable a priori

> Dynamics: environment changes can be very high

» Motivates intra-query adaptivity

Some Related Topics

» Autonomic/self-tuning optimization
> Chen and Roussoupolous: Adaptive selectivity estimation [SIGMOD 1994]
> LEO (@IBM), SITS (@MSR): Learning from previous executions

» Robust/least-expected cost optimization

» Parametric optimization

> Choose a collection of plans, each optimal for a different setting of
parameters

o Select one at the beginning of execution
» Competitive optimization
o Start off multiple plans... kill all but one after a while

» Adaptive operators
More details in our survey: “Adaptive Query Processing”; FnT

2007

AQP: Overview/Summary

» Low-overhead, evolutionary approaches
> Typically apply to non-pipelined execution
> Late binding: Don’t instatntiate the entire plan at start
o Mid-query reoptimization: At “materialization” points, review
the remaining plan and possibly re-optimize
» Pipelined execution

> No materialization points, so the above doesn’t apply

° The operators may contain complex states, raising correctness
issues

o Eddies

 Always guarantee correct execution, but allows reordering during
execution

» Lot of work in 1998-2008 timeframe -- not much since

AQP: Overview/Summary

» We will start with a general overview of AQP as
presented in a later survey and tutorial

» Then go through the three papers (first two quickly,

and the last one in more detail)
o First two will be covered in the tutorial

Slides Adapted From:

Adaptive Query Processing Tutorial
VLDB 2008

Amol Deshpande, University of Maryland
Zachary G. Ives, University of Pennsylvania

Vijayshankar Raman, IBM Almaden Research Center

Thanks to Joseph M. Hellerstein, University of California, Berkeley

Query Processing: Adapting to the World

Data independence facilitates modern DBMS technology
— Separates specification (“what”) from implementation (“how”)
— Optimizer maps declarative query - algebraic operations

Platforms, conditions are constantly changing:

da denv
19% oy

dt dt

Query processing adapts implementation to runtime
conditions

— Static applications - dynamic environments

Query Optimization and Processing

(As Established in System R [SAC+'79])

Professor Course Student

[— [
cardinalities
> UPDATE STATISTICS index lo/hi key
| ~—_ .
> SELECT *

/Dﬂ/bﬂ
A

FROM Professor P,
Course C, Student S

WHERE P.pid = C.pid
AND S.sid = C.sid

A
&%

.

Dynamic Programming + Pruning Heuristics

Traditional Optimization |s Breaking

In traditional settings:

— Queries over many tables
— Unreliability of traditional cost estimation
— Success & maturity make problems more apparent, critical

In new environments:
— e.g. data integration, web services, streams, P2P, sensor nets, hosting
— Unknown and dynamic characteristics for data and runtime
— Increasingly aggressive sharing of resources and computation
— Interactivity in query processing

Note two distinct themes lead to the same conclusion:

— Unknowns: even static properties often unknown in new environments
and often unknowable a priori
. d :
— Dynamics: e’%t can be very high

Motivates intra-query adaptivity

A Call for Greater Adaptivity

System R adapted query processing as stats were updated
— Measurement/analysis: periodic
— Planning/actuation: once per query
— Improved thru the late 90s (see [Graefe ‘93] [Chaudhuri '98])
Better measurement, models, search strategies

INGRES adapted execution many times per query

— Each tuple could join with relations in a different order
— Different plan space, overheads, frequency of adaptivity
Didn’t match applications & performance at that time

Recent work considers adaptivity in new contexts

Tutorial Focus

By necessity, we will cover only a piece of the picture here
— Intra-query adaptivity:
 autonomic / self-tuning optimization [CR'94, CN'97, BC'02, ...]

* robust / least expected cost optimization [CHG'02, MRS+'04,
BC'05, ...]

* parametric or competitive optimization [A’93, INSS'92, CG'94, ...]

 adaptive operators, e.g., memory adaptive sort & hash join
[INKT’88, KNT’89, PCL’'93a, PCL’93b,...]

— Conventional relations, rather than streams
— Single-site, single query computation

= For more depth, see our survey in now Publishers’ Foundations
and Trends in Databases, Vol. 1 No. 1

Tutorial Outline

= Non-pipelined execution

" Pipelined execution

— Selection ordering

— Multi-way join queries
= Putting it all in context

= Recap/open problems

Low-Overhead Adaptivity:
Non-pipelined Execution

Late Binding; Staged Execution

materialization vMJv
point \ M C Normal execution: pipelines separated
‘I V@ i O by matel’lallzathn pOIntS

e.qg., at a sort, GROUP BY, efc.

Materialization points make natural decision points where
the next stage can be changed with little cost:

— Re-run optimizer at each point to get the next stage

— Choose among precomputed set of plans — parametric query
optimization [INSS'92, CG'94, ..]

Mid-query Reoptimization
[KD’98, MRS+04]

Choose checkpoints at which to monitor cardinalities /Q Where?

Balance overhead and opportunities for switching plans

If actual cardinality is too different from estimated, | When?

Avoid unnecessary plan re-optimization (where the plan doesn’t changer

Re-optimize to switch to a new plan — How?

Try to maintain previous computation during plan switching

= Most widely studied technique:
-- Federated systems (InterViso 90, MOOD 96), Red Brick,
Query scrambling (96), Mid-query re-optimization (98),
Progressive Optimization (04), Proactive Reoptimization (05), ...

Mid-query Reoptimization

= At materialization points, re-evaluate the rest of the query

plan

= Example:
Initial query plan chosen

R1
o e

Materialize
R1

Estimated 0.05
selectivities

R2 R3

0.1 0.2

A free opportunity to re-evaluate the rest of the query plan
- Exploit by gathering information about the materialized result

Mid-query Reoptimization

= At materialization points, re-evaluate the rest of the query
plan

= Example:
Initial query plan chosen

R1 |Materialize R2 R3
R —»—- R1; build result
1-d hists

Estimated 0.05 0.1 0.2
selectivities '

A free opportunity to re-evaluate the rest of the query plan
- Exploit by gathering information about the materialized result

Mid-query Reoptimization

= At materialization points, re-evaluate the rest of the query
plan
= Example:

Initial query plan chosen
R1 |Materialize R2 R3
R —»—- R1;: huilg |—» _.
[1-d hists |
Estimated 0.05 Q 1 OD

selectivities

Re-estimated 0.5 OD

selectivities

Significantly different =» original plan probably sub-optimal

Reoptimize the remaining part of the query

Where to Place Checkpoints?

» More checkpoints =» more opportunities for
/G~ switching plans

Overhead of (simple) monitoring is small
[SLMK'01]

Consideration: it is easier to switch plans at
some checkpoints than others

Lazy checkpoints: placed above materialization points
— No work need be wasted if we switch plans here

Eager checkpoints: can be placed anywhere

— May have to discard some partially computed results
— Useful where optimizer estimates have high uncertainty

When to Re-optimize?

= Suppose actual cardinality is different from estimates:
how high a difference should trigger a re-optimization?

= |dea: do not re-optimize if current plan is still the best

1. Heuristics-based [KD'98]:
e.g., re-optimize < time to finish execution

2. Validity range [MRs+04]: precomputed range of a parameter
(e.g., a cardinality) within which plan is optimal
— Place eager checkpoints where the validity range is narrow

— Re-optimize if value falls outside this range
— Variation: bounding boxes [BBD'05]

How to Reoptimize

Getting a better plan:

— Plug in actual cardinality information acquired during this
query (as possibly histograms), and re-run the optimizer

Reusing work when switching to the better plan:

— Treat fully computed intermediate results as materialized
views

 Everything that is under a materialization point

— Note: It is optional for the optimizer to use these in the
new plan

» Other approaches are possible (e.g., query scrambling
[UFA’'98])

Pipelined Execution

Adapting Pipelined Queries

Adapting pipelined execution is often necessary:
— Too few materializations in today’s systems
— Long-running queries
— Wide-area data sources
— Potentially endless data streams

The tricky issues:
— Some results may have been delivered to the user
* Ensuring correctness non-trivial
— Database operators build up state

* Must reason about it during adaptation
- May need to manipulate state

Adapting Pipelined Queries

We discuss three subclasses of the problem:
— Selection ordering (stateless)
* Very good analytical and theoretical results
* Increasingly important in web querying, streams, sensornets
* Certain classes of join queries reduce to them

— Select-project-join queries (stateful)

* History-independent execution

— Operator state largely independent of execution history
—> Execution decisions for a tuple independent of prior tuples

* History-dependent execution

— Operator state depends on execution history
— Must reason about the state during adaptation

Pipelined Execution Part I:
Adaptive Selection Ordering

Adaptive Selection Ordering

Complex predicates on single relations common

— e.g., on an employee relation:
((salary > 120000) AND (status = 2)) OR

((salary between 90000 and 120000) AND (age < 30) AND (status = 1)) OR ...

Selection ordering problem:

Decide the order in which to evaluate the individual
predicates against the tuples

We focus on conjunctive predicates (containing only AND’s)
Example Query

select * from R
where R.a = 10 and R.b < 20
and R.c like ‘$name%’;

Basics: Static Optimization

Find a single order of the selections to be used for all tuples

Query

select * from R
where R.a = 10 and R.b < 20
and R.c like ‘$name%’;

Query plans considered

'\
(@)

o
O

3! = 6 distinct
plans possible

Static Optimization

Cost metric: CPU instructions

Computing the cost of a plan
— Need to know the costs and the selectivities of the predicates

R1 R2 R3
c1 c2 c3

costs
selectivities s1 S2 s3

cost per ct + stc2 + @03
tuple ﬁ

| Independence assumption |

cost(plan) = |[R| * (c1 +s1 *c2 +s1 *s2 *c3)

Static Optimization

Rank ordering algorithm for independent selections [IK'84]
— Apply the predicates in the decreasing order of rank:
(1-s)/c
where s = selectivity, ¢ = cost

For correlated selections:

— NP-hard under several different formulations
* e.g. when given a random sample of the relation

— Greedy algorithm, shown to be 4-approximate [BMMNW’04]:
* Apply the selection with the highest (7 - s)/c
« Compute the selectivities of remaining selections over the result
— Conditional selectivities
* Repeat

Eddies [AH00]

Query processing as routing of tuples through operators

A traditional pipelined query plan

Pipelined query execution using an eddy

An eddy operator

* Intercepts tuples from sources
and output tuples from operators

« Executes query by routing source
tuples through operators

| —

\ result

Encapsulates all aspects of
adaptivity in a “standard”
dataflow operator:

measure, model, plan and
actuate.

Eddies [AH00]

An R Tuple: r1

C

15 10 o

I‘1 \
result

: (rom

[V

Eddies [AH00]

An R Tuple: r1

Operator 1
a b c ready |\ done

15 | 10 AnameA 111 000
ready bit i : @
1 =2 operator i can be applied
0 - operator i can’t be applied perator2

\ result

1

Operator 3

R

A 4

Eddies [AH00]

An R Tuple: r1

Operator 1
a b c ready|| done

15 | 10 AnameA 111 000
done biti: @
1 =2 operator i has been applied
0 -2 operator i hasn’t been applied peratorZ

\ result

1

Operator 3

R

A 4

Eddies [AH00]

An R Tuple: r1

Operator 1
a b c ready | done

15 10 AnameA | 111 - 0]0]0]
Used to degide validity and need Operator 2
of applying operators

R

\ result

: (rom

Operator 3

A 4

Eddies [AH00]

An R Tuple: r1

a

C

15

AnameA ... 101

000

For a query with only selections,

= complement()

R :

eddy looks at the r1
next tuple

Operator 1

@not satisfied

ri

ri

Operator 2
R.b <20

\ reSU/t

Operator 3

Eddies [AH00]

An R Tuple: r2

Operator 1

[V

C

10 15 AnameA
Operator 2
R.b <20
R

\ result

o Operator 3
satisfied

Eddies [AH00]

An R Tuple: r2

a

C

10

15 AnameA .. 0]0]0)

111

if

= 111,
send to output

R

A 4

r2

Operator 1

Operator 2
R.b <20

\ result
r2

o Operator 3
satisfied

Eddies [AH00]

Adapting order is easy

— Just change the operators to which tuples are sent
— Can be done on a per-tuple basis

H] 11

— Can be done in the middle of tuple’s “pipeline”
How are the routing decisions made?
Using a routing policy

Operator 1

Operator 2

Operator 3

Routing Policies that Have Been Studied

Deterministic [D0O3]
— Monitor costs & selectivities continuously
— Re-optimize periodically using rank ordering
(or A-Greedy for correlated predicates)

Lottery scheduling [AHOO]
— Each operator runs in thread with an input queue
— “Tickets” assigned according to tuples input / output

— Route tuple to next eligible operator with room in queue,
based on number of “tickets” and “backpressure”

Content-based routing [BBDWO05]
— Different routes for different plans based on attribute values

Routing Policy 1: Non-adaptive

= Simulating a single static order
— E.g. operator 1, then operator 2, then operator 3

table lookups 2 very efficient
Routing policy: %

if done =
000 -2 route to 1
100 -2 route to 2
110 =2 route to 3

Operator 1

Operator 2

Operator 3

Overhead of Routing

= PostgreSQL implementation of eddies using bitset lookups [Telegraph Project]
= Queries with 3 selections, of varying cost

— Routing policy uses a single static order, i.e., no adaptation

O No-eddies
m Eddies

b
[72]
o

o

o
()

N
©
£

S

5]

=2

10 ysec 100 psec
Selection cost

Routing Policy 2: Deterministic

= Monitor costs and selectivities continuously

= Reoptimize periodically using KBZ | can use specialized

policies for correlated
predicates

atistics Maintained:

Costs of operators
Selectivities of operators

Operator 1

Routing policy:
Use a single order for a
batch of tuples
N\ Periodically apply KBZ /)

Operator 2

\ result

Operator 3

Overhead of Routing and Reoptimization

= Adaptation using batching
— Reoptimized every X tuples using monitored selectivities

— ldentical selectivities throughout = experiment measures
only the overhead

O No-eddies
B Eddies - No reoptimization

O Eddies - Batch Size = 100 tuples

b
0
o

(&

o
(]

N

®
£
[
o

=z

O Eddies - Batch Size = 1 tuple

10 psec 100 psec
Selection Cost

Routing Policy 3: Lottery Scheduling

= Originally suggested routing policy [AH 00]
= Applicable only if each operator runs in a separate thread

= Uses two easily obtainable pieces of information for making
routing decisions:

— Busy/idle status of operators

é Operator 1
— Tickets per operator

Operator 2

R — \
\ result

Operator 3

Routing Policy 3: Lottery Scheduling

= Routing decisions based on busy/idle status of operators

Rule:
IF operator busy,

THEN do not route more w
tuples to it
Operator 1

Operator 2
R — —

Rationale:
Every thread gets equal time /
SO IF an operator is busy, result

THEN its cost is perhaps very
i %

Operator 3

Routing Policy 3: Lottery Scheduling

= Routing decisions based on tickets

Rules:
1. Route a new tuple randomly _
weighted according to the ?Cietsgg;; = ;8
g ICKEelS =
number of tickets tickets(03) = 20

é Operator 1

Operator 2

——

\ result

Will be routed to: r
01 wp. 0.1 ?
02 wp. 0.7 @
O3 wp. 0.2 é

Operator 3

Routing Policy 3: Lottery Scheduling

= Routing decisions based on tickets

Rules:
1. Route a new tuple randomly
weighted according to the
number of tickets

tickets(O1) = 10
tickets(O2) = 70
tickets(O3) = 20

—)
\ result

é Operator 1

Operator 2

é Operator 3

Routing Policy 3: Lottery Scheduling

= Routing decisions based on tickets

Rules:

1. Route a new tuple randomly
weighted according to the
number of tickets

2. route a tuple to an operator O,
tickets(O,) ++;

tickets(O1) = 11
tickets(O2) = 70
tickets(0O3) = 20

—))
\ result

é Operator 1

Operator 2

é Operator 3

Routing Policy 3: Lottery Scheduling

= Routing decisions based on tickets

Rules:

1. Route a new tuple randomly
weighted according to the
number of tickets

2. route a tuple to an operator O,
tickets(O,) ++;

3. O; returns a tuple to eddy
tickets(O,) --;

tickets(O1) = 11
tickets(O2) = 70
tickets(0O3) = 20

—))
\ result

é Operator 1

Operator 2

é Operator 3

Routing Policy 3: Lottery Scheduling

= Routing decisions based on tickets

Rules:
1. Route a new tuple randomly
weighted according to the tickets(O1) = 10
number of tickets tickets(02) = 70

2. route a tuple to an operator O, I CIEA(OR)) 5 AL

tickets(O;) ++; é Operator 1
3. O; returns a tuple to eddy

tickets(O,) --; é

Operator 2

——

\ result

Will be routed to: r
02 wp. 0.777 ?
O3 w.p. 0.222 é

Operator 3

Routing Policy 3: Lottery Scheduling

= Routing decisions based on tickets

Rules:
1. Route a new tuple randomly
weighted according to the tickets(O1) = 10
number of tickets tickets(02) = 70

2. route a tuple to an operator O, I CIEA(OR)) 5 AL

tickets(O)) ++; g Operator 1
3. O; returns a tuple to eddy

tickets(O,) --;
Operator 2
Rationale: @
Tickets(O,) roughly corresponds to
(1 - selectivity(0,) 2 result

Operator 3

So more tuples are routed to
highly selective operators 2 @

Routing Policy 3: Lottery Scheduling

= Effect of the combined lottery scheduling policy:
— Low cost operators get more tuples
— Highly selective operators get more tuples
— Some tuples are knowingly routed according to sub-optimal orders
* To explore
* Necessary to detect selectivity changes over time

Eddies: Post-Mortem

= Plan Space explored
— Allows arbitrary “horizontal partitioning”
— Not necessarily correlated with order of arrival

of
arrival

In a later paper, we looked at optimizing for horizontal partitioning directly

Pipelined Execution Part Il:
Adaptive Join Processing

Adaptive Join Processing: Outline

= Single streaming relation
— Left-deep pipelined plans
= Multiple streaming relations
— Execution strategies for multi-way joins
— History-independent execution
— History-dependent execution

Left-Deep Pipelined Plans

- (®) (® (®

B C

Simplest method of joining tables
— Pick a driver table (R). Call the rest driven tables
— Pick access methods (AMs) on the driven tables (scan, hash, or index)
— Order the driven tables
— Flow R tuples through the driven tables

Foreachr e R do:
look for matches for rin A;
for each match a do:
look for matches for <r,a> in B;

Adapting a Left-deep Pipelined Plan

- (®) (@) (®

B C

Simplest method of joining tables
— Pick a driver table (R). Call the rest driven tables
— Pick access methods (AMs) on the driven tables
— Order the driven tables }

— Flow R tuples through the driven tables : :
Almost identical

fo selection

For each r € R do: ordering

look for matches for rin A;
for each match a do:
look for matches for <r,a> in B;

Adapting the Join Order

b

A (C1, S 1)

- (%

O
O
o

@

B

@

Let ¢, = cost/lookup into i'th driven table,

s; = fanout of the lookup

(Cz, SZ)

As with selection, cost = |R| x (cq + s4C, + $45,C3)

Caveats:
— Fanouts s4,S,,... can be > 1
— Precedence constraints
— Caching issues

i

(c3 s3)

Can use rank ordering, A-greedy for adaptation (subject to the caveats)

Adapting a Left-deep Pipelined Plan

- (®) (@) (®

B C

Simplest method of joining tables
— Pick a driver table (R). Call the rest driven tables
— Pick access methods (AMs) on the driven tables
— Order the driven tables
— Flow R tuples through the driven tables

Foreachr e R do:
look for matches for rin A;
for each match a do:
look for matches for <r,a> in B;

Adapting a Left-deep Pipelined Plan

- (®) (@) (®

B C

Key issue: Duplicates
Adapting the choice of driver table
[L+07] Carefully use indexes to achieve this
Adapting the choice of access methods
— Static optimization: explore all possibilities and pick best

— Adaptive: Run multiple plans in parallel for a while,
and then pick one and discard the rest [Antoshenkov’ 96]

» Cannot easily explore combinatorial options

Adaptive Join Processing: Outline

= Multiple streaming relations
— Execution strategies for multi-way joins
— History-independent execution
* MJoins
— History-dependent execution
 Eddies with joins
 Corrective query processing

Example Join Query & Database

select *
Name Level Course Instructor
from students, enrolled, courses
where students.name = enrolled.name Jen Senior CS2 Smith
and enrolled.course = courses.course T

Level Course Enrolled<] Courses

Junior C31
Senior CS2 \

Course Instructor

Students[><]Enrolled

CS2 Smith

/ \ Courses

Level Name Course

Junior Joe C31

Senior Jen CS2
Students Enrolled

Symmetric/Pipelined Hash Join
[RS86, WAI1]

select * from students, enrolled where students.name = enrolled.name

= Simultaneously builds and probes
hash tables on both sides
= Widely used:
— adaptive query processing
— stream joins
— online aggregation

Name Level Course

Name Course .
= Naive version degrades to NLJ
once memory runs out

— Quadratic time complexity
— memory needed = sum of inputs

T T o = Improved by XJoins [UF 00],

Joe CS1

Tukwila DPJ [IFFLW 99]

Enrolled Students

Multi-way Pipelined Joins
over Streaming Relations

Alternatives

— Using a single n-ary join operator (MJoin) [VNB'03]

— Some other options explored in the literature

Name Level Course Instructor

Jen Senior CS2 Smith

Materialized state

that depends on the 4 HashTable HashTable
query p/an used E.Course C.course
% Name Level Course Course Instructor
History-dependent ! D4
Jen Senior CS2 K I
/~ HashTable HashTable \ Courses
E.Name S.Name

Name Course Name Level
>4

| |

Enrolled Students

Multi-way Pipelined Joins
over Streaming Relations

Three alternatives

— Using binary join operators
>
»Hard to reason about the impact of adaptation
»May need to migrate the state when changing plans

Probing Sequences

Students tuple: Enrolled, then Courses Hash tables contain all tuples
Enrolled tuple: Students, then Courses that arrived so far

Courses tuple: Enrolled, then Students Irrespective of the probing

sequences used
History-independent execution !

Name Level Course Instructor
P’m%& Jen Senior C! Jen CS2 Senior

ashTable HashTable HashTable HashTable
S.Name E.Name E.Course .course

Name Level Name Course | Name Course Course Instructor

Joe Junior Joe CS1 Joe CS1

_

| | |

Students Enrolled Courses

MdJoins [VNB'03]

Choosing probing sequences

— For each relation, use a left-deep pipelined plan
(based on hash indexes)

— Can use selection ordering algorithms
Independently for each relation

Adapting MJoins
— Adapt each probing sequence independently
e.g., StreaMon [BW’01] used A-Greedy for this purpose

A-Caching [BMWM'05]
— Maintain intermediate caches to avoid recomputation
— Alleviates some of the performance concerns

Adaptive Join Processing: Outline

= Single streaming relation
— Left-deep pipelined plans
= Multiple streaming relations
— Execution strategies for multi-way joins
— History-independent execution
* MJoins
* SteMs

Eddies with Binary Joins [AH00]

For correctness, must obey routing constraints !!

Output

E D C

e
/N

Students Enrolled

oOmo

Eddies with Binary Joins [AH00]

Output

E D C

/N

S P E Courses

R

Students Enrolled

For correctness, must obey routing constraints !!

Eddies with Binary Joins [AH00]

Output

E D C

/N

S P E Courses

R

Students Enrolled

For correctness, must obey routing constraints !!
Use some form of tuple-lineage

oOmo

Eddies with Binary Joins [AH00]

Can use any join algorithms
But, pipelined operators preferred
Output Provide quick feedback

E o<1 C /Sl><lE
a e
S D<I E

Output
Students Enrolled

Courses

oOmo

EDJC

n

Eddies with Symmetric Hash Joins

m

S >JE
HashTable HashTable
S.Name E.Name
Joe Jr Joe CS1
/ Jen St
< Eddy > Output
HashTable HashTable
E.Course C.Course

Joe Jr C$S1 CS2 Smith

Jen CS2

Joo Ur_Cs1
Jon_Cs2
=

= C

Burden of Routing History [DH04]

As a result of routing decisions, S B>JE
State gets embedded inside HashTable HashTable

the operators S.Name

S R
= =< Eddy > Output
C HashTable HashTable
E.Course C.Course
E &>=<J C

History-dependent execution !!

Recap: Eddies with Binary Joins

Routing constraints enforced using tuple-level lineage

Must choose access methods, join spanning tree beforehand
— SteMs relax this restriction [RDH’03]

The operator state makes the behavior unpredictable
— Unless only one streaming relation

Routing policies explored are same as for selections
— Can tune policy for interactivity metric [RH02]

Outline

» Query evaluation techniques for large databases, Skew
Avoidance, Query compilation/vectorization

» Query Optimization: Overview, How good are the query
optimizers, really?, Reordering for Outerjoins, Query Rewriting
» Adaptive Query Processing
o Eddies

o Progressive Query Optimization

> Compilation and adaptivity

Overview

» Continuously “reorder” operators as the query is executing
> By changing the “order” in which tuples visit operators

> QObviate the need for selectivity estimation and optimization entirely

> Naturally handles situations where the selectivities change over time (for long-
running queries)

Eddies and Joins

» Selections are arbitrarily reorderable - An index lookup can be
treated as a “selection”
> What about joins? - Send an S tuple, get back

augmented tuples
- Note: decision to use the
index cannot be “adapted”

- These two are tricky
- Nested loops requires
iterating over all of inner
- Hash join requires building a 4
hash table on inner
\

i

Reorderability of Plans

» Synchronization Barriers

o Many operators explicitly enforce an order in which tuples must be read
from the inputs

° e.g., Sort-merge joins: at most points, the next tuple to read must be read
from a specific input

> Hash joins: need to read all of "inner” before outer tuples can be read
» Moments of Symmetry
o Sort-merge join is symmetric
> But Nested-loops is not
* However, can change the outer/inner at specific points
» Join operators with more moments of symmetric preferred

° e.g., Symmetric Hash Join Operator

Reorderability of Plans

00 T N e N N e %%% ol
o0 [= B B e e e e e = o0
o0 ! NaNsNs s e eRams s e Namael 3 o0
00 0060000600000 8o oo © 0
00 00 80000000000 ok e B A 4 o0
00 -0-0-6-0-0-0-0-0-0-0-0-0-Op C OO0 O0O0O00N 00
00 -0-0-000 8000000 m 66000 eooOoOMOO0
00 R R =N 0000000000000
00 osNeNoNoNoNoNoNoNoNeNoNeNoNe) CO0O0000O0O0O00O0OD0O00O0O0O0
00 0000000000000 O0 COO0ODOODOOOOOOOO
ole] 0000000000000 O0 000000000000 0O0
00 sleNoNeNoNeNeNoNoNoNeNeNo o] O000D0O00D0O0O00D00O00O0
O0O0000000D00O00O0 O0000000000000 OO0OO0O0000000000O0
O0O0000Q0O0O0OQ0OQO0O0O00 O000000000000O0 OO0 OO0 O0O00000O00O0
Block Index Hash

Figure 3: Tuples generated by block, index, and hash ripple join. In block ripple, all tuples are generated by the join, but some may
be eliminated by the join predicate. The arrows for index and hash ripple join represent the logical portion of the cross-product
space checked so far; these joins only expend work on tuples satisfying the join predicate (black dots). In the hash ripple diagram,
one relation arrives 3 faster than the other.

Eddies

» Implemented in the context of River project

» Eddy is a separate module that talks to all other operators
> Uses “ready” and “done” bitsets to direct traffic

» Lottery scheduling-based routing policy

> Promising initial results, but bunch of caveats

Outline

» Query evaluation techniques for large databases, Skew
Avoidance, Query compilation/vectorization

» Query Optimization: Overview, How good are the query
optimizers, really?, Reordering for Outerjoins, Query Rewriting
» Adaptive Query Processing
o Eddies

o Progressive Query Optimization

> Compilation and adaptivity

m

Overview

» Trigger re-optimization during query execution if errors too high

» Through use of CHECK operators inserted into the query plan

> Succeeds if the observed values within a range around the estimates

» If optimizer estimates accurate, the only overhead is the

“couting” done by CHECK

NLJN

NLJN HSJN

Add checkpoint 4
"
‘0
"‘
A A CHECKPOINT o A A
. o*

'Y *
‘e, ‘¢"

Re-optimization

Figure 2: Adding CHECK to the outer of a NLIN

Overview

» Trigger re-optimization during query execution if errors too high
» Through use of CHECK operators inserted into the query plan

> Succeeds if the observed values within a range around the estimates

» If optimizer estimates accurate, the only overhead is the
“couting” done by CHECK

» If CHECK detects significant error, then “reoptimize”

o Partial results made available to the optimizer to use if it wants (in the form of a
materialized view)

Architecture

l. Initial run
SQL Compiler
Parser
v
Rewrite
(rule based[Add checkpoints to
optimizer) plan
A 4
Optimizer
(cost based)
7 Perform check, \
Code Uﬁ)on {alllure;: .
Generator . retain already
computed results,
1 2. trigger re
-optimization,
Runtime

ll. Re-optimization

SQL Compiler
Parser
v
Rewrite | Possibly reuse
(rule based previous
optimizer) | intermediate
v results
I Optimizer ~>
: (cost based)
1 O
I-E v
:g Code
g Generator
| 4
|
o 1 | Cleanu
! p
: Runtime =]

Computing Validity Ranges

» Helps only re-optimize when necessary

» The general problem is that of “parametric” optimization

° i.e., find the best plan for each combination of parameters

° Too expensive
» Instead:

> Consider P1 and P2 -- two identical plans except for the top operator
> Let cost(P1) < cost(P2) per the estimates - we would choose P1 over P2

> Let “x” denote an edge into the top operator, and let “result(x) = e” denote the result flowing
along “x”

> Figure out: at what value of |result(x)|, we would have chosen P2 instead

>
Input Cardinality

Computing Validity Ranges

» Helps only re-optimize when necessary

» The general problem is that of “parametric” optimization
° i.e., find the best plan for each combination of parameters

° Too expensive

» Instead:

> Consider P1 and P2 -- two identical plans except for the top operator
> Let cost(P1) < cost(P2) per the estimates - we would choose P1 over P2

> Let “x” denote an edge into the top operator, and let “result(x) = e” denote the result flowing
along “x”

> Figure out: at what value of |result(x)|, we would have chosen P2 instead

» Use numerical techniques to find these validity ranges

Reusing Partial Results

» Treat it as a materialized view, and let the optimizer decide

» If the plan under CHECK has a side-effect (e.g., update), then must reuse that
plan (i.e., not redo that portion)

» In many cases, better not to use the partial result

b P
_-7 HSJN
NLJN .-
>
el W]
CHECK —--")
"”"*~£er . (A join B)
snafll/e2
~
MATERIALIZATION o P
POINT So
~
\\
e NLJN
NLJN Sa
NLJN B
7/ 3
A] B

R

Figure 6: Two alternatives considered in re-optimization

Lazy vs Eager Checking

v

If there is already a materialization point, can add CHECK there for free (lazy)

» Can add explicit materialization along with a CHECK

° Extra overhead in doing that

v

Eager CHECKs don’t wait for materialization

v

ECWC (Eager without compensation)

> There is a materialization afterwards = no results will be output to the user

> So can easily reoptimize without worrying about compensation

(a) (b)
AN /AN
CHECKPOINT fa'z v e AN e r-;ge‘c'k'\r:g' MATERIALIZATION
Cing R Eage POINT

MATERIALIZATION
POINT MATERIALIZATION 5
POINT 2
A CHECKPOINT

P

Figure 7: Lazy checking (LC) and eager checking without
compensation (ECWCQC)

Eager Checking

» With Buffering: Buffer results until you are sure things are okay

> Delays the pipeline for some time

JAN JAN

IIIIIIIIIIIIIIII*

NLJN Eager checking NLJN

-

Figure 8: Eager checking with Buffering

Eager Checking

» With Deferred Compensation

o Keep track of what tuples have already been output

> Check that side table before outputting new tuples after reoptimization

> Potentially a lot of repeated work

RETURN

IIIIIIIIIII*

Eager checking

RETURN

INSERT

CHECK

Re-optimization

RETURN

——————
~

ANTI-JOIN

(not exists)

deferred compensation

Experiments

» Degradation in some cases -- sometimes two errors cancelled
each other out in the original plan

90 -
—_
a.1250 =~ 80
o . =
~ Degradation S 7.
1000 - 2
= i 60
= S
£ 750 = 50 A
bt 3
Q Improvement 5 40
£ 500)
=9 & 30 -
70}
Y ¥
& 250 I 2
s
S 10 -
0 Sqate e + T T T T 8 01
0 250 500 750 1000 1250 1500 =
Response Time without POP -10
Figure 15: Scatter Plot of Response Times with and without 39 Real-World Complex Queries
POP on the DMV database

Figure 16: Speedup and Regression of each Query

Outline

» Query evaluation techniques for large databases, Skew
Avoidance, Query compilation/vectorization

» Query Optimization: Overview, How good are the query
optimizers, really?, Reordering for Outerjoins, Query Rewriting
» Adaptive Query Processing
o Eddies

o Progressive Query Optimization

o Compilation and adaptivity

m

Motivation

» Adaptive query processing (POP-style) works well with
interpretable query plans, but not as well with compilation

> Compiling a new query plan too expensive

m [@ Static - Optimal —V— Permutable (PCQ)
é 50 T T T T T T
o 40+ i
£ 40
i= 30 .
5200 |
S 10F i
0
o o 1 1 1 1 1
u’j 0.0 0.2 0.4 0.6 0.8 1.0
Selectivity

(a) Execution Time
v O Static —- Optimal —¥— Permutable (PCQ)]
é 10 T T T T T T T
- 1 0o
010’} G -
5 w5 —§) ¥ v
S 1 2 3 4 5 6 7

Predicates
(b) Code-Generation Time
Figure 1: Reoptimizing Compiled Queries — PCQ enables near-
optimal execution through adaptivity with minimal compilation
overhead.

Permutable Compiled Queries (PCQ)

» Adaptive query processing (POP-style) works well with
interpretable query plans, but not as well with compilation

> Compiling a new query plan too expensive

» Instead:
> Precompile a bunch of different plans at optimization time itself

> Add indirections to the compiled code to make it easy to switch/permute
operators

> Add hooks for collecting runtime performance metrics

* To be used to decide whether to switch

Permutable Compiled Queries (PCQ)

Stage #1 - Translation Stage #2 - Compilation Stage #3 - Execution

SELECT * FROM foo .
WHERE A=1 AND B=2 AND C=3 fun a_eq_lg {) Samples Analysis

) 4 ..
fun b_eq_2() { ... } o —
fﬂ: cjgg:3() { ...} Filters) ——»@
fun query() { Execution &

Translator var filters = {[Compiler | query: . m Loop * +
a_eq_1, 0x00 FilterInit —
bleq 2, oxoc FilterInsert =3 |:> | Execute Policies >
c_eq_31} 0x14 RunFilters H

for (v in foo) { E

\

\ 4

Optimizer

4

A a
}}fllters.Run(v) Bytecode I:a
Physical -

Plan TPL

Figure 2: System Overview — The DBMS translates the SQL query into a DSL that contains indirection layers to enable permutability. Next, the
system compiles the DSL into a compact bytecode representation. Lastly, an interpreter executes the bytecode. During execution, the DBMS
collects statistics for each predicate, analyzes this information, and permutes the ordering to improve performance.

Adaptive Filter Ordering

SELECT * FROM A WHERE coll * 3 = col2 + col3 AND col4 < 44

(a) Example Input SQL Query

Policies

Vectorization effect??? 1 fun query() 1 *
The code suggests filters 2 var filters={[p1,p2]} B
3 for (v in A) { | < Permute
5

applied to all tuples, so no T
B - -l —

point in reordering
8 fun p2(v:xVec) {
9 for (t in v) { Profile

10 if (t.collx3 == Sel. | Cost
11 t.col2+t.col3){ 051 10
12 v[tl=truel}}} -

0.7 4

(b) Generated Code and Execution of Permutable Filter

Figure 3: Filter Reordering — The Translator converts the query in
(a) into the TPL on the left side of (b). This program uses a data struc-
ture template with query-specific filter logic for each filter clause.
The right side of (b) shows how the policy collects metrics and then
permutes the ordering.

Adaptive Aggregations

SELECT col1, COUNT(*) FROM A GROUP BY coli
(a) Example Input SQL Query

1 fun query() { .
2 var aggregator = {[.
3 .., // Normal funcs Policies
4 aggregateHot,
5 aggregateMerge brofile
6 I : > Hash g
7 for (v in foo) Count
[#Keys| =5
Hot l ¥
——————— -
V' Initialize Hot | '
l |
| \ |
—— Aggregate Hot |
| v |

- ' =
_______ |
| I

(b) Generated Code and Execution of Adaptive Aggregation

Figure 4: Adaptive Aggregations — The input query in (a) is trans-
lated into TPL on the left side of (b). The right side of (b) steps

-irough one execution of PCQ aggregation.

Adaptive Joins

Alternate #1 Alternate #2

2N 2N
oot || o
>
C.col1 A
g H | B &

(a) Example Input SQL Query (b) Possible Join Orderings

SELECT * FROM A
INNER JOIN B ON A.coll
INNER JOIN C ON A.col2

Policies

1 fun query() {

2 // HT on B, C built.
3 var joinExec = {I
4

5

» Hash — Prcibe =
B

—®

—» Profile

Sel.

01| 20 —| Stats
0.8 4

(c) Generated Code and Execution of Permutable Joins

{ht_B, joinB},
{ht_C, joinC}]}
in A

Figure 5: Adaptive Joins — The DBMS translates the query in (a) to
the program in (c). The right side of (c) illustrates one execution of
a permutable join that includes a metric collection step.

Experimental Evaluation

[— Order-1 —— Order-2 —— Order-3 = Permutable 1

Shiftin
selectivities

: Shift in

selectivities

Execution Time
Per Block (us)
o N M OO

1
| :
0 500 1000 1500
Block #
Figure 6: Performance Over Time — Execution time of three static
filter orderings and our PCQ filter during a sequential table scan.

24 Static EXA Permutable

w
()
o

N
o
o

100

Execution Time (ms)
o

Joins

Figure 12: Varying Number of Joins — Execution time to perform a
multi-step join while keeping the overall join selectivity at 10%.

Adaptivity Loop

Measure

Analyze

Measure what ?
Cardinalities/selectivities, operator costs, resource utilization

Measure when ?
Continuously (eddies); using a random sample (A-greedy);
at materialization points (mid-query reoptimization)

Measurement overhead ?
Simple counter increments (mid-query) to very high

Adaptivity Loop

Analyze

Analyze/replan what decisions ?
(Analyze actual vs. estimated selectivities)

Evaluate costs of alternatives and switching (keep state in mind)
Analyze / replan when ?

Periodically; at materializations (mid-query); at conditions (A-greedy)
Plan how far ahead ?

Next tuple; batch; next stage (staged); possible remainder of plan (CQP)
Planning overhead ?

Switch stmt (parametric) to dynamic programming (CQP, mid-query)

Adaptivity Loop

Measure

Analyze

Actuation: How do they switch to the new plan/new routing strateqy ?

Actuation overhead ?
At the end of pipelines - free (mid-query)
During pipelines:
History-independent - Essentially free (selections, MJoins)
History-dependent - May need to migrate state (STAIRs, CAPE)

Recap/Thoughts

» Not much work on adaptive query processing in the last 10
years

o SkinnerDB [2019] another relevant work

» More work on adapting the execution of a single operator

° e.g., changing things based on available resources

» Likely to re-emerge as an important topic in the next few years
> As QP in many systems becomes more mature...

> As SQL starts becoming more and more common as the query language
(e.g., in Spark, Pandas, etc).

Outline

Query evaluation techniques for large databases, Skew
Avoidance, Query compilation/vectorization

v

v

Query Optimization: Overview, How good are the query
optimizers, really?, Reordering for Outerjoins, Query Rewriting

v

Adaptive Query Processing
Worst-case Optimal Join Processing

Froid: UDFs and Databases

v

v

Motivation

» Consider an "edges” relation with N edges, capturing an
“undirected” graph,

» And a query to find the number of “triangles”

Source | target select count(*)/6

vl
V2
vl
v3
v2
v3

v2 from edges el, edges e2, edges e3
vi where el.target = e2.source and
v3 e2.target = e3.source and

v] e3.target = el.source

v3

v2

Any “binary joins” plan will be “sub-optimal”
Worst case = O(N/2)

Mutput size bounded by O(N~1.5)

Yannakakis Algorithm [1981]

Boolean Conjunctive Query

q() - R(A, B), S(B, C), T(C, D) Answer is a True/False

A B | B |C C D |
al bl b1 cl

cO dl

a2 bl bl c2 cO d2

a3 bl bl c3 cO d3

a4 bl cO d4

a5 bl b2 cO cO d>5

ab bl b3 cO cO d6
1M tuples with B = b1 1M tuples with C = c0 1M tuples with C = c0

1M tuples with B = b1

_ However: No results in the output

Yannakakis Algorithm [1981]

q() :- R(A, B), S(B, C), T(C, D)

A B B [C NC [D
al bl bl cl cO dl

a2 b1 bl c2
a3 bl b1 c3
a4 bl

a5 bl b2 cO
ab b1 b3 cO

1M tuples with B = b1

1M tuples with C = c0

. 1M tuples with B = b1

cO
cO
cO
cO
cO

1M tuples with C = c0

d2
d3
d4
d>5
d6

No Binary Join Tree Works

R JOIN S == generates 1 trillion tuples
(none of which match T)

S JOIN T == generates 1T tuples

R JOIN T == cross product == 1T tuples

Yannakakis Algorithm [1981]

q() :- R(A, B), S(B, C), T(C, D)

A B B [C NC [D
al bl bl cl cO dl

a2
a3
a4
as
ab

1M tuples with B = b1

bl
bl
bl
bl
bl

b1
b1
b2
b3

c2
c3
cO
cO

1M tuples with C = c0

. 1M tuples with B = b1

cO
cO
cO
cO
cO

1M tuples with C = c0

d2
d3
d4
d>5
d6

First, do S SEMIJOIN R

NN

bl cl
bl c2
bl c3

Removes tuples from S

that don’t contribute to the final
output

(e.g., (b2, cO) will never

join with anything from R)

Yannakakis Algorithm [1981]

q() :- R(A, B), S(B, C), T(C, D)

A B B [C NC [D
al bl bl cl cO dl

a2
a3
a4
as
ab

1M tuples with B = b1

bl
bl
bl
bl
bl

b1
b1
b2
b3

c2
c3
cO
cO

1M tuples with C = c0

. 1M tuples with B = b1

cO
cO
cO
cO
cO

1M tuples with C = c0

d2
d3
d4
d>5
d6

First, do S SEMIJOIN R

NN

bl cl
bl c2
bl c3

Then: X1 = T SEMIJOIN
(S SEMIJOIN R)

EHN T
Then, do X2 = S SEMIJOIN X1

To further “reduce” S by
removing tuples that don't join
with anything from T

Yannakakis Algorithm [1981]

q() :- R(A, B), S(B, C), T(C, D)

A B B [C NC [D
al bl bl cl cO dl

a2 b1 bl c2
a3 bl b1 c3
a4 bl

a5 bl b2 cO
ab b1 b3 cO

1M tuples with B = b1

1M tuples with C = c0

. 1M tuples with B = b1

cO
cO
cO
cO
cO

1M tuples with C = c0

d2
d3
d4
d>5
d6

First, do S SEMIJOIN R

NN

bl cl
bl c2
bl c3

Then: X1 = T SEMIJOIN
(S SEMIJOIN R)

EHN T
Then, do X2 = S SEMIJOIN X1

Finally, do X3 = R SEMIJOIN X2

Yannakakis Algorithm [1981]

» Called “semi-join reducer sequences”

o Basically get rid of tuples from each relation that don’t contribute to the
output

o Result EMPTY in our example, but in general, only relevant tuples will be
left

» Once this is done, you can do join in any order

o Guaranteed that the total time is “linear” in the total size of the inputs
and output

> Can’t avoid dependence on the output -- the join query may do a
Cartesian product

» Can be generalized to any “acyclic” query

Acyclic Queries?

» Conjunctive queries as “hypergraphs”

q() :- R1(A, B, C), R2(B, C, D), R3(C, D, E)

Each attribute == a vertex
Each relation == a “hyperedge”

Acyclic Queries?

» Conjunctive queries as “hypergraphs”

q() :- R1(A, B, C), R2(C, D, E), R3(A, E)

Each attribute == a vertex
Each relation == a “hyperedge”

Acyclic Queries?

» If all relations are 2 attributes, then the hypergraph is same as a
graph

q() :- R1(A, B), R2(B, C), R3(C, D), R4(D, A)

Acyclic queries in this case ==
the graph has no cycles, i.e., the
graph is a tree

More complex for hypergraphs

m

Structural Approaches

» For “acyclic” queries, can always find a semijoin reducer sequence

> Can be done in optimal time: linear in size of inputs + output

» What about non-acyclic queries?

o Try to define how “far” from acyclic-ness
o Captured as "width” of the hypergraph
* Width of acyclic hypergraphs =1

» AGM [FOCS, 2008] defined “fractional hypertree width”, and an
algorithm that runs in O(N”(fhw+1) log N)

» Several more practical algorithms since then, including one that
was implemented before it was proved optimal

Triangle Query

> P A
O, =R(A,B) ~ S(B,C) = T(A,C). A A A
D[S < T < R
/\ /\ /\
R T R S S T

R = {a()} X {bo,...,bm}u{ao,...,am} X {b()}

S = {b()} X {C() Cm} U {b() bm} X {C()}

T ={ap} x {co,...,cm} U lao,...,an} X {co}

Each relation has: 2m + 1 tuples
Output = 3m + 1

Any pairwise join has size: m*2 + m
Projections/Semi-joins don’t help

Algorithm 1: Power of Two Choices

Skew in the relations: a_0 generates a lot of intermediate
tuples, but not as many output tuples

Oxlai]l == mp.c(0a=4,(04))

Call a_i heavy if:
Ta=a (R = T)| = [Qs]ai]l.

Two Choices for each a_i: If a_iis light

(i) Compute 0 4—4 (R) > 04—, (T) and filter the results by probing against S or
(ii) Consider each tuple in (b, c) € S and check if (a;,b) € R and (a;,c) € T.

If a_iis heavy

Can prove to run in : O(N”1.5)

Algorithm 1: Power of Two Choices

Algorithm 1 Computing Q. with power of two choices.
Input: R(A,B),S(B,C),T(A,C) in sorted order

1. Or<— R and T are in sorted order
2: L —ma(R) nma(T) Either build indexes, or do a variation of binary search

3: Foreachae Ldo
4: If |0A—4R| - |0a=4T| = |S| then

5: For each (b,c) € S do

6: < If (a,b) € Rand (a,c) € T then —
7 Add (a,b,c) to O,

8: else

9: For each b € mg(0a—4R) A ¢ € nc(0a=4T) do
10: If (b,c) € S then

11: Add (a,b,c) to Qu

12: Return Q

Algorithm 2: Delay Computation

For each value a_i, compute valid values of B that join with it:
np(0ca=qR) N 7S

For each value of b in the above result, compute valid values of C:

nc(op=pS) Nac(Ta=qT).

Can prove to run in : O(N) on our bad example
General worst-case complexity the same as the previous algorithm

&

Algorithm 2: Delay Computation

Algorithm 2 Computing Q, by delaying computation.

Input: R(A,B),S(B,C),T(A,C) in sorted order

I Q—J

2: Lp «— maR N AT

3: Foreachae Ly do

4 Ly <« ngoa=aR N 1S

5: For each b € L% do

6 L‘é’b “— TcOB=pS N TCOA=;T
7 For each c € L‘é’b do

8 Add (a,b,c) to Q

9

: Return Q

m

AGM Bound on Join Sizes

q() - R1(A, B, C), R2(B, C, D), R3(C, D, E) Assign a weight to each of
R1, R2, and R3

Say:

R1 > 0.5

R2 2 0.5

R3 2> 0.5

Total for B =0.5+ 0.5 >= 1
B is “covered”
C (1.5), and D (1) are covered

A and E are not covered.

A set of weights is called “fractional edge cover” if all

attributes are covered
m Infinite number of fractional edge covers

AGM Bound on Join Sizes

Examples, with some fractional edge covers

AGM Bound on Join Sizes

Why do we care?
Say we have “I” relations in a query q, with sizes N_j,j=1, ..., |

Let u denote any fractional edge cover -- so u_j is the weight for relation with size N_j

Then, the size of the result is bounded by:

¢/
Ui
] <]IJN]'

m

AGM Bound on Join Sizes

Using the first cover, result size bounded by:

1041 < IR 1S - IT].
If IR| = |S| = |T|, then the bound is N*1.5 -- which is tight

But if |R| = |T| =1, and |S| = N, then the bound is sqrt(N)
-- Far from tight -- there can only be 1 triangle

Using the second cover, result size bounded by:
|Oa| < |R|-|T].
If IR| = |S| = |T|, then the bound is N*2 -- not great

Butif |R| =|T| =1, and |S| = N, then the bound is 1

A Generic Algorithm

Algorithm 1: Generic Worst-Case Optimal Join

given : A query hypergraph Hg = (V,) with Process each attribute (variable)
attributes V = {v1,...,v,} and hyperedges at atime
E=d By Bk

input : The current attribute index
i€{1,...,n+ 1}, and a set of re
R={Ri,...,Rm}.

1 function enumerate (%
2 if 2 <n then

Find all relations that contain
that attribute

Do an intersection across all the

// Relations participating in the curzes® join relations for that attribute
3 Rjoine{Rj GRI’UiEERj};
// Relations unaffected by the current join _
4 Rother — {R; €R | v; ¢ Eg,} ; For each value that is present
gther J : B0 for v_i in all of R_join:
// Key values appearing in all joined ons - Select from each relation only

5 foreach k; € R;€Roin v, (R;) do those where v_i = k_i
// Select matching tuples - Recurse with those relations
6 Rrnext — {0v,=k;(R;j) | Rj € Rjoin} ; plus the rest of the relations

// Recursively enumerate matching tuples
enumerate (7 + 1, Rnezt U Rother) ;

else
// Produce result tuples
9 produce (X 05

R_,,' ER

Recap/Thoughts

Quite a bit of work on this topic in the last 10 years

v

v

Several implementations

o Often in the context of graph querying

o Usually require significant pre-computations and specialized indexes
* The “intersection” step in the previous slide is a key one

> Some recent work (VLDB 2020) on a more practical implementation using
hash indexes instead of sort-based tries

v

Still not clear when to use them and when to use binary joins

v

Open theoretical issues

v

What about outerjoins, etc?

Outline

» Part 1 Slides

o Query evaluation techniques for large databases, Skew Avoidance, Query
compilation/vectorization

o Query Optimization: Overview, How good are the query optimizers,
really?, Reordering for Outerjoins, Query Rewriting

» Adaptive Query Processing
» Worst-case Optimal Join Processing

» Froid: UDFs and Databases
> Background
° Froid

m

User-defined Functions/Procedures

» Supported by database systems since late 80s

CREATE FUNCTION add(integer, integer) RETURNS integer
AS 'select $1 + $2;°
LANGUAGE SQL
IMMUTABLE
RETURNS NULL ON NULL INPUT;

CREATE OR REPLACE IUNCTION update_influencers_on_insert()
RETURNS TRIGGER
LANGUAGE PLPGSQL
AS
$$
declare
cnt integer;
username varchar;
BEGIN
select count(x) into cnt from follows where userid2 = NEW.userid2;
select max(name) into username from users where userid = NEW.userid2;
IF cnt = 11 THEN
insert into influencers values (NEW.userid2, username, cnt);
ELSIF cnt > 11 THEN
update influencers set num_followers = cnt where userid = NEW.userid2
END IF;
RETURN NEW;
END
$$;

User-defined Functions/Procedures

» Supported by database systems since late 80s

» Three main benefits:
o Modular code
o Easier to write some code in an imperative language (e.g., ML)
> Fewer round-trips between application and database

* Significant performance issues if done repeatedly (e.g., for every order)
Each of these is a
separate call from the
application to the

conn = psycopg2.connect("host=127.0.0.1 dbname=socialnetwork user=postgres password= server
postgres")
cur = conn.cursor()

cur.execute("drol table if exists influencers;")
cur.execute("create table influencers as select u.userid, u.name, count(userid
num_followers from users u join follows f on (u.userid = f.userid2) group
d, u.name having count(useridl) > 10;")

cur.execute("drop trigger if exists update_influencers_on_in on follows;")

cur.execute("drop table if exists friends_small;")
cur.execute("create table friends_small as select f.useridl, f.userid2 from friends
f, users ul, users u2 where f.useridl = ul.userid and f.userid2 = u2.userid and abs
extract(year from ul.birthdate) - extract(year from u2.birthdate)) < 5;")
conn.commit()

User-defined Functions/Procedures

» Supported by database systems since late 80s

» Three main benefits:
> Modular code
o Easier to write some code in an imperative language (e.g., ML)
> Fewer round-trips between application and database
* Significant performance issues if done repeatedly (e.g., for every order)

» Stonebraker notes the latter as the primary reason for adoption
of OR features ("what comes around goes around” paper)

o “Put differently, the major contribution of the OR efforts turned out to be
a better mechanism for stored procedures and user-defined access
methods.”

» Also called “stored procedures”, with some minor differences
0ss systems

Terminology

» User-defined functions

> Scalar (return a single value) or Table Functions (return a relation)

> Can be used in queries (WHERE/SELECT/FROM, etc), depending on scalar
or table function

o UDFs typically not allowed to make changes to the database

» Stored procedures

o Similar, but can only be executed using a CALL or EXECUTE command

o Usually mutate the state of the database
» Triggers

> Something that happens because of an event (e.g., an insert in orders
results in an insert in another table)

> Similar to stored procedures for the actual action

UDF Challenges

» Optimization

> UDFs can be very expensive -- coverage() does image analysis of some
form

o Cost of UDFs is hard to estimate -- may depend on the inputs

> Selectivity of UDFs is hard to estimate -- statistics don’t really help

/* Find all maps from week 17 showing more than
1% snow cover. Channel 4 contains images
from the frequency range that interests us. */
retrieve (maps.name)
where maps.week = 17 and maps.channel = 4
and coverage(maps.picture) > 1

Example from: “Predicate Migration; Hellerstein and
Stonebraker; SIGMOD 1993

UDF Challenges

Optimization

v

> UDFs can be very expensive -- coverage() does image analysis of some
form

o Cost of UDFs is hard to estimate -- may depend on the inputs

> Selectivity of UDFs is hard to estimate -- statistics don’t really help

UDFs cannot be parallelized easily

v

> May result in single-threaded execution

v

Forces tuple-at-a-time execution

> Hard to use any of subquery decorrelation techniques

Often interpreted execution

v

» Well-known issues resulting in bad performance in many
practical scenarios

Outline

» Part 1 Slides

o Query evaluation techniques for large databases, Skew Avoidance, Query
compilation/vectorization

o Query Optimization: Overview, How good are the query optimizers,
really?, Reordering for Outerjoins, Query Rewriting

» Adaptive Query Processing
» Worst-case Optimal Join Processing

» Froid: UDFs and Databases
> Background

o Froid

m

Background on T-SQL

» SQL Server supports: UDFs (cannot modify state), and Stored

Procedures (can modify state)

W N -
' |

d!

create function total price(@key int)
returns char(5e) as
begin
declare Bprice float, érate float;
declare Spref_currency char(3);
declare @default_currency char(3) = "LSD°;

select @price = sun(o_totalprice) from orders
where o_custkey - Bkey;
select @pref_currency = currency
from customer_prefs
where custkey = Bkey;

if(@pref_currency <> 8default_currency)

begin
select frate -

xchg_rate(fdefault_currency,dpref_currency);

set @price - @price * grate;

end

return stri@price) « @pref_currency;

end

L

crepte function xchg_rate(@froe char(3), Bto char(3))
returns float as
begin
return (select rate frow dbo. xchg
where from_cur = @from and to_cur = j§to);

end

n Sequential region nCondbonal region
Figure 1: Example T-SQL User dehined functions

select c_name, dbo.total_price(c_custkey)
from customer;

;

UDF Evaluation in SQL Server

» Steps

> Parsing, binding, normalization: scalar UDFs bound as a UDF operator, but
the definition not analyzed

> Cost-based optimization: Query plans (including for each statement in a
UDF) are cached

> Execution: For each tuple, scalar evaluation sub-system is called
* May make calls back to the relational execution engine
+ Compilation for an UDF happens on the first call

» Drawbacks

° |terative invocations (one at a time) -- leads to repeated context switches
> No costing, Interpreted statement-by-statement (with caching of plans)

> No intra-query parallelism (as of 2017)

Froid Framework

» Inline the UDFs by analyzing the code

SQL Query with UDF calls k FROID
‘ UDF Algebrization
Parsing Parse UDF definition
Query tree ‘ Construct UDF Regions
Binding Regions to relational
express=ons
UDF cpearator
s l Combine expressions
Conltisue with using Apply operator
subivttuted '
mprmyom
J Substitute UDF expression
Lound .
Query tree (as sub-query) in Query tree

Figure 3: Overview of the Froid framework

Froid Framework

» Makes use of APPLY Operator

o Basically a “flatmap”

> For each tuple r of R, combine it with each output of E(r) to generate new
tuples

RA® E=|]J{r}®E(r))

rcR
> The “join” can be: cross product, left outer-join, left-semijion, or left-

antijoin

» SQL Server already uses these extensively for subquery
decorrelation (as we saw earlier)

m

Froid Framework

» Supports imperative constructs in scalar UDFs

Table 1: Relational algebraic expressions for imperative statements (using standard T-SQL notation from [33])

Imperative Statement (T-SQL) Relational expression (T-SQL)
DECLARE {Quar data_type [= expr|}|,...n]; SELECT {expr|null AS var},...n]|;
SET {Quar = expr}|,...n|; SELECT {expr AS var}|,...n];
SELECT {@uarl = prj_exprl}],...n] FROM sql_expr; {SELECT prj_exprl AS varl FROM sql_expr}; [,...n]

SELECT CASE WHEN pred_expr THEN 1 ELSE 0 END AS pred_val;

IF (pred- t_stmt;[...n]} ELSE {f_stmt;],. ..
(pred-expr) {t-stmt;[...n]} BLSE - {f-stmb[,.nl}| p 50T CASE WHEN pred.val = 1 THEN #_stmt ELSE f_stmt; }. ..]

RETURN expr; SELECT expr AS returnVal;

UDF Algebrization

» Construction of regions

> Basic sequential regions, condition regions (if-else), and loop regions
(loops)

> Hierarchical (regions can contain regions)

» Relational expressions for each region

> Variable declarations/assignments

set @default_currency = ‘USD’; » select ‘USD’ as default_currency.

select §price - sum(o_totalprice) from orders
where o custkey - @key;

» select (select sum(o_totalprice) from orders

- where o_custkey = @key) as price

UDF Algebrization

» Relational expressions for each region

> Variable declarations/assignments

o Conditional statements

if (@total > 1000)

l set @val = high’; » select (case when total > 1000 then ‘high’
else

set Qual = ‘low’; else ‘low’ end) as wval.

° Return statements
Code may have multiple return points
Modeled as a “jump” to the end of the codeblock

Implemented through use of “probe” and “pass-through” of APPLY

UDF Algebrization

» Combining expressions for multiple statements

> For each statement: compute a “read-set” and a “write-set”

create function total price(@key int)
returns char(5e) as
begin

11| declare Sprice float, érate float;
2 declare @pref_currency char(3);
3 declare @default_currency char(l) = "LSD°;

4 select Bprice = sun(o_totalprice) from orders
where o_custkey - Bkey;

5 select @pref_currency = currency

from customer_prefs

where custkey = @key;

5 if(@pref_currency <> 8default_currency)

begin
7 select frate -
xchg_rate(fdefault_currency,dpref_currency);
.J set @price - @price * grate;
end
9'] return strifprice) + @pref_currency;
end

crepte function xchg_rate(@froe char(3), Bto char(3))
returns float as

begin

1 return (select rate frow dbo.xchg

where from_cur - @from and to_cur = §to);

end

n Sequential region UConabooal region
Figure 1: Example T-SQL User dehined functions

Table 2: Derived tables for regions in function total_price.

Region | Write-sets (Derived table schema)
R1 DT1 (price float, rate float,
default_currency char(3), pref_currency char(3))
R2 DT2 (price float, rate float)
R3 DT3 (returnVal char(50))

Use these as the “schemas” of derived tables
to be computed

select DT3.returnVal fros

(select 'USD"™ as default_currency,

(select sum(o_totalprice) from orders
where o_custikey = @key) as price,

(select currency from customer prefs

(select IR e P A0
case when DT, pref_currency <> DT1.default_currency,
then DT1.price * xchg rote(DT1,default_currenmcy, !

DT1,pref_currency) ,
)

2% returnval) oY)

Figure 4: Relational expression for UDF total _price

UDF Algebrization

» Combining expressions for multiple statements

o For each statement: compute a “read-set” and a “write-set”

o Use these as schemas of derived tables

o Connect the regions using APPLY (with pass-through in case of multiple return
statements)

» Correctness?
> Each individual transformation correct by itself
> All derived tables contain a single tuple

o Quter apply preserves the semantics of combined execution

» Note: Doesn’t handle loops -- may be trickier to model

Substitution and optimization

» Replace the scalar UDF with the relational expression (not as SQL, but rather
operators)

» Let the optimizer de-correlate and optimize

» Resulting plan looks complex, but decorrelates as desired

vvvvvvv
Agureqete 'S & Appresere Zagee Speai

n

Figure 5: Plan for inlined UDF total_price of Figure 1

Compiler Optimizations

» Dynamic slicing: use compile-time constants to simplify queries
» Constant folding and propagation: already done by SQL server

» Dead code elimination: optimizer handles these during project pushdown

create function getvVal(@x int)

returns char(10) as (i) Dynamic slicing for getVval(5000) (ii) Constant propagation & folding (iii) Dead code elimination
begin begin begin
declare @val char(10); declare @val char(10); declare @val char(10); begin .
if(@x > 1000) = set @val = 'high'; - set @val = 'high'; return 'high value';
set @val = 'high’; return @val + ' value’; return 'high value’; end
else set @val = "low’; end end
return @val + ' value';
o (a) Input UDF (b) Common optimizations done by an imperative language compiler
select returnval from select returnval from
(select case when @x > 1000 - (select 'high' as val) DT1 select returnval from
then 'high' else 'low' end as val) DT1 outer apply ®) (select 'high value' =) select 'high value';
outer apply (select DT1.val + ' value' as returnval) DT1
(select DT1.val + ' value' as returnval) DT2
as returnval) DT2
(c) Output of FROID’s Algebrization (d) How FROID achieves the same end result as Figure 5(b) using relational algebraic transformations

Figure 5: Compiler optimizations as relational transformations. For ease of presentation, (c) and (d) are shown in SQL;
these are actually transformations on the relational query tree representation.

Design and Implementation

Should this inlining be done in a cost-based manner?

v

> Influences whether it takes place during binding or during query optimization

> Experiments showed it is almost always beneficial + hard to modify optimizers =»
do it in the binding phase

v

Constraints

° Put a constraint on the maximum size of UDFs that can be algebrized

» Froid is extensible -- could handle other languages as well

v

Security and permissions
° A user may not have permission on the UDF but on the tables, and vice versa

o Need to be careful with caches as well

Evaluation

» Applicability
> Used top 100 customer workloads from Azure SQL - 85329 scalar UDFs

> Froid could handle 60% or so

create function dbo.VersionAsFloat(@v nvarchar(96))
returns float as
begin

if Qv is null return null

declare @first int, @second int;

declare @major nvarchar(6), @minor nvarchar(10);

create function dbo.F1(@pl int, @p2 int)

returns bit as

begin

if EXISTS

(SELECT 1 FROM Viewl WHERE coll = 0
AND col2 = @pil
AND ((col2 = 2) OR (col3 = 2))
AND dbo.F2(col4,@p2,0)=1 AND dbo.F2(col5,@p2,0)=1
AND dbo.F2(co0l6,@p2,0)=1 AND dbo.F2(col7,@p2,0)=1
AND dbo.F2(co0l8,@p2,0)=1 AND dbo.F2(col9,@p2,0)=1
AND dbo.F2(co0l10,@p2,0)=1 AND dbo.F2(colll,@p2,0)=1
AND dbo.F2(col12,@p2,0)=1 AND dbo.F2(co0l13,@p2,0)=1
AND dbo.F2(col14,@p2,0)=1 AND dbo.F2(col15,@p2,0)=1)

set Q@first = charindex(’.’, Qv, 0);
if @first = 0
return CONVERT(float, @v);

set @major = SUBSTRING(Qv, 0, @first);
set @second = charindex(’.’, Qv, @first + 1);
if @second = 0
set @minor=SUBSTRING(@v, @first+1, len(@v)-@first)

else
. set @minor=SUBSTRING(@v, @first+1, @second-@first-1);
return 0
g set @minor = CAST(CAST(@minor AS int) AS varchar);
return CONVERT(float, @major + ’.’ + @minor);
end

CREATE FUNCTION dbo.RptBracket(@MyDiff int, @NDays int)
RETURNS nvarchar(10) AS
BEGIN
if (@MyDiff >= 5+@NDays)
begin
RETURN (Cast(5 * @NDays as nvarchar(5)) + N’+’)
end

RETURN (Cast(Floor(@MyDiff / @NDays) * @NDays as nvarchar(5))
+N’_’
+ Cast (Floor (@MyDiff / @NDays + 1) * @NDays - 1 as nvarchar(5)))
END

Evaluation

10000
/

1000
100 o
10 / N |

1 '.’F - A
~ .. (DOP:12)
0.1 —
0.01

10 100 1K 10K 100K
Cardinality of table (No. of UDF invocations)

Time taken (secs), Log Scale

== Froid OFF <4+ Froid ON (DOP: 1) == A= Froid ON

Figure 6: Varying the number of UDF
invocations

1000
.
3
€ 100
3 v
s 3
E g 10
;s T
s "l”“"lllllu..
L
0.1

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141

Figure 10: Improvement for UDFs in workload W1

Converting UDFs to CTEs

» CTE == Common Table Expressions (i.e., WITH clause)

» Another approach taken by a recent paper
o Functional-style SQL UDFs with a Capital ‘F’; SIGMOD 2020

CREATE FUNCTION pow(x int, n int) L] [HEELELE
RETURNS int AS run("call?",i1,p1,x,n,result) AS (
bE SELECT true,0,1,x,n,NULL
DECLARE
i int = 0; UNION ALL
p int = 1; SELECT iter.* FROM run, LATERAL (
BEGIN SELECT false,0,0,0,0,p]
WHILE i < n LOOP WHERE i1 >= n
p=p * X; UNION ALL
1i=1+1; SELECT true,il+1,p1*x,x,n,0
END LOOP; WHERE i1 < n
RETURN p;
END - -) AS iter("call?",i11,p1,x,n,result)
$$ ’ WHERE run."call?"

)
SELECT * FROM run;

