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} Part 1 Slides
◦ Query evaluation techniques for large databases, Skew Avoidance, Query 

compilation/vectorization

◦ Query Optimization: Overview, How good are the query optimizers, 
really?, Reordering for Outerjoins, Query Rewriting

} Adaptive Query Processing
◦ Eddies

◦ Progressive Query Optimization

◦ Compilation and adaptivity

} Worst case optimal joins

} Froid: Databases and UDFs



} In traditional settings: 

◦ Queries over many tables

◦ Unreliability of traditional cost estimation

◦ Success, maturity make problems more apparent, critical 

} In new environments:

◦ e.g. data integration, web services, streams, P2P... 

◦ Unknown dynamic characteristics for data and runtime 

◦ Increasingly aggressive sharing of resources and computation

◦ Interactivity in query processing 

} Note two distinct themes lead to the same conclusion:

◦ Unknowns: even static properties often unknown in new environments and often 
unknowable a priori 

◦ Dynamics: environment changes can be very high 

} Motivates intra-query adaptivity 



} Autonomic/self-tuning optimization
◦ Chen and Roussoupolous: Adaptive selectivity estimation [SIGMOD 1994]
◦ LEO (@IBM), SITS (@MSR): Learning from previous executions 

} Robust/least-expected cost optimization 
} Parametric optimization 
◦ Choose a collection of plans, each optimal for a different setting of 

parameters
◦ Select one at the beginning of execution 

} Competitive optimization
◦ Start off multiple plans... kill all but one after a while 

} Adaptive operators
More details in our survey: “Adaptive Query Processing”; FnT
2007 



} Low-overhead, evolutionary approaches
◦ Typically apply to non-pipelined execution
◦ Late binding: Don’t instatntiate the entire plan at start 
◦ Mid-query reoptimization: At “materialization” points, review 

the remaining plan and possibly re-optimize 
} Pipelined execution
◦ No materialization points, so the above doesn’t apply 
◦ The operators may contain complex states, raising correctness 

issues
◦ Eddies 
� Always guarantee correct execution, but allows reordering during 

execution 

} Lot of work in 1998-2008 timeframe -- not much since



} We will start with a general overview of AQP as 
presented in a later survey and tutorial

} Then go through the three papers (first two quickly, 
and the last one in more detail)
◦ First two will be covered in the tutorial
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Query Processing:  Adapting to the World

Data independence facilitates modern DBMS technology
– Separates specification (“what”) from implementation (“how”)
– Optimizer maps declarative query à algebraic operations

Platforms, conditions are constantly changing:

Query processing adapts implementation to runtime 
conditions
– Static applications à dynamic environments

dapp
dt

<<
denv
dt



Dynamic Programming + Pruning Heuristics

Query Optimization and Processing
(As Established in System R [SAC+’79])

> UPDATE STATISTICS 
❚

cardinalities
index lo/hi key

> SELECT *
FROM Professor P, 
Course C, Student S
WHERE P.pid = C.pid
AND S.sid = C.sid

❚

Professor Course Student



Traditional Optimization Is Breaking

In traditional settings:
– Queries over many tables
– Unreliability of traditional cost estimation
– Success & maturity make problems more apparent, critical

In new environments:
– e.g. data integration, web services, streams, P2P, sensor nets, hosting
– Unknown and dynamic characteristics for data and runtime
– Increasingly aggressive sharing of resources and computation
– Interactivity in query processing

Note two distinct themes lead to the same conclusion:
– Unknowns: even static properties often unknown in new environments

and often unknowable a priori
– Dynamics:             can be very high

Motivates intra-query adaptivity

denv
dt



A Call for Greater Adaptivity

System R adapted query processing as stats were updated
– Measurement/analysis: periodic 
– Planning/actuation: once per query
– Improved thru the late 90s (see [Graefe ’93] [Chaudhuri ’98])

Better measurement, models, search strategies

INGRES adapted execution many times per query
– Each tuple could join with relations in a different order
– Different plan space, overheads, frequency of adaptivity

Didn’t match applications & performance at that time

Recent work considers adaptivity in new contexts



Tutorial Focus

By necessity, we will cover only a piece of the picture here
– Intra-query adaptivity:

• autonomic / self-tuning optimization [CR’94,  CN’97, BC’02, …]

• robust / least expected cost optimization [CHG’02, MRS+’04, 
BC’05, ...]

• parametric or competitive optimization [A’93, INSS’92, CG’94, …]

• adaptive operators, e.g., memory adaptive sort & hash join 
[NKT’88, KNT’89, PCL’93a, PCL’93b,…]

– Conventional relations, rather than streams
– Single-site, single query computation

§ For more depth, see our survey in now Publishers’ Foundations 
and Trends in Databases, Vol. 1 No. 1



Tutorial Outline

§Motivation
§Non-pipelined execution
§Pipelined execution

– Selection ordering
– Multi-way join queries

§Putting it all in context
§Recap/open problems



Low-Overhead Adaptivity: 
Non-pipelined Execution



Late Binding; Staged Execution

Materialization points make natural decision points where 
the next stage can be changed with little cost:

– Re-run optimizer at each point to get the next stage
– Choose among precomputed set of plans – parametric query 

optimization [INSS’92, CG’94, …]

AR

NLJ

sort

C

B

MJ

MJ

sort
Normal execution: pipelines separated 
by materialization points

e.g., at a sort, GROUP BY, etc.

materialization 
point



Mid-query Reoptimization
[KD’98,MRS+04]

Choose checkpoints at which to monitor cardinalities
Balance overhead and opportunities for switching plans

If actual cardinality is too different from estimated,
Avoid unnecessary plan re-optimization (where the plan doesn’t change)

Re-optimize to switch to a new plan
Try to maintain previous computation during plan switching

§ Most widely studied technique:
-- Federated systems (InterViso 90, MOOD 96), Red Brick, 

Query scrambling (96), Mid-query re-optimization (98),  
Progressive Optimization (04), Proactive Reoptimization (05), …

Where?

How?

When?
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NLJ
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Mid-query Reoptimization

§ At materialization points, re-evaluate the rest of the query 
plan

§ Example:

R.a = 10 R.b < 20R resultR.c like …
R1 R2 R3Materialize

R1

Initial query plan chosen

Estimated 
selectivities

0.05 0.1 0.2

A free opportunity to re-evaluate the rest of the query plan
- Exploit by gathering information about the materialized result



Mid-query Reoptimization

§ At materialization points, re-evaluate the rest of the query 
plan

§ Example:

R.a = 10 R.b < 20R resultR.c like …
R1 R2 R3Materialize

R1; build
1-d hists

Initial query plan chosen

Estimated 
selectivities

0.05 0.1 0.2

A free opportunity to re-evaluate the rest of the query plan
- Exploit by gathering information about the materialized result



Mid-query Reoptimization

§ At materialization points, re-evaluate the rest of the query 
plan

§ Example:

R.b < 20 R.c like …
R2 R3

R.a = 10R
R1 Materialize

R1

Initial query plan chosen

Estimated 
selectivities

0.05 0.1 0.2

Re-estimated
selectivities

0.5 0.01

Significantly different è original plan probably sub-optimal
Reoptimize the remaining part of the query

Materialize
R1; build
1-d hists



Where to Place Checkpoints?

Lazy checkpoints: placed above materialization points 
– No work need be wasted if we switch plans here

Eager checkpoints: can be placed anywhere
– May have to discard some partially computed results
– Useful where optimizer estimates have high uncertainty

A

C

B

R

MJ

NLJ

MJ

sort

More checkpoints è more opportunities for 
switching plans

Overhead of (simple) monitoring is small 
[SLMK’01]

Consideration:  it is easier to switch plans at 
some checkpoints than others

sort
Lazy

Eager



When to Re-optimize?
§ Suppose actual cardinality is different from estimates:

how high a difference should trigger a re-optimization?

§ Idea: do not re-optimize if current plan is still the best

1. Heuristics-based [KD’98]:
e.g., re-optimize < time to finish execution

2. Validity range [MRS+04]: precomputed range of a parameter 
(e.g., a cardinality) within which plan is optimal 

– Place eager checkpoints where the validity range is narrow
– Re-optimize if value falls outside this range
– Variation:  bounding boxes [BBD’05]



How to Reoptimize

Getting a better plan:
– Plug in actual cardinality information acquired during this 

query (as possibly histograms), and re-run the optimizer

Reusing work when switching to the better plan:
– Treat fully computed intermediate results as materialized 

views
• Everything that is under a materialization point

– Note: It is optional for the optimizer to use these in the 
new plan

ØOther approaches are possible (e.g., query scrambling 
[UFA’98])



Pipelined Execution



Adapting Pipelined Queries

Adapting pipelined execution is often necessary:
– Too few materializations in today’s systems 
– Long-running queries
– Wide-area data sources
– Potentially endless data streams

The tricky issues:
– Some results may have been delivered to the user

• Ensuring correctness non-trivial
– Database operators build up state

• Must reason about it during adaptation
• May need to manipulate state



Adapting Pipelined Queries

We discuss three subclasses of the problem:
– Selection ordering (stateless)

• Very good analytical and theoretical results
• Increasingly important in web querying, streams, sensornets
• Certain classes of join queries reduce to them

– Select-project-join queries (stateful)

• History-independent execution
– Operator state largely independent of execution history
à Execution decisions for a tuple independent of prior tuples

• History-dependent execution
– Operator state depends on execution history
– Must reason about the state during adaptation



Pipelined Execution Part I:
Adaptive Selection Ordering



Adaptive Selection Ordering

Complex predicates on single relations common
– e.g., on an employee relation:

((salary > 120000) AND (status = 2)) OR 
((salary between 90000 and 120000) AND (age < 30) AND (status = 1)) OR …

Selection ordering problem:
Decide the order in which to evaluate the individual 
predicates against the tuples

We focus on conjunctive predicates (containing only AND’s)
Example Query

select * from R
where R.a = 10 and R.b < 20 
and R.c like ‘%name%’;



Basics: Static Optimization

Find a single order of the selections to be used for all tuples 

Query

Query plans considered

R.a = 10 R.b < 20R resultR.c like …

R.b < 20 R.c like …R resultR.a = 10 3! = 6 distinct
plans possible

select * from R
where R.a = 10 and R.b < 20 
and R.c like ‘%name%’;



Static Optimization

Cost metric: CPU instructions
Computing the cost of a plan

– Need to know the costs and the selectivities of the predicates

R.a = 10 R.b < 20R resultR.c like …

cost(plan) = |R| * (c1 + s1 * c2 + s1 * s2 * c3)

R1 R2 R3

costs                    c1                    c2                      c3
selectivities          s1                    s2                      s3

cost per               c1         +        s1 c2       +          s1 s2 c3
tuple

Independence assumption



Static Optimization

Rank ordering algorithm for independent selections [IK’84]
– Apply the predicates in the decreasing order of rank:

(1 – s) / c 
where s = selectivity, c = cost

For correlated selections:
– NP-hard under several different formulations

• e.g. when given a random sample of the relation

– Greedy algorithm, shown to be 4-approximate [BMMNW’04]:
• Apply the selection with the highest (1 - s)/c
• Compute the selectivities of remaining selections over the result

– Conditional selectivities
• Repeat



Eddies [AH’00]

Query processing as routing of tuples through operators

Pipelined query execution using an eddy

An eddy operator
• Intercepts tuples from sources

and output tuples from operators
• Executes query by routing source         

tuples through operators

A traditional pipelined query plan

R.a = 10 R.b < 20R resultR.c like …
R1 R2 R3

EddyR
result

R.a = 10

R.c like …

R.b < 20

Encapsulates all aspects of 
adaptivity in a “standard” 

dataflow operator: 
measure, model, plan and 

actuate.



Eddies [AH’00]

a b c …
15 10 AnameA …

An R Tuple:  r1

r1

r1

EddyR

result

R.a = 10

R.c like …

R.b < 20



ready bit i :
1 à operator i can be applied
0 à operator i can’t be applied

Eddies [AH’00]

a b c … ready done
15 10 AnameA … 111 000

An R Tuple:  r1

r1

Operator 1

Operator 2

Operator 3

EddyR

result

R.a = 10

R.c like …

R.b < 20



done bit i :
1 à operator i has been applied
0 à operator i hasn’t been applied

Eddies [AH’00]

a b c … ready done
15 10 AnameA … 111 000

An R Tuple:  r1

r1

Operator 1

Operator 2

Operator 3

EddyR

result

R.a = 10

R.c like …

R.b < 20



Eddies [AH’00]

a b c … ready done
15 10 AnameA … 111 000

An R Tuple:  r1

r1

Operator 1

Operator 2

Operator 3

Used to decide validity and need
of applying operators

EddyR

result

R.a = 10

R.c like …

R.b < 20



Eddies [AH’00]

a b c … ready done
15 10 AnameA … 111 000

An R Tuple:  r1

r1

Operator 1

Operator 2

Operator 3

satisfied
r1

r1

a b c … ready done
15 10 AnameA … 101 010

r1

not satisfied

eddy looks at the
next tuple

For a query with only selections,
ready = complement(done)

EddyR

result

R.a = 10

R.c like …

R.b < 20



Eddies [AH’00]

a b c …
10 15 AnameA …

An R Tuple:  r2

Operator 1

Operator 2

Operator 3

r2
EddyR

result

R.a = 10

R.c like …

R.b < 20

satisfied

satisfied

satisfied



Eddies [AH’00]

a b c … ready done
10 15 AnameA … 000 111

An R Tuple:  r2

Operator 1

Operator 2

Operator 3

r2

if done = 111,
send to output 

r2

EddyR

result

R.a = 10

R.c like …

R.b < 20

satisfied

satisfied

satisfied



Eddies [AH’00]

Adapting order is easy
– Just change the operators to which tuples are sent
– Can be done on a per-tuple basis
– Can be done in the middle of tuple’s “pipeline”

How are the routing decisions made?
Using a routing policy

Operator 1

Operator 2

Operator 3

EddyR

result

R.a = 10

R.c like …

R.b < 20



Routing Policies that Have Been Studied

Deterministic [D03]
– Monitor costs & selectivities continuously
– Re-optimize periodically using rank ordering

(or A-Greedy for correlated predicates)

Lottery scheduling [AH00]
– Each operator runs in thread with an input queue
– “Tickets” assigned according to tuples input / output
– Route tuple to next eligible operator with room in queue, 

based on number of “tickets” and “backpressure”

Content-based routing [BBDW05]
– Different routes for different plans based on attribute values



Routing Policy 1: Non-adaptive

§ Simulating a single static order
– E.g. operator 1, then operator 2, then operator 3

Routing policy:
if done = 

000 à route to 1
100 à route to 2
110 à route to 3

table lookups à very efficient

Operator 1

Operator 2

Operator 3

EddyR

result

R.a = 10

R.c like …

R.b < 20



Overhead of Routing
§ PostgreSQL implementation of eddies using bitset lookups [Telegraph Project]
§ Queries with 3 selections, of varying cost

– Routing policy uses a single static order, i.e., no adaptation
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Routing Policy 2: Deterministic

§ Monitor costs and selectivities continuously
§ Reoptimize periodically using KBZ

Statistics Maintained:
Costs of operators
Selectivities of operators

Routing policy:
Use a single order for a 

batch of tuples
Periodically apply KBZ

Operator 1

Operator 2

Operator 3

EddyR

result

R.a = 10

R.c like …

R.b < 20

Can use specialized 
policies for correlated 
predicates



Overhead of Routing and Reoptimization

§ Adaptation using batching
– Reoptimized every X tuples using monitored selectivities
– Identical selectivities throughout è experiment measures 

only the overhead
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Routing Policy 3: Lottery Scheduling

§ Originally suggested routing policy [AH’00]
§ Applicable only if each operator runs in a separate thread
§ Uses two easily obtainable pieces of information for making 

routing decisions:
– Busy/idle status of operators
– Tickets per operator

Operator 1

Operator 2

Operator 3

EddyR

result

R.a = 10

R.c like …

R.b < 20



Routing Policy 3: Lottery Scheduling
§ Routing decisions based on busy/idle status of operators

Rule:
IF operator busy,
THEN do not route more  

tuples to it

Rationale:
Every thread gets equal time
SO IF an operator is busy,
THEN its cost is perhaps very

high

Operator 1

Operator 2

Operator 3

EddyR

result

R.a = 10

R.c like …

R.b < 20

BUSY

IDLE

IDLE



Routing Policy 3: Lottery Scheduling
§ Routing decisions based on tickets

Rules:
1. Route a new tuple randomly 

weighted according to the 
number of tickets 

tickets(O1) = 10
tickets(O2) = 70
tickets(O3) = 20

Will be routed to:
O1   w.p.   0.1
O2   w.p.   0.7
O3   w.p.   0.2

Operator 1

Operator 2

Operator 3

Eddy

result

R.a = 10

R.c like …

R.b < 20

r



Routing Policy 3: Lottery Scheduling
§ Routing decisions based on tickets

Rules:
1. Route a new tuple randomly 

weighted according to the 
number of tickets 

tickets(O1) = 10
tickets(O2) = 70
tickets(O3) = 20

r

Operator 1

Operator 2

Operator 3

Eddy

result

R.a = 10

R.c like …

R.b < 20



Routing Policy 3: Lottery Scheduling
§ Routing decisions based on tickets

Rules:
1. Route a new tuple randomly 

weighted according to the 
number of tickets 

2. route a tuple to an operator Oi
tickets(Oi) ++; Operator 1

Operator 2

Operator 3

Eddy

result

R.a = 10

R.c like …

R.b < 20

tickets(O1) = 11
tickets(O2) = 70
tickets(O3) = 20



Routing Policy 3: Lottery Scheduling
§ Routing decisions based on tickets

r

Rules:
1. Route a new tuple randomly 

weighted according to the 
number of tickets 

2. route a tuple to an operator Oi
tickets(Oi) ++;

3. Oi returns a tuple to eddy
tickets(Oi) --;

Operator 1

Operator 2

Operator 3

Eddy

result

R.a = 10

R.c like …

R.b < 20

tickets(O1) = 11
tickets(O2) = 70
tickets(O3) = 20



Routing Policy 3: Lottery Scheduling
§ Routing decisions based on tickets

r

Rules:
1. Route a new tuple randomly 

weighted according to the 
number of tickets 

2. route a tuple to an operator Oi
tickets(Oi) ++;

3. Oi returns a tuple to eddy
tickets(Oi) --;

Operator 1

Operator 2

Operator 3

Eddy

result

R.a = 10

R.c like …

R.b < 20

tickets(O1) = 10
tickets(O2) = 70
tickets(O3) = 20

Will be routed to:
O2   w.p.   0.777
O3   w.p.   0.222



Routing Policy 3: Lottery Scheduling
§ Routing decisions based on tickets

Rationale:
Tickets(Oi) roughly corresponds to

(1 - selectivity(Oi))
So more tuples are routed to

highly selective operators

Rules:
1. Route a new tuple randomly 

weighted according to the 
number of tickets 

2. route a tuple to an operator Oi
tickets(Oi) ++;

3. Oi returns a tuple to eddy
tickets(Oi) --;

Operator 1

Operator 2

Operator 3

Eddy

result

R.a = 10

R.c like …

R.b < 20

tickets(O1) = 10
tickets(O2) = 70
tickets(O3) = 20



Routing Policy 3: Lottery Scheduling

§ Effect of the combined lottery scheduling policy:
– Low cost operators get more tuples
– Highly selective operators get more tuples
– Some tuples are knowingly routed according to sub-optimal orders

• To explore
• Necessary to detect selectivity changes over time



Eddies: Post-Mortem

§ Plan Space explored
– Allows arbitrary “horizontal partitioning”
– Not necessarily correlated with order of arrival

..

R.a = 10 R.b < 20 R.c like …

R.b < 20 R.a= 10 R.c like …

.

.

order
of 
arrival

In a later paper, we looked at optimizing for horizontal partitioning directly 



Pipelined Execution Part II:
Adaptive Join Processing



Adaptive Join Processing: Outline

§ Single streaming relation
– Left-deep pipelined plans

§ Multiple streaming relations
– Execution strategies for multi-way joins
– History-independent execution
– History-dependent execution



Left-Deep Pipelined Plans

Simplest method of joining tables
– Pick a driver table (R). Call the rest driven tables
– Pick access methods (AMs) on the driven tables (scan, hash, or index)
– Order the driven tables
– Flow R tuples through the driven tables

For each r Î R do:
look for matches for r in A;
for each match a do:

look for matches for <r,a> in B;
…

R
B

NLJ

C

NLJ

A

NLJ



Adapting a Left-deep Pipelined Plan

Simplest method of joining tables
– Pick a driver table (R). Call the rest driven tables
– Pick access methods (AMs) on the driven tables
– Order the driven tables
– Flow R tuples through the driven tables

For each r Î R do:
look for matches for r in A;
for each match a do:

look for matches for <r,a> in B;
…

Almost identical 
to selection 

ordering

R
B

NLJ

C

NLJ

A

NLJ



Adapting the Join Order

§ Let ci = cost/lookup into i’th driven table, 
si = fanout of the lookup

§ As with selection, cost =  |R| x (c1 + s1c2 + s1s2c3)
§ Caveats:

– Fanouts s1,s2,…  can be > 1
– Precedence constraints
– Caching issues 

§ Can use rank ordering, A-greedy for adaptation (subject to the caveats)

R
B

NLJ

C

NLJ

A

NLJ

R
C

NLJ

B

NLJ

A

NLJ

(c1, s1) (c2, s2) (c3, s3)



Adapting a Left-deep Pipelined Plan

Simplest method of joining tables
– Pick a driver table (R). Call the rest driven tables
– Pick access methods (AMs) on the driven tables
– Order the driven tables
– Flow R tuples through the driven tables

For each r Î R do:
look for matches for r in A;
for each match a do:

look for matches for <r,a> in B;
…

R
B

NLJ

C

NLJ

A

NLJ

?



Adapting a Left-deep Pipelined Plan

Key issue: Duplicates
Adapting the choice of driver table

[L+07] Carefully use indexes to achieve this
Adapting the choice of access methods

– Static optimization: explore all possibilities and pick best
– Adaptive: Run multiple plans in parallel for a while, 

and then pick one and discard the rest  [Antoshenkov’ 96]
• Cannot easily explore combinatorial options

R
B

NLJ

C

NLJ

A

NLJ



Adaptive Join Processing: Outline

§ Single streaming relation
– Left-deep pipelined plans

§ Multiple streaming relations 
– Execution strategies for multi-way joins
– History-independent execution

• MJoins
– History-dependent execution

• Eddies with joins
• Corrective query processing



Example Join Query & Database

Name Level

Joe Junior

Jen Senior

Name Course

Joe CS1

Jen CS2

Course Instructor

CS2 Smith

select *
from students, enrolled, courses
where students.name = enrolled.name 

and enrolled.course = courses.course

Students Enrolled

Name Level Course

Joe Junior CS1

Jen Senior CS2

Enrolled Courses

Students Enrolled

Courses

Name Level Course Instructor

Jen Senior CS2 Smith



Symmetric/Pipelined Hash Join 
[RS86, WA91]

Name Level

Jen Senior

Joe Junior

Name Course

Joe CS1

Jen CS2

Joe CS2

select * from students, enrolled where students.name = enrolled.name

Name Level Course
Jen Senior CS2

Joe Junior CS1

Joe Senior CS2

StudentsEnrolled

§ Simultaneously builds and probes 
hash tables on both sides

§ Widely used: 
– adaptive query processing
– stream joins
– online aggregation 
– …

§ Naïve version degrades to NLJ 
once memory runs out
– Quadratic time complexity
– memory needed = sum of inputs

§ Improved by XJoins [UF 00], 
Tukwila DPJ [IFFLW 99]



Multi-way Pipelined Joins 
over Streaming Relations

Alternatives
– Using binary join operators

– Using a single n-ary join operator (MJoin) [VNB’03]

– Some other options explored in the literature



Name Level

Jen Senior

Joe Junior

Name Course

Joe CS1

Jen CS2

Enrolled

HashTable
E.Name

HashTable
S.Name

Students

Course Instructor

CS2 Smith

HashTable
E.Course

HashTable
C.course

Courses

Name Level Course
Jen Senior CS2

Joe Junior CS1

Name Level Course Instructor

Jen Senior CS2 Smith
Materialized state 
that depends on the 
query plan used

History-dependent !

Jen Senior CS2



Multi-way Pipelined Joins 
over Streaming Relations

Three alternatives
– Using binary join operators

ØHistory-dependent execution
ØHard to reason about the impact of adaptation
ØMay need to migrate the state when changing plans

– Using a single n-ary join operator (MJoin) [VNB’03]



Name Course

Joe CS1

Jen CS2

Name Level

Joe Junior

Jen Senior

Students

HashTable
S.Name

HashTable
E.Name

Enrolled

Name Level Course Instructor

Jen Senior CS2 Smith

Name Course

Joe CS1

Jen CS2

HashTable
E.Course

HashTable
C.course

Courses

Probing Sequences
Students tuple: Enrolled, then Courses
Enrolled tuple: Students, then Courses
Courses tuple: Enrolled, then Students

ProbeProbe Probe

Hash tables contain all tuples 
that arrived so far

Irrespective of the probing 
sequences used

History-independent execution !

Course Instructor

CS2 Smith

Jen CS2 Smith
Jen CS2 Senior



MJoins [VNB’03]

Choosing probing sequences
– For each relation, use a left-deep pipelined plan 

(based on hash indexes)
– Can use selection ordering algorithms

Independently for each relation

Adapting MJoins
– Adapt each probing sequence independently 

e.g., StreaMon [BW’01] used A-Greedy for this purpose

A-Caching [BMWM’05]
– Maintain intermediate caches to avoid recomputation
– Alleviates some of the performance concerns



Adaptive Join Processing: Outline

§ Single streaming relation
– Left-deep pipelined plans

§ Multiple streaming relations
– Execution strategies for multi-way joins
– History-independent execution

• MJoins
• SteMs

– History-dependent execution
• Eddies with binary joins



Eddies with Binary Joins [AH’00]

Students Enrolled

Output

Courses

E C

S E Eddy
S
E
C

S E

E C

Output

S.Name like “..”
s1

For correctness, must obey routing constraints !!



Eddies with Binary Joins [AH’00]

Students Enrolled

Output

Courses

E C

S E Eddy
S
E
C

S E

E C

Output

S.Name like “..”
e1

For correctness, must obey routing constraints !!



Eddies with Binary Joins [AH’00]

Students Enrolled

Output

Courses

E C

S E Eddy
S
E
C

S E

E C

Output

S.Name like “..”

e1c1

For correctness, must obey routing constraints !!
Use some form of tuple-lineage



Eddies with Binary Joins [AH’00]

Students Enrolled

Output

Courses

E C

S E Eddy
S
E
C

S E

E C

Output

S.Name like “..”

Can use any join algorithms
But, pipelined operators preferred

Provide quick feedback



Eddies with Symmetric Hash Joins

Eddy
S
E
C

Output

S E
HashTable
S.Name

HashTable
E.Name

E C

HashTable
E.Course

HashTable
C.Course

Joe Jr

Jen Sr

CS2 Smith

Joe CS1

Joe Jr CS1

Jen CS2

Jen CS2 Smith



Burden of Routing History [DH’04]

Eddy
S
E
C

Output

S E
HashTable
S.Name

HashTable
E.Name

E C

HashTable
E.Course

HashTable
C.Course

Joe Jr

Jen Sr

CS2 Smith

Joe CS1

Joe Jr CS1

Jen CS2

Jen CS2 Smith

As a result of routing decisions,
state gets embedded inside 
the operators

History-dependent execution !!



Recap: Eddies with Binary Joins

Routing constraints enforced using tuple-level lineage

Must choose access methods, join spanning tree beforehand
– SteMs relax this restriction [RDH’03]

The operator state makes the behavior unpredictable
– Unless only one streaming relation

Routing policies explored are same as for selections
– Can tune policy for interactivity metric [RH’02]
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◦ Eddies

◦ Progressive Query Optimization

◦ Compilation and adaptivity



} Continuously ”reorder” operators as the query is executing
◦ By changing the “order” in which tuples visit operators

◦ Obviate the need for selectivity estimation and optimization entirely 

◦ Naturally handles situations where the selectivities change over time (for long-
running queries)

Eddies: Continuously Adaptive Query Processing

Ron Avnur Joseph M. Hellerstein
University of California, Berkeley
avnur@cohera.com, jmh@cs.berkeley.edu

In large federated and shared-nothing databases, resources can
exhibit widely fluctuating characteristics. Assumptions made
at the time a query is submitted will rarely hold throughout
the duration of query processing. As a result, traditional static
query optimization and execution techniques are ineffective in
these environments.
In this paper we introduce a query processing mechanism

called an eddy, which continuously reorders operators in a
query plan as it runs. We characterize the moments of sym-
metry during which pipelined joins can be easily reordered,
and the synchronization barriers that require inputs from dif-
ferent sources to be coordinated. By combining eddies with
appropriate join algorithms, we merge the optimization and
execution phases of query processing, allowing each tuple to
have a flexible ordering of the query operators. This flexibility
is controlled by a combination of fluid dynamics and a simple
learning algorithm. Our initial implementation demonstrates
promising results, with eddies performing nearly as well as
a static optimizer/executor in static scenarios, and providing
dramatic improvements in dynamic execution environments.

There is increasing interest in query engines that run at un-
precedented scale, both for widely-distributed information re-
sources, and for massively parallel database systems. We are
building a system called Telegraph, which is intended to run
queries over all the data available on line. A key requirement
of a large-scale system like Telegraph is that it function ro-
bustly in an unpredictable and constantly fluctuating environ-
ment. This unpredictability is endemic in large-scale systems,
because of increased complexity in a number of dimensions:
Hardware and Workload Complexity: In wide-area envi-
ronments, variabilities are commonly observable in the bursty
performance of servers and networks [UFA98]. These systems
often serve large communities of users whose aggregate be-
havior can be hard to predict, and the hardware mix in the wide
area is quite heterogeneous. Large clusters of computers can
exhibit similar performance variations, due to a mix of user
requests and heterogeneous hardware evolution. Even in to-
tally homogeneous environments, hardware performance can
be unpredictable: for example, the outer tracks of a disk can
exhibit almost twice the bandwidth of inner tracks [Met97].
Data Complexity: Selectivity estimation for static alphanu-

Figure 1: An eddy in a pipeline. Data flows into the eddy from
input relations and . The eddy routes tuples to opera-
tors; the operators run as independent threads, returning tuples
to the eddy. The eddy sends a tuple to the output only when
it has been handled by all the operators. The eddy adaptively
chooses an order to route each tuple through the operators.

meric data sets is fairly well understood, and there has been
initial work on estimating statistical properties of static sets of
data with complex types [Aok99] and methods [BO99]. But
federated data often comes without any statistical summaries,
and complex non-alphanumeric data types are now widely in
use both in object-relational databases and on the web. In these
scenarios – and even in traditional static relational databases –
selectivity estimates are often quite inaccurate.
User Interface Complexity: In large-scale systems, many
queries can run for a very long time. As a result, there is in-
terest in Online Aggregation and other techniques that allow
users to “Control” properties of queries while they execute,
based on refining approximate results [HAC 99].
For all of these reasons, we expect query processing param-

eters to change significantly over time in Telegraph, typically
many times during a single query. As a result, it is not appro-
priate to use the traditional architecture of optimizing a query
and then executing a static query plan: this approach does
not adapt to intra-query fluctuations. Instead, for these en-
vironments we want query execution plans to be reoptimized
regularly during the course of query processing, allowing the
system to adapt dynamically to fluctuations in computing re-
sources, data characteristics, and user preferences.
In this paper we present a query processing operator called

an eddy, which continuously reorders the application of pipe-



} Selections are arbitrarily reorderable

} What about joins?Eddies: Continuously Adaptive Query Processing
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In large federated and shared-nothing databases, resources can
exhibit widely fluctuating characteristics. Assumptions made
at the time a query is submitted will rarely hold throughout
the duration of query processing. As a result, traditional static
query optimization and execution techniques are ineffective in
these environments.
In this paper we introduce a query processing mechanism

called an eddy, which continuously reorders operators in a
query plan as it runs. We characterize the moments of sym-
metry during which pipelined joins can be easily reordered,
and the synchronization barriers that require inputs from dif-
ferent sources to be coordinated. By combining eddies with
appropriate join algorithms, we merge the optimization and
execution phases of query processing, allowing each tuple to
have a flexible ordering of the query operators. This flexibility
is controlled by a combination of fluid dynamics and a simple
learning algorithm. Our initial implementation demonstrates
promising results, with eddies performing nearly as well as
a static optimizer/executor in static scenarios, and providing
dramatic improvements in dynamic execution environments.

There is increasing interest in query engines that run at un-
precedented scale, both for widely-distributed information re-
sources, and for massively parallel database systems. We are
building a system called Telegraph, which is intended to run
queries over all the data available on line. A key requirement
of a large-scale system like Telegraph is that it function ro-
bustly in an unpredictable and constantly fluctuating environ-
ment. This unpredictability is endemic in large-scale systems,
because of increased complexity in a number of dimensions:
Hardware and Workload Complexity: In wide-area envi-
ronments, variabilities are commonly observable in the bursty
performance of servers and networks [UFA98]. These systems
often serve large communities of users whose aggregate be-
havior can be hard to predict, and the hardware mix in the wide
area is quite heterogeneous. Large clusters of computers can
exhibit similar performance variations, due to a mix of user
requests and heterogeneous hardware evolution. Even in to-
tally homogeneous environments, hardware performance can
be unpredictable: for example, the outer tracks of a disk can
exhibit almost twice the bandwidth of inner tracks [Met97].
Data Complexity: Selectivity estimation for static alphanu-

Figure 1: An eddy in a pipeline. Data flows into the eddy from
input relations and . The eddy routes tuples to opera-
tors; the operators run as independent threads, returning tuples
to the eddy. The eddy sends a tuple to the output only when
it has been handled by all the operators. The eddy adaptively
chooses an order to route each tuple through the operators.

meric data sets is fairly well understood, and there has been
initial work on estimating statistical properties of static sets of
data with complex types [Aok99] and methods [BO99]. But
federated data often comes without any statistical summaries,
and complex non-alphanumeric data types are now widely in
use both in object-relational databases and on the web. In these
scenarios – and even in traditional static relational databases –
selectivity estimates are often quite inaccurate.
User Interface Complexity: In large-scale systems, many
queries can run for a very long time. As a result, there is in-
terest in Online Aggregation and other techniques that allow
users to “Control” properties of queries while they execute,
based on refining approximate results [HAC 99].
For all of these reasons, we expect query processing param-

eters to change significantly over time in Telegraph, typically
many times during a single query. As a result, it is not appro-
priate to use the traditional architecture of optimizing a query
and then executing a static query plan: this approach does
not adapt to intra-query fluctuations. Instead, for these en-
vironments we want query execution plans to be reoptimized
regularly during the course of query processing, allowing the
system to adapt dynamically to fluctuations in computing re-
sources, data characteristics, and user preferences.
In this paper we present a query processing operator called

an eddy, which continuously reorders the application of pipe-

- An index lookup can be 
treated as a “selection”
- Send an S tuple, get back
augmented tuples
- Note: decision to use the 
index cannot be “adapted”

- These two are tricky
- Nested loops requires 

iterating over all of inner
- Hash join requires building a 

hash table on inner



} Synchronization Barriers
◦ Many operators explicitly enforce an order in which tuples must be read 

from the inputs

◦ e.g., Sort-merge joins: at most points, the next tuple to read must be read 
from a specific input

◦ Hash joins: need to read all of ”inner” before outer tuples can be read

} Moments of Symmetry
◦ Sort-merge join is symmetric

◦ But Nested-loops is not

� However, can change the outer/inner at specific points 

} Join operators with more moments of symmetric preferred
◦ e.g., Symmetric Hash Join Operator



Figure 3: Tuples generated by block, index, and hash ripple join. In block ripple, all tuples are generated by the join, but some may
be eliminated by the join predicate. The arrows for index and hash ripple join represent the logical portion of the cross-product
space checked so far; these joins only expend work on tuples satisfying the join predicate (black dots). In the hash ripple diagram,
one relation arrives 3 faster than the other.

namically adapts to fluctuations in performance and workload.
River has been used to robustly produce near-record perfor-
mance on I/O-intensive benchmarks like parallel sorting and
hash joins, despite heterogeneities and dynamic variability in
hardware and workloads across machines in a cluster. For
more details on River’s adaptivity and parallelism features, the
interested reader is referred to the original paper on the topic
[AAT 99]. In Telegraph, we intend to leverage the adaptabil-
ity of River to allow for dynamic shifting of load (both query
processing and data delivery) in a shared-nothing parallel en-
vironment. But in this paper we restrict ourselves to basic
(single-site) features of eddies; discussions of eddies in par-
allel rivers are deferred to Section 6.
Since we do not discuss parallelism here, a very simple

overview of the River framework suffices. River is a dataflow
query engine, analogous in many ways to Gamma [DGS 90],
Volcano [Gra90] and commercial parallel database engines,
in which “iterator”-style modules (query operators) commu-
nicate via a fixed dataflow graph (a query plan). Each mod-
ule runs as an independent thread, and the edges in the graph
correspond to finite message queues. When a producer and
consumer run at differing rates, the faster thread may block
on the queue waiting for the slower thread to catch up. As
in [UFA98], River is multi-threaded and can exploit barrier-
free algorithms by reading from various inputs at indepen-
dent rates. The River implementation we used derives from
the work on Now-Sort [AAC 97], and features efficient I/O
mechanisms including pre-fetching scans, avoidance of oper-
ating system buffering, and high-performance user-level net-
working.

Although we will use eddies to reorder tables among joins,
a heuristic pre-optimizer must choose how to initially pair off
relations into joins, with the constraint that each relation par-
ticipates in only one join. This corresponds to choosing a span-
ning tree of a query graph, in which nodes represent relations
and edges represent binary joins [KBZ86]. One reasonable
heuristic for picking a spanning tree forms a chain of cartesian
products across any tables known to be very small (to handle
“star schemas” when base-table cardinality statistics are avail-
able); it then picks arbitrary equijoin edges (on the assumption

that they are relatively low selectivity), followed by as many
arbitrary non-equijoin edges as required to complete a span-
ning tree.
Given a spanning tree of the query graph, the pre-optimizer

needs to choose join algorithms for each edge. Along each
equijoin edge it can use either an index join if an index is avail-
able, or a hash ripple join. Along each non-equijoin edge it can
use a block ripple join.
These are simple heuristics that we use to allow us to focus

on our initial eddy design; in Section 6 we present initial ideas
on making spanning tree and algorithm decisions adaptively.

An eddy is implemented via a module in a river containing
an arbitrary number of input relations, a number of partici-
pating unary and binary modules, and a single output relation
(Figure 1)3. An eddy encapsulates the scheduling of its par-
ticipating operators; tuples entering the eddy can flow through
its operators in a variety of orders.
In essence, an eddy explicitly merges multiple unary and

binary operators into a single -ary operator within a query
plan, based on the intuition from Section 2.2 that symmetries
can be easily captured in an -ary operator. An eddy module
maintains a fixed-sized buffer of tuples that are to be processed
by one or more operators. Each operator participating in the
eddy has one or two inputs that are fed tuples by the eddy, and
an output stream that returns tuples to the eddy. Eddies are so
named because of this circular data flow within a river.
A tuple entering an eddy is associated with a tuple descrip-

tor containing a vector of Ready bits and Done bits, which
indicate respectively those operators that are elgibile to pro-
cess the tuple, and those that have already processed the tuple.
The eddy module ships a tuple only to operators for which the
corresponding Ready bit turned on. After processing the tuple,
the operator returns it to the eddy, and the corresponding Done
bit is turned on. If all the Done bits are on, the tuple is sent
to the eddy’s output; otherwise it is sent to another eligible
operator for continued processing.

Nothing prevents the use of -ary operators with in an eddy, but
since implementations of these are atypical in database query processing we do
not discuss them here.



} Implemented in the context of River project

} Eddy is a separate module that talks to all other operators
◦ Uses “ready” and “done” bitsets to direct traffic

} Lottery scheduling-based routing policy
◦ Promising initial results, but bunch of caveats
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} Trigger re-optimization during query execution if errors too high

} Through use of CHECK operators inserted into the query plan
◦ Succeeds if the observed values within a range around the estimates

} If optimizer estimates accurate, the only overhead is the 
“couting” done by CHECK

 

  

execution cost. While this works fine for Telegraph’s interac-
tive processing metric, a regular optimizer is needed to handle 
the more common completion time or total work metrics.  
Integrating Eddies with a traditional query optimizer remains 
a challenge for future work. 
Among commercial systems, the DEC RDB system [AZ96] 
ran multiple access methods competitively before picking 
one. To the best of our knowledge, the only commercial 
DBMS currently shipping with a form of POP is the Redbrick 
DBMS, which specializes in processing queries over star 
schemas. The specific star schema plan used is not fully 
determined until execution time. Intermediate results of all 
dimension table accesses are first computed. The cardinality 
of those intermediate results is then used to select the appro-
priate method for accessing the fact tables. While this product 
uses progressive re-optimization, it does so only for a very 
specific query execution strategy. The issues of arbitrary 
CHECK placement, join re-ordering, and intermediate result 
re-use are not addressed.  
The closest analogy to our validity range computation method 
is the work on parametric optimization (e.g. [CG94, HS02]) 
where different plans are generated for different intervals of 
the optimization parameters. The main problem here is the 
combinatorial explosion of the number of plans that need to 
be generated, stored, loaded, and decided among at runtime. 
We avoid this explosion by embedding validity range compu-
tation into the optimizer pruning phase (Section 2.2).  

2 Progressive Query Optimization 
Progressive Query Optimization (POP) is comprised of sev-
eral key aspects for protecting against query processing disas-
ter due to the choice of a suboptimal QEP.  
1. POP can detect a suboptimal QEP in the midst of execu-

tion and cause it to be re-optimized. Alternating optimiza-
tion and execution steps can occur any number of times. 
Partial result records can be pipelined to the application at 
each execution step using techniques to prevent duplicate 
rows from being returned to the application. 

2. During each execution step, POP monitors the actual 
values of key estimated parameters used to select the QEP 
and feeds this information back into a re-optimization step. 
This aspect of POP improves the likelihood that an opti-
mal plan will be selected for the next execution step. 

3. POP also makes materialized partial results available for 
reuse during the next execution step. Rather than force the 
optimizer to reuse these partial results by rewriting the 
query or some other means, they are packaged as material-
ized views in order to take advantage of the optimizer’s 
ability to make a cost-based decision with regard to their 
reuse (see section 2.3 for more details). 

Checkpoints are the POP points of control. A checkpoint 
inserted into a QEP is effectively an assertion to ensure that 
optimization parameter estimates agree with the actual values 
for those parameters as measured during query execution. Our 
current research focuses on the monitoring of cardinality 
estimates; however, a checkpoint could monitor other proper-
ties as well. A checkpoint monitors the number of rows flow-
ing from a producer to a consumer during query execution. It 
may also buffers rows that it sees. A checkpoint suspends 

query execution and triggers re-optimization if the number of 
rows it sees violates the check condition. In our prototype of 
POP a check condition defines the cardinality range (or check 
range) for which the check condition is true. Determining 
check ranges depends on the ability to compute the validity 
range for each subplan P rooted with plan operator o, which 
defines for each input stream into o the range of cardinalities 
for which o is the optimal root operator for P as discussed in 
more detail in section 2.2. Our system implements various 
flavors of checkpoints (as discussed in section 3), 
Checkpoints are manifested in POP plans by CHECK opera-
tors. CHECK has no relational semantics. Each CHECK has a 
check range parameter defining a range of cardinalities [l, u]. 
The check range is dependent on the cardinality estimate as 
well as the remainder of the QEP above the CHECK. CHECK 
is successful when the actual cardinality a is within the check 
range, i.e., a ∈ [l, u]. If CHECK succeeds, query processing 
will continue normally; otherwise, query execution is termi-
nated and re-optimization is triggered. Actual cardinality 
estimates measured during the partial execution of the query, 
occurring up to the point where the check range was violated, 
are fed back into the re-optimization phase. Moreover, mate-
rialized intermediate results are made available for re-use 
during the re-optimization phase. The decision as to whether 
or not intermediate results are reused during re-optimization is 
based upon cost analysis. As described later, it may under 
certain circumstances be preferable to avoid reusing these 
results. 

NLJN

CHECKPOINT 

NLJN
Add checkpoint

Re-optimization

O I

R R

I

O

HSJN

O I

R

 
Figure 2: Adding CHECK to the outer of a NLJN 

An example of POP is given in Figure 2. The QEP in the left 
part of the figure joins the outer (O) and inner (I) sub-plans 
using the (index) nested-loop join (NLJN) method before 
processing the remainder of the plan (R). The choice of the 
operator joining O and I depends heavily on the cardinality 
estimate for the result of the sub-plan O. Usually the opti-
mizer will prefer NLJN for joining O and I, when the cardi-
nality of O is small relative to I and there is an index on I to 
apply the join predicate. If the cardinality of O is much larger 
than estimated, another join method, such as hash-join 
(HSJN) or merge-join (MGJN), might be more efficient, and 
thus preferred by the optimizer.  
Since the choice of an inappropriate join method can result in 
performance degradations of orders of magnitude, adding 
CHECK to the outer sub-plan of an NLJN helps to prevent the 
execution of sub-optimal plans and thus bad query response 
times. CHECK added above O in the middle part of Figure 2 
ensures that the NLJN method is optimal not only for the 
cardinalities estimated at optimization time, but also for the 
actual cardinalities measured at runtime, thus making this 
plan more robust. When the check range is violated, re-
optimization of the query is triggered, which might result in a 
significant change in the QEP such as replacing NLJN in 



} Trigger re-optimization during query execution if errors too high

} Through use of CHECK operators inserted into the query plan
◦ Succeeds if the observed values within a range around the estimates

} If optimizer estimates accurate, the only overhead is the 
“couting” done by CHECK

} If CHECK detects significant error, then “reoptimize”
◦ Partial results made available to the optimizer to use if it wants (in the form of a 

materialized view)



 

  

Figure 2 with a more suitable join method such as hash join 
(HSJN).  

2.1 Architecture of POP 
Extending a DBMS with POP capability involves: 

a) Adding logic to the plan generator of the query 
optimizer to determine the check range by deter-
mining the cardinality range for which any given 
operator is optimal in the current plan. 

b) Adding logic to the post-pass of the optimizer for 
deciding the most judicious location of CHECKs  

c) Adding code generator logic for translating CHECK 
into executable code 

d) Adding logic to the runtime system for interpreting 
CHECK. 

e) Adding logic to exploit intermediate results when 
CHECK fails, so that work already done can be re-
used during re-optimization.  

To illustrate those enhancements to the architecture of a 
DMBS, Figure 1 distinguishes the initial run (first query 
execution until the violation of the check range triggered re-
optimization) and the re-optimization run of a query for ex-
planatory purposes. Actually, the re-optimization run could 
again add CHECKs to the new QEP and become the initial 
run for a second re-optimization. 
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Figure 1: Progressive Optimization architecture 

During the initial optimization of a query, the post-pass of the 
optimizer adds CHECK operators to the QEP based on the 
reliability of an estimate as well as the potential harm of an 
estimation error. When CHECK is executed, the check range 
is compared to the actual cardinality observed by the runtime 
system. If the check range is violated, the runtime system 
retains intermediate results together with their actual cardinal-
ity values and triggers re-optimization of the query. Actual 
cardinalities measured during the initial run help the re-
optimization step avoid the same mistake. After optimization 
and execution of the query in the re-optimization run, cleanup 
actions are necessary to remove the intermediate results and 
free locks on tables and indexes used during the initial run.  

2.2 Computation of Validity Ranges 
It is crucial to minimize risk of POP by re-optimizing only 
when we are sure that the plan will change. In general, this is 

the parametric query optimization problem, computing the 
optimal plan for every possible combination of parameter 
values [CG94, HS02]. For POP we avoid this exponential 
explosion of parameters by forming a validity range for each 
edge of the QEP.  
Definition: Consider a plan edge e that flows rows into opera-
tor o, and let P be the subplan rooted at o. The validity range 
for e is an upper and lower bound on the number of rows 
flowing through e, such that if the range is violated at run-
time, we can guarantee P is suboptimal with respect to the 
optimizer’s cost model. This range is defined conservatively, 
i.e., even within the validity range P may become suboptimal 
with respect to alternative QEP we do consider. This conser-
vative definition is fine, since we only want to avoid needless 
re-optimization. 
The main advantage of validity ranges over parametric opti-
mization is that we need not enumerate beforehand all possi-
ble optimal plans under all possible parameter values – we 
only need the cardinality ranges within which the chosen plan 
remains optimal.  However we cannot use ad hoc thresholds 
on cardinality errors because the effect of cardinalities on 
query optimality is very complex. A 100x error in cardinality 
of the NATION table of a TPC-H schema may make no 
difference to plan optimality, whereas a 10 percent increase in 
ORDERS may turn a two-stage hash join into a three-stage 
hash join, making the query plan highly suboptimal. 
POP computes validity ranges during the plan enumeration 
and pruning phases of the optimizer through a plan sensitivity 
analysis. It iteratively narrows the validity range for each 
input to an operator of the currently optimal plans, when 
pruning alternative plans during optimization. 
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Figure 4: Computing the Upper Bound of a Validity Range 

Suppose that during dynamic programming, plan Popt with 
root operator oopt is being compared with another plan Palt 
having the same properties (joined tables, applied predicates, 
sort order, projected columns) and different only in the root 
operator oalt. Suppose that Popt dominates, and we prune Palt 
due to its higher cost.  
The cost for Popt and Palt is a function of the cardinalities of 
the input edges of the root operator. Consider one edge with 
estimated cardinality e. Figure 4 illustrates how we can nar-
row the upper bound of the validity range of this edge. As we 
prune plan Palt, we determine if there exists an input cardinal-
ity c > e such that the cost functions cost(Palt, c) and cost(Popt, 
c) intersect. We do this by solving for the root of cost(Palt , c) 
– cost(Popt , c) = 0. When a root operator has multiple input 
edges (e.g., joins), we need to find the roots by treating the 
cost functions of Poptand Palt as multi-variate functions of the 
input cardinalities. 



} Helps only re-optimize when necessary

} The general problem is that of “parametric” optimization
◦ i.e., find the best plan for each combination of parameters

◦ Too expensive

} Instead: 
◦ Consider P1 and P2 -- two identical plans except for the top operator

◦ Let cost(P1) < cost(P2) per the estimates à we would choose P1 over P2

◦ Let “x” denote an edge into the top operator, and let “result(x) = e” denote the result flowing 
along “x”

◦ Figure out: at what value of |result(x)|, we would have chosen P2 instead

 

  

Figure 2 with a more suitable join method such as hash join 
(HSJN).  

2.1 Architecture of POP 
Extending a DBMS with POP capability involves: 

a) Adding logic to the plan generator of the query 
optimizer to determine the check range by deter-
mining the cardinality range for which any given 
operator is optimal in the current plan. 

b) Adding logic to the post-pass of the optimizer for 
deciding the most judicious location of CHECKs  

c) Adding code generator logic for translating CHECK 
into executable code 

d) Adding logic to the runtime system for interpreting 
CHECK. 

e) Adding logic to exploit intermediate results when 
CHECK fails, so that work already done can be re-
used during re-optimization.  

To illustrate those enhancements to the architecture of a 
DMBS, Figure 1 distinguishes the initial run (first query 
execution until the violation of the check range triggered re-
optimization) and the re-optimization run of a query for ex-
planatory purposes. Actually, the re-optimization run could 
again add CHECKs to the new QEP and become the initial 
run for a second re-optimization. 
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Figure 1: Progressive Optimization architecture 

During the initial optimization of a query, the post-pass of the 
optimizer adds CHECK operators to the QEP based on the 
reliability of an estimate as well as the potential harm of an 
estimation error. When CHECK is executed, the check range 
is compared to the actual cardinality observed by the runtime 
system. If the check range is violated, the runtime system 
retains intermediate results together with their actual cardinal-
ity values and triggers re-optimization of the query. Actual 
cardinalities measured during the initial run help the re-
optimization step avoid the same mistake. After optimization 
and execution of the query in the re-optimization run, cleanup 
actions are necessary to remove the intermediate results and 
free locks on tables and indexes used during the initial run.  

2.2 Computation of Validity Ranges 
It is crucial to minimize risk of POP by re-optimizing only 
when we are sure that the plan will change. In general, this is 

the parametric query optimization problem, computing the 
optimal plan for every possible combination of parameter 
values [CG94, HS02]. For POP we avoid this exponential 
explosion of parameters by forming a validity range for each 
edge of the QEP.  
Definition: Consider a plan edge e that flows rows into opera-
tor o, and let P be the subplan rooted at o. The validity range 
for e is an upper and lower bound on the number of rows 
flowing through e, such that if the range is violated at run-
time, we can guarantee P is suboptimal with respect to the 
optimizer’s cost model. This range is defined conservatively, 
i.e., even within the validity range P may become suboptimal 
with respect to alternative QEP we do consider. This conser-
vative definition is fine, since we only want to avoid needless 
re-optimization. 
The main advantage of validity ranges over parametric opti-
mization is that we need not enumerate beforehand all possi-
ble optimal plans under all possible parameter values – we 
only need the cardinality ranges within which the chosen plan 
remains optimal.  However we cannot use ad hoc thresholds 
on cardinality errors because the effect of cardinalities on 
query optimality is very complex. A 100x error in cardinality 
of the NATION table of a TPC-H schema may make no 
difference to plan optimality, whereas a 10 percent increase in 
ORDERS may turn a two-stage hash join into a three-stage 
hash join, making the query plan highly suboptimal. 
POP computes validity ranges during the plan enumeration 
and pruning phases of the optimizer through a plan sensitivity 
analysis. It iteratively narrows the validity range for each 
input to an operator of the currently optimal plans, when 
pruning alternative plans during optimization. 
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Figure 4: Computing the Upper Bound of a Validity Range 

Suppose that during dynamic programming, plan Popt with 
root operator oopt is being compared with another plan Palt 
having the same properties (joined tables, applied predicates, 
sort order, projected columns) and different only in the root 
operator oalt. Suppose that Popt dominates, and we prune Palt 
due to its higher cost.  
The cost for Popt and Palt is a function of the cardinalities of 
the input edges of the root operator. Consider one edge with 
estimated cardinality e. Figure 4 illustrates how we can nar-
row the upper bound of the validity range of this edge. As we 
prune plan Palt, we determine if there exists an input cardinal-
ity c > e such that the cost functions cost(Palt, c) and cost(Popt, 
c) intersect. We do this by solving for the root of cost(Palt , c) 
– cost(Popt , c) = 0. When a root operator has multiple input 
edges (e.g., joins), we need to find the roots by treating the 
cost functions of Poptand Palt as multi-variate functions of the 
input cardinalities. 



} Helps only re-optimize when necessary

} The general problem is that of “parametric” optimization
◦ i.e., find the best plan for each combination of parameters

◦ Too expensive

} Instead: 
◦ Consider P1 and P2 -- two identical plans except for the top operator

◦ Let cost(P1) < cost(P2) per the estimates à we would choose P1 over P2

◦ Let “x” denote an edge into the top operator, and let “result(x) = e” denote the result flowing 
along “x”

◦ Figure out: at what value of |result(x)|, we would have chosen P2 instead

} Use numerical techniques to find these validity ranges
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} In many cases, better not to use the partial result

 

  

that re-create intermediate result from scratch. The optimizer 
could even create an index on the materialized view before re-
using it if worthwhile.  
Re-optimization takes place in the same transaction as the 
initial partial execution and holds all locks acquired previ-
ously. Therefore it is guaranteed that all persisted results are 
still transactionally correct when re-execution takes place. 
To minimize the overhead and thereby the risk of re-opti-
mization, these intermediate results are not necessarily written 
out to disk. Rather the temporarily MV has a pointer to the 
actual runtime object for the scan from the current execution. 
If this view is reused, the fields of this in-memory object are 
modified to satisfy the new plan (e.g., the internal id’s for 
each column of this scan may change when the plan changes). 
The standard mechanisms for matching MVs to a query is 
used to determine if the MV created from the intermediate 
result can be used for some part of the query. Once the inter-
mediate results have been matched to the query, the query 
optimizer will construct plans that exploit each matched MV 
in addition to the original plans, using the known cardinality 
for the subplan corresponding to that MV in all cases, and 
then choose the cheapest plan as usual. In most cases, a plan 
that re-uses the MV representing the intermediate result 
should win. Unlike regular MVs, however, the runtime sys-
tem has to remember to remove any of these temporarily 
materialized views after completing query execution. 
If the plan under CHECK performs a side-effect (in-
sert/delete/update), the intermediate results must always be 
matched and reused – otherwise the side-effect would be 
applied twice. 
Intuitively it seems that intermediate results should always be 
reused rather than be thrown away. But this is not always true. 
A wrong initial choice of join order, for instance, might create 
a prohibitively large intermediate result that would have been 
avoided with a different join order. Moreover, we have found 
that many cardinality estimation errors are due to violations of 
the independence assumption between predicates, and are 
therefore underestimates, leading to larger-than-expected 
intermediate results. Using this intermediate result could incur 
a much higher cost than restarting from scratch. Instead of 
always using intermediate results, POP gives the optimizer 
the choice whether or not to use the intermediate results. This 
choice is based on the optimizer’s cost model, which is en-
hanced by better cardinality and statistics information ob-
tained from the previous partial execution of the query. 
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Figure 6: Two alternatives considered in re-optimization  

The right part of Figure 6 shows two alternatives QEPs 
among other alternatives that the query optimizer will con-
sider when re-optimizing the QEP in the left part of the figure 
at the CHECK. Alternative 1 reuses the materialized view 
created from the intermediate result at the materialization 
point below CHECK, whereas Alternative 2 uses a different 
join order and does not reuse the previous work. The opti-
mizer’s cost model will decide which alternative to choose for 
the re- optimized query.  

3 Variants of CHECK 
The main metrics to evaluate CHECK are the risk and oppor-
tunity of re-optimization at the checkpoint. An additional 
metric is its usability in pipelined plans, i.e., QEPs that do not 
have any operators that block row processing, but stream all 
rows directly to the user in order to reduce the time that that 
user has to wait before seeing the query’s first results. Re-
optimization in this case might be triggered after some results 
have already been returned. Without buffering or compensat-
ing for those rows, re-optimization will result in unexpected 
duplicates, which is inconsistent with the semantics of the 
original query. 
We now present five flavors of CHECK to meet these chal-
lenges: lazy checking (LC), lazy checking with eager materi-
alization (LCEM), eager checking without compensation 
(ECWC), eager checking with buffering (ECB), and eager 
checking with deferred compensation (ECDC). The first three 
apply only to non-pipelined plans, and the last two apply to all 
plans. 

3.1 Lazy Checking 
Lazy checking (LC) piggybacks on materialization points, 
i.e., points in a QEP where an entire intermediate result is 
materialized before proceeding with further operators of the 
plan. Examples for such materialization points are a) the 
SORT operator (which sorts its input, e.g. for a sort-merge 
join or group-by), b) the TEMP operator (which creates a 
temporary table, e.g., for caching subquery results), and c) the 
build side of the hash join operator. Placing CHECK above a 
materialization point means that the cardinality of the mate-
rialization point will be checked exactly once, that is, after the 
materialization has been completed. Materialization points are 
ideal checkpoints for two reasons. First, LC needs no com-
pensation, because no results could have been output before 
re-optimization. Second, the materialization creates interme-
diate results that can be reused by the re-optimized query.  
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Figure 7: Lazy checking (LC) and eager checking without 

compensation (ECWC) 



} If there is already a materialization point, can add CHECK there for free (lazy)

} Can add explicit materialization along with a CHECK
◦ Extra overhead in doing that

} Eager CHECKs don’t wait for materialization

} ECWC (Eager without compensation)
◦ There is a materialization afterwards à no results will be output to the user

◦ So can easily reoptimize without worrying about compensation

 

  

that re-create intermediate result from scratch. The optimizer 
could even create an index on the materialized view before re-
using it if worthwhile.  
Re-optimization takes place in the same transaction as the 
initial partial execution and holds all locks acquired previ-
ously. Therefore it is guaranteed that all persisted results are 
still transactionally correct when re-execution takes place. 
To minimize the overhead and thereby the risk of re-opti-
mization, these intermediate results are not necessarily written 
out to disk. Rather the temporarily MV has a pointer to the 
actual runtime object for the scan from the current execution. 
If this view is reused, the fields of this in-memory object are 
modified to satisfy the new plan (e.g., the internal id’s for 
each column of this scan may change when the plan changes). 
The standard mechanisms for matching MVs to a query is 
used to determine if the MV created from the intermediate 
result can be used for some part of the query. Once the inter-
mediate results have been matched to the query, the query 
optimizer will construct plans that exploit each matched MV 
in addition to the original plans, using the known cardinality 
for the subplan corresponding to that MV in all cases, and 
then choose the cheapest plan as usual. In most cases, a plan 
that re-uses the MV representing the intermediate result 
should win. Unlike regular MVs, however, the runtime sys-
tem has to remember to remove any of these temporarily 
materialized views after completing query execution. 
If the plan under CHECK performs a side-effect (in-
sert/delete/update), the intermediate results must always be 
matched and reused – otherwise the side-effect would be 
applied twice. 
Intuitively it seems that intermediate results should always be 
reused rather than be thrown away. But this is not always true. 
A wrong initial choice of join order, for instance, might create 
a prohibitively large intermediate result that would have been 
avoided with a different join order. Moreover, we have found 
that many cardinality estimation errors are due to violations of 
the independence assumption between predicates, and are 
therefore underestimates, leading to larger-than-expected 
intermediate results. Using this intermediate result could incur 
a much higher cost than restarting from scratch. Instead of 
always using intermediate results, POP gives the optimizer 
the choice whether or not to use the intermediate results. This 
choice is based on the optimizer’s cost model, which is en-
hanced by better cardinality and statistics information ob-
tained from the previous partial execution of the query. 
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Figure 6: Two alternatives considered in re-optimization  

The right part of Figure 6 shows two alternatives QEPs 
among other alternatives that the query optimizer will con-
sider when re-optimizing the QEP in the left part of the figure 
at the CHECK. Alternative 1 reuses the materialized view 
created from the intermediate result at the materialization 
point below CHECK, whereas Alternative 2 uses a different 
join order and does not reuse the previous work. The opti-
mizer’s cost model will decide which alternative to choose for 
the re- optimized query.  

3 Variants of CHECK 
The main metrics to evaluate CHECK are the risk and oppor-
tunity of re-optimization at the checkpoint. An additional 
metric is its usability in pipelined plans, i.e., QEPs that do not 
have any operators that block row processing, but stream all 
rows directly to the user in order to reduce the time that that 
user has to wait before seeing the query’s first results. Re-
optimization in this case might be triggered after some results 
have already been returned. Without buffering or compensat-
ing for those rows, re-optimization will result in unexpected 
duplicates, which is inconsistent with the semantics of the 
original query. 
We now present five flavors of CHECK to meet these chal-
lenges: lazy checking (LC), lazy checking with eager materi-
alization (LCEM), eager checking without compensation 
(ECWC), eager checking with buffering (ECB), and eager 
checking with deferred compensation (ECDC). The first three 
apply only to non-pipelined plans, and the last two apply to all 
plans. 

3.1 Lazy Checking 
Lazy checking (LC) piggybacks on materialization points, 
i.e., points in a QEP where an entire intermediate result is 
materialized before proceeding with further operators of the 
plan. Examples for such materialization points are a) the 
SORT operator (which sorts its input, e.g. for a sort-merge 
join or group-by), b) the TEMP operator (which creates a 
temporary table, e.g., for caching subquery results), and c) the 
build side of the hash join operator. Placing CHECK above a 
materialization point means that the cardinality of the mate-
rialization point will be checked exactly once, that is, after the 
materialization has been completed. Materialization points are 
ideal checkpoints for two reasons. First, LC needs no com-
pensation, because no results could have been output before 
re-optimization. Second, the materialization creates interme-
diate results that can be reused by the re-optimized query.  
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Figure 7: Lazy checking (LC) and eager checking without 

compensation (ECWC) 
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Lazy checking is depicted in the left half of Figure 7, where 
the QEP in the middle of the figure processes its sub-plan P 
and materializes the result of P at a materialization point.  
After materialization, the result is further processed by sub-
plan R. The left part of the figure shows how POP adds LC 
above the materialization point.  

3.2 Lazy Check with Eager Materialization 
Although materialization points allow very efficient re-
optimization, they may not occur frequently. If we want to 
check above a QEP node and there is no materialization, an 
alternative is to explicitly add a MATERIALIZATION-
CHECK pair that first materializes the result and blocks any 
pipelining. Upon complete construction of the materialized 
intermediate result, the check range is evaluated. We call this 
flavor of checkpoint Lazy Checks with Eager Materialization 
(LCEMs).  
We cannot add LCEMs recklessly because of the extra over-
head of materialization. Instead we use the following heuris-
tic. Among the various join operators in the plan, merge joins 
typically have naturally-occurring materializations on both 
inputs, and hash joins have materialization on the build side. 
So it is mainly the various varieties of NLJN that may have no 
materialized inputs and therefore need LCEMs. Therefore our 
heuristic is to add LCEMs on the outer side of every NLJN 
(unless the outer stream already has a materialization opera-
tor).  
For the common case of equi-joins, the fact that the optimizer 
picked NLJN over HSJN or MGJN suggests that the cardinal-
ity of the outer is small (because the cost of NLJN is roughly 
the outer cardinality times the cost of probing or scanning the 
inner). If the optimizer’s cardinality estimate was correct, 
materializing the outer will not be too expensive, as we verify 
experimentally in Section 5. If not, it will be worth the over-
head to avoid such a mistake. 

3.3 Eager Checking (ECWC, ECDC, ECB) 
A main weakness of lazy checking is that the materialized 
result may be too large, and it may be suboptimal to compute 
them at all. Sometimes this can have serious implications: if 
the intermediate result cardinality was badly underestimated, 
there may not be enough temporary space to hold the materi-
alized result! Eager Checking is an aggressive alternative that 
re-optimizes without waiting for materialization, thereby 
reacting faster to cardinality errors. Clearly, results could have 
been output to the user by that time, in which case we must 
compensate for this. Furthermore, eager checking may result 
in throwing away work, and thus are of higher risk than lazy 
checking. There are 3 flavors of eager checking: 

Eager Checking without Compensation 
An Eager Check without Compensation (ECWC) is a check-
point that has a materialization point as its ancestor, i.e., 
which is executed later, and therefore needs no compensation. 
The right half of Figure 7 shows how CHECK is pushed 
down below a materialization point, breaking the sub-plan P 
into two sub-plans P1 and P2 and performing eager checking 
on P1. 
Eager CHECK operators can also be placed in pipelined 
(sub)plans, and thus may require compensation in order to 

avoid false duplicates. We distinguish the following two kinds 
of eager CHECK operators: 

Eager Check with Buffering 
An Eager Check with Buffering (ECB) is a combination of 
CHECK and a buffer, testing if the actual cardinality is above 
or below a certain threshold. ECB buffers the rows passing 
through it until it is confident that ECB will either fail or 
succeed. It thus supports pipelining, though with a delay. 
Specifically, an ECB with a threshold range [0, b) or [b, ∞] 
accepts and buffers up to b rows like a valve. An ECB with 
range [0, b) ([b, ∞]) will succeed (fail), when its child in the 
QEP returns no more rows and the buffer contains less than b 
rows at this time. An ECB with range [0, b) ([b, ∞]) will fail 
(succeed), when the bth row is inserted into the buffer. If ECB 
fails, re-optimization is triggered. If ECB succeeds, pipelined 
execution continues. The parent operator above ECB will first 
process the rows from the buffer. If the buffer is exhausted for 
a [b, ∞] ECB, further rows are requested from the operator 
below the ECB.  
ECBs can be implemented with a buffered check (BUF-
CHECK) operator. Figure 8 illustrates a BUFCHECK with 
buffer B on the outer sub-plan O of a NLJN. This buffer 
blocks the join until either the buffer has been filled or O 
finishes. ECB can be used instead of LCEM for checking the 
outer cardinality of a NLJN, because pipelining can be 
blocked for a short while in order to ensure that NLJN is the 
proper join method. An ECB can also help SORT or HSJN 
builds, if these run out of temporary space when creating their 
results, by re-optimizing instead of signaling an error. 
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Figure 8: Eager checking with Buffering  

ECB and LCEM 
Note that an ECB can easily morph into an LCEM by simply 
waiting to re-optimize (on a check failure) until its input is 
exhausted.  

Eager Check with Deferred Compensation 
For queries only containing select, project and join (SPJ) 
operators we can avoid delaying pipelining by using another 
flavor of Eager Check called Eager checking with deferred 
compensation (ECDC) that transfers each row to its parent 
operator in a pipelined manner. To allow for compensation in 
case of re-optimization, the identifiers of all rows (rids) re-
turned to the user are stored in a side table S. The new plan of 
the query needs to compensate for these prior results by doing 
an anti join between S and the new result stream.  
ECDC is depicted in Figure 9. In the middle part of the figure, 
the pipelined plan P has been broken up at compile time into 
the sub-plans P1 and P2, and a checkpoint has been inserted 



} With Deferred Compensation
◦ Keep track of what tuples have already been output

◦ Check that side table before outputting new tuples after reoptimization

◦ Potentially a lot of repeated work

 

  

between the two sub-plans. The RETURN plan operator in the 
figure denotes the operation that returns rows to the user. 
Because of deferred compensation, ECDC neither delays 
pipelining nor buffers any rows. However, in order to enable 
deferred compensation, an INSERT operator is inserted just 
below the return operator. INSERT uses a temporary table S 
to remember the rids of all rows that have been returned to the 
user. These rids may need to be constructed if the row has 
been derived from a base table. If re-optimization is triggered, 
the optimizer adds an anti join (set difference) plan operator 
on top of the re-optimized QEP P* to compensate for already 
returned rows from the initial run of the query.  
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P P2

P1

P*

ANTI-JOIN
(not exists)
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RETURNRETURN

Re-optimization

Eager checkingEager checking

deferred compensation  
Figure 9 Eager checking with deferred compensation 

Figure 10 shows the implementation of the check (CHECK) 
and buffered check (BUFCHECK) operators via an 
open/next/close model. The implementation of check can be 
simplified if the DBMS maintains counters for each plan 
operator. In this case, the check operator can directly refer to 
the counters of the operator below CHECK. Similarly, if 
CHECK is only placed above a materialization point, check-
ing can be optimized to be only executed once (i.e., after the 
materialization has completed) and refer to the counter of the 
materialized intermediate result.  
Figure 10: Check implementation for check range [low,high] 

CHECK.OPEN: 
   count = 0; 
CHECK.NEXT: 
   count++; 
   r = childStream.next(); 
   if count > high 
      call re-optimization; 
   if count < low and r = EOF 
      call re-optimization; 
   else  
      return r; 
CHECK.CLOSE: 

   ∅ 

BUFCHECK.OPEN: 
  count = 0; 
  allocate B of size b;  // buffer
  for i = 0 to b do 
     B[i] = childStream.next();
     if childStream.EOF()  
        and i < low 
      call re-optimization; 
BUFCHECK.NEXT: 
  count++; 
  if high < count 
      call re-optimization;  
   if count < b  
      return B[count]; 
   else 
      return childStream.next(); 
 BUFCHECK.CLOSE: 
   free B; 

3.4 Risks and Opportunities for each flavor of 
Checkpoint 

Lazy checks (LCs) impose the least risk during query process-
ing because their input is materialized and can be reused. But 
their opportunity is limited to materialization points in the 
plan.  
Lazy checks with Eager Materialization (LCEMs) impose the 
additional overhead of materializing results, and could thus be 
more risky. So we choose to place LCEMs only on the outer 

side of NLJN, where cardinalities are likely to be small. By 
introducing these artificial materialization points, LCEMs 
provide greater re-optimization opportunities.  
The main problem with LCs and LCEMs is that they wait for 
full materialization before re-optimizing. This can  be bad if 
the result is much larger than expected -- LCEMs are espe-
cially affected, because there the materialization is artificially 
introduced. 
Eager checks with Buffering (ECBs) avoid this problem by 
checking before materialization is completed. The penalty is 
that the sub-plan being materialized has to be completely re-
run, modulo other materialization points within it. In general 
we want to couple both approaches, placing an LCEM above 
an ECB so that the ECB can prevent the materialization from 
growing beyond bounds. The relative risk of inserting the 
ECBs vs. the LCEM depends on the relative costs of re-
running the outer and materializing the results. Also, like any 
eager CHECK, ECBs terminate early and thus will not enable 
the optimizer to use the correct cardinality for the subplan 
during re-optimization. They merely give the optimizer a 
lower bound for the correct cardinality that is higher than the 
previous estimate, ensuring that a different plan will chosen, 
but there is no guarantee that the new plan will be optimal. 
ECWC and ECDC give much greater opportunities for re-
optimization. ECWC can be placed anywhere below materi-
alization points. ECDC works even in pipelined plans and 
requires only one buffer for the entire query, regardless of 
how many checkpoints exist in the QEP.  Because of the anti-
join post-processing of the re-optimized query, ECDC reduces 
the overhead of the initial run of the query and puts more of 
the cost upon re-optimization, which can be good if re-
optimization is rare. As a penalty for this virtually unlimited 
opportunity for re-optimization, ECWC and ECDC have high 
risk, because they fail to retain work done. 

4 CHECK Placement 
Table 1 summarizes the 5 flavors of checkpoints. 
LCEM and ECB checkpoints are placed on the outer side of 
nested loop joins during plan enumeration. After the optimal 
plan has been chosen, LC checkpoints are placed above mate-
rialization operators.  ECWC and ECDC checkpoints can be 
placed arbitrarily. 
In our current implementation, the materialization points we 
consider are SORTs and TEMPs. The two other kinds of 
reusable results that arise during query processing are: (a) the 
build side of hash joins, and (b) rid-lists generated from in-
dexes. We have found SORT and TEMP reuse alone to pro-
vide for significant performance improvements, but plan to 
enhance our prototype to reuse further intermediate results in 
order to make re-optimization even more efficient. 
Our validity range estimation ensures that checkpoints will 
not trigger re-optimization unless an alternative better plan is 
available. However, LCEM and ECB checkpoints induce the 
overhead of an extra materialization even with no re-
optimization. Moreover, even if a better plan is available, we 
might throw away so much additional work using eager 
checking (with ECB, ECWC and ECDC checkpoints) that the 
overall execution is slower. As we intend to be conservative, 
the default behavior of our prototype is to only place LC and 



} Degradation in some cases -- sometimes two errors cancelled 
each other out in the original plan

 

  

overhead is that we must redo the fraction of the query that is 
already completed – this ranges from 0 to about 60% in the 
figure. Many re-optimization opportunities are closely clus-
tered together, especially in the early stages of query execu-
tion. This is because joins over the smaller tables typically 
separate materialization points. 

6 POP in Action 
In this section we apply POP to a real-world database and 
customer workload, using an 8-way PowerPC with 1.4 GHz 
Power4 CPUs, 32 GB RAM, 56 FASTT managed disks with a 
total of 36 GB net storage space. The database holds data of a 
department of motor vehicles (DMV), consisting of more than 
30 tables and more than 100 indexes. The major tables of the 
database are the CAR and OWNER table storing 8 million 
respectively 6 million records. The overall size of the data-
base is 7.4 GB. The CAR table contains major correlations, 
like a correlation between the columns MAKE, MODEL, 
COLOR, and MODEL, WEIGHT. There are also correlations 
when joining CAR and OWNER, like correlations between 
ZIP, MAKE and AGE, MAKE. We use 39 real-world queries 
obtained from the DMV to evaluate POP. The queries are 
very complex decision support queries, joining more than 10 
tables in average.  
Although the DMV workload did not use any parameter 
markers, it contained many other pitfalls that caused the 
optimizer to use wrong estimates: Many of the queries restrict 
several correlated columns, thus creating major cardinality 
estimation errors as the optimizer uses independence to com-
bine the selectivities of these columns. Moreover, many of the 
queries uses complex predicates like substring comparisons, 
LIKE-predicates, and complex IN-lists and disjunctions. All 
of these predicates are additional sources of estimation errors. 
The largest cardinality estimation errors we have observed in 
the DMV queries exceed six orders of magnitude! For these 
complex real-world queries it is hardly possible for the opti-
mizer to determine the right query plan based on its basic 
statistics and assumptions. 
With POP no query runs longer than 5 minutes, whereas 
without POP the longest query took more than 20 minutes.  
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Figure 15: Scatter Plot of Response Times with and without 

POP on the DMV database 
The scatter plot of the response times in Figure 15 shows that 
while 22 queries receive an improvement with POP, we notice 
a slight to moderate performance degradation in 17 queries. 

This performance degradation is due to two facts: In some 
circumstances the better cardinality information available to 
the optimizer during re-optimization resulted in the choice of 
a worse plan (!) because two estimation errors had canceled 
each other out during the initial run of the query, and no 
longer did so after re-optimization. In addition, we use a 
simplistic cost model for the cost for re-using an intermediate 
result, and this model leads to over-eager re-optimizations. 
Improving the optimizer’s cost functions can solve the first 
problem. The second problem arises because we wanted to 
study re-optimizations extensively in this prototype and so 
used a generous cost model for reoptimization. So we are 
confident we can avoid this performance degradation when 
transferring this work into the product. 
Figure 16 shows the speedup or regression experienced by 
each individual query. While POP reaches impressive speed-
ups of almost two orders of magnitude, the maximum regres-
sion due to a wrong optimizer decision during re-optimization 
was a factor of 5.  
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Figure 16: Speedup and Regression of each Query 

Overall, POP adds significant robustness to the processing of 
the DMV queries, impressively speeding up several long-
running queries. 

7 Future Work 
Synchronization in Parallel DBMSs 
While implementing CHECK is relatively simple and 
straightforward for serial uni-processor environments, the 
cardinality counters it uses must be globally synchronized in 
symmetric multi-processor and shared nothing environments. 
Such synchronization can be a costly operation that can sub-
stantially delay query processing, and must be viewed as 
another risk of checkpointing in multi-processor environ-
ments. Alternatively, one can locally re-optimize a partial 
QEP executed on one node if the check range for this node 
alone is violated. Local checking in multi-processor environ-
ments would require that between global synchronization 
points (exchange operators in Volcano [GM93]) each node 
may change its plan, thus giving each node the chance to 
execute a different partial QEP. 
Checking Opportunities 
POP can be considered to be a more conservative mode of 
query execution, which is useful for complex ad-hoc queries 
or queries with parameter makers where statistics or the opti-
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} Adaptive query processing (POP-style) works well with 
interpretable query plans, but not as well with compilation
◦ Compiling a new query plan too expensive

(a) Execution Time

(b) Code-Generation Time
Figure 1: Reoptimizing Compiled Queries – PCQ enables near-
optimal execution through adaptivity with minimal compilation
overhead.

is expensive. But even if the DBMS’s optimizer pre-computed all
variations of a pipeline before compiling the query, including extra
pipelines in a plan increases the compilation time. The DBMS could
compile these pipelines in the background [20], but then it is using
CPU resources for compilation instead of query execution.

There are also �ne-grained optimizations where it is infeasible
to use either of the two above AQP methods. For example, suppose
the DBMS wants to �nd an ordering of predicates in a table scan
such that the most selective predicates are evaluated �rst. Since the
number of possible orderings is combinatorial, the DBMS has to
generate a separate scan pipeline for each ordering. The number of
pipelines is so high that the computation requirements to compile
them would dominate the system. Even if the DBMS compiled
alternative plans on-the-�y, it still may not adapt quickly enough if
both the data and operating environment change during execution.

To help motivate the need for low-overhead AQP in compilation-
based DBMSs, we present an experiment that measures the perfor-
mance of evaluating a WHERE clause during a sequential scan on a
single table (A) composed of six 64-bit integer columns (col1–col6)
that has 10m tuples. The workload is comprised of a single query:
SELECT * FROM A
WHERE col1 = X1 AND col2 = X2 AND . . . AND col6 = X6
We generate each column’s data and choose each �ltering con-

stant (X8 ) so that the overall selectivity is �xed, but each predicate
term’s selectivity changes for di�erent blocks of the table. We defer
the description of our experimental setup to sec. 5.

We �rst measure the time the DBMS takes to execute the above
query using the best “static” plan (i.e., one with a �xed evaluation
order chosen by the DBMS optimizer). We also execute an “optimal”
plan that is provided the best �lter ordering for each data block
a priori. The optimal plan is as if the DBMS compiled all possible
pipelines for the query and represents the theoretical lower bound
execution time. Lastly, we also execute the query using permutable
�lters that the DBMS reorders based on selectivities.

The results in �g. 1a show that the static plan is up to 4.4⇥
slower than the optimal plan when selectivity is low. As selectiv-
ity increases, the performance gap gradually reduces since more
tuples must be processed. Our second observation is that PCQ is

consistently within 10% of the optimal execution time across all
selectivities. This is because it periodically reorders the predicate
terms based on real-time data distributions.

Next, we measure the code-generation time for each of the three
approaches as we vary the number of �lter terms. In this exper-
iment, we add an additional �lter term on col1 to form a range
predicate. The results in �g. 1b reveal that when there are fewer
than three �lter terms, the code-generation time for all approaches
is similar. However, beyond three terms, the optimal approach be-
comes impractical as there are $ (=!) possible plans to generate.
In contrast, the code-generation time for the permutable query
increases by ⇠20% from one to seven terms.

Given these results, what is needed is the ability for a compilation-
basedDBMS to dynamically permute and adapt a query planwithout
having to recompile it, or eagerly generate alternative plans.

3 PCQ OVERVIEW
The goal of PCQ is to enable a JIT-based DBMS to modify a com-
piled query’s execution strategy while it is running without (1)
restarting the query, (2) performing redundant work, or (3) pre-
compiling alternative pipelines. A key insight behind PCQ is to
compile once in such a way that the query can be permuted later
while retaining compiled performance. At a high-level, PCQ is sim-
ilar to proactive reoptimization [7] as both approaches modify the
execution behavior of a query without returning to the optimizer
for a new plan or processing tuples multiple times. The key dif-
ference, however, is that PCQ facilitates these modi�cations for
compiled queries without pre-computing every possible alternative
sub-plan or pre-de�ning thresholds for switching sub-plans. PCQ
is a dynamic approach where the DBMS explores alternative sub-
plans at runtime to discover execution strategies that improve a
target objective function (e.g., latency, resource utilization). This
adaptivity enables �ne-grained modi�cations to plans based on data
distribution, hardware characteristics, and system performance.

In this section, we present an overview of PCQ using the example
query shown in �g. 2. As we discuss below, the life-cycle of a query
is broken up into three stages. Althoughwe designed the framework
for NoisePage’s LLVM-based environment, it works with any DBMS
execution engine that supports query compilation.

3.1 Stage #1 – Translation
After the DBMS’s optimizer generates a physical query plan, the
Translator converts the plan into a domain-speci�c language (DSL),
called TPL, that decomposes the it into pipelines. TPL combines
Vectorwise-style pre-compiled primitives [9] with HyPer’s data-
centric code generation [28]. Using TPL enables the DBMS to apply
database-speci�c optimizations more easily than a general-purpose
language (e.g., C/C++). Moreover, as we describe below, TPL enjoys
low-latency compilation time.

Additionally, the Translator augments the query’s TPL program
with additional PCQ constructs to facilitate permutations. The �rst
is hooks for collecting runtime performance metrics for low-level
operations in a pipeline. For example, the DBMS adds hooks to the
generated program in �g. 2 to collect metrics for evaluating WHERE
clause predicates. The DBMS can toggle this collection on and o�
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SELECT * FROM foo
WHERE A=1 AND B=2 AND C=3 

Optimizer

Bytecode

Stage #2 - Compilation

C=3
B=2
A=1query:

0x00 FilterInit
0x0c FilterInsert
0x14 RunFilters
...

Filters

Physical
Plan TPL

Stage #1 - Translation

Translator

fun a_eq_1() { ... }
fun b_eq_2() { ... }
fun c_eq_3() { ... }
fun query() {
  var filters = {[
    a_eq_1, 
    b_eq_2,
    c_eq_3]}
  for (v in foo) {
    filters.Run(v)
  }}

Stage #3 - Execution

Compiler
Execution

Loop

Execute Permute

Stats

C=3
B=2
A=1

Policies

Samples Analysis

Figure 2: System Overview – The DBMS translates the SQL query into a DSL that contains indirection layers to enable permutability. Next, the
system compiles the DSL into a compact bytecode representation. Lastly, an interpreter executes the bytecode. During execution, the DBMS
collects statistics for each predicate, analyzes this information, and permutes the ordering to improve performance.

depending on whether it needs data to guide its decision-making
policies on how to optimize the query’s program.

The second type of PCQ constructs are parameterized runtime
structures in the program that use indirection to enable the substitu-
tion of execution strategies within a pipeline. The DBMS parameter-
izes all relational operators in this way. This design choice follows
naturally from the observation that operator logic is comprised
of query-agnostic and query-speci�c sections. Since the DBMS
generates the query-speci�c sections, it is able to generate di�er-
ent versions uses indirection to switch at runtime. We de�ne two
classi�cations of indirection. The �rst level is when operators are
unaware or unconcerned with the speci�c implementation of query-
speci�c code. The second level of indirection requires coordination
between the runtime and the code-generator.

In the example in �g. 2, the Translator organizes the predicates
in an array that allows the DBMS to rearrange their order. For
example, the DBMS could switch the �rst predicate it evaluates to
be on attribute foo.C if it is the most selective. Each entry in the
indirection array is a pointer to the generated code. Thus, permuting
this part of the query only involves lightweight pointer swapping.

3.2 Stage #2 – Compilation
In the second stage, the Compiler converts the DSL program (includ-
ing both its hooks for collecting runtime performance metrics and
its use of indirection to support dynamic permutation) into a com-
pact bytecode representation. This bytecode is a CISC instruction
set composed of arithmetic, memory, and branching instructions,
as well as database-level instructions, such as for comparing SQL
values with NULL semantics, constructing iterators over tables and
indexes, building hash tables, and spawning parallel tasks.

In �g. 2, the query’s bytecode contains instructions to construct
a permutable �lter to evaluate the WHERE clause. The permutable
�lter stores an array of function pointers to implementations of the
�lter’s component. The order the functions appear in the array is
the order that the DBMS executes them when it evaluates the �lter.

3.3 Stage #3 – Execution
After converting the query plan to bytecode, the DBMS uses adap-
tive execution modes to achieve low-latency query processing [20].
The DBMS begins execution using a bytecode interpreter and asyn-
chronously compiles the bytecode into native machine code using
LLVM. Once the background compilation task completes, native
function implementations are automatically executed by the DBMS.

During execution, the plan’s runtime data structures use poli-
cies to selectively enable lightweight metric sampling. In �g. 2,
the DBMS collects selectivity and timing data for each �ltering
term periodically with a �xed probability. It uses this information
to construct a ranking metric that orders the �lters to minimize
execution time given the current data distribution. Each execution
thread makes an independent decision since they operate on dis-
joint segments of the table and potentially observe di�erent data
distributions. All permutable components use a library of policies
to decide (1) when to enable metric collection and (2) what adaptive
policy to apply given new runtime metric data. The execution en-
gine continuously performs this cyclic behavior over the course of
a query. All policies account for the fact that execution threads may
be concurrently executing native and bytecode implementations of
query functions and observe varying runtimes.

NoisePage uses a push-based batch-oriented engine that com-
bines vectorized and tuple-at-a-time execution in the same spirit as
Relaxed Operator Fusion (ROF) [27]. Batch-based execution allows
the DBMS to amortize overhead of PCQ indirection while retaining
the performance bene�ts of JIT code. It also provides LLVM an
opportunity to auto-vectorize generated code.

4 SUPPORTED QUERY OPTIMIZATIONS
We now present the optimization categories that are possible with
PCQ. As described above, the DBMS generates execution code for a
query in a manner that allows it to modify its behavior at runtime.
The core idea underlying PCQ is that the generated code supports
the ability to permute or selectively enable operations within a
pipeline whenever there could be a di�erence in performance of
those operations. These operations can be either short-running, �ne-
grained steps (e.g., a single predicate) or more expensive relational
operators (e.g., joins). These optimizations are independent of each
other and do not in�uence the behavior of other optimizations in
either the same pipeline or other pipelines for the query.

For each category, we describe what changes (if any) the DBMS’s
optimizer makes to a query’s plan and how the Translator organizes
the code to support runtime permutations. We also discuss how the
DBMS collects metrics about that it uses for policy decisions.

4.1 Filter Reordering
The �rst optimization is the ability to modify the evaluation order
of predicates during a scan operation. The optimal ordering strikes
a balance between selectivity and evaluation time: applying a more
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SELECT * FROM A WHERE col1 * 3 = col2 + col3 AND col4 < 44

(a) Example Input SQL Query

 6 fun p1(v:*Vec) {
 7   @selectLT(v.col4,44)}

 8 fun p2(v:*Vec) {
 9   for (t in v) {
10     if (t.col1*3 == 
11         t.col2+t.col3){
12       v[t]=true}}}

 1 fun query() {
 2   var filters={[p1,p2]}
 3   for (v in A) {
 4     filters.Run(v)
 5   }}

Execute 
p1
p2

Permute
p2
p1

Profile

Sel. Cost
10
4

0.5
0.7

p1
p2

Rank
0.05
0.75

Stats

Policies

(b) Generated Code and Execution of Permutable Filter
Figure 3: Filter Reordering – The Translator converts the query in
(a) into the TPL on the left side of (b). This program uses a data struc-
ture template with query-speci�c �lter logic for each �lter clause.
The right side of (b) shows how the policy collects metrics and then
permutes the ordering.

selective �lter �rst will discard more tuples, but it may be expen-
sive to run. Likewise, the fastest �lter may discard too few tuples,
causing the DBMS to waste cycles applying subsequent �lters.

Preparation / Code-Gen: The �rst step is to prepare the phys-
ical plan to support reordering. The DBMS normalizes �lter expres-
sions into their disjunctive normal form (DNF). An expression in
DNF is composed of a disjunction of summands, B1 _ B2 _ . . . B" .
Each summand, B8 , is a conjunction of factors, 51 ^ 52 ^ . . . 5# . Each
factor constitutes a single predicate in the larger �lter expression
(e.g., col4 < 44). The DBMS can reorder factors within a summand,
as well as summands within a DNF expression. Thus, there are
' = "!# ! possible overall orderings of a �lter in DNF.

Decomposing and structuring �lters as functions has two bene-
�ts. First, it allows the DBMS to explore di�erent orderings without
having to recompile the query. Re-arranging two factors incurs neg-
ligible overhead as it involves a function pointer swap. The second
bene�t is that the DBMS utilizes both code-generation and vector-
ization where each is best suited. The system implements complex
arithmetic expressions in generated code to remove the overhead
of materializing intermediate results, while simpler predicates fall
back to a library of ⇠250 vectorized primitives.

Since the WHERE clause in �g. 3a is in DNF, the query requires
no further modi�cation. Next, the Translator generates a function
for each factor in the �lter that accepts a tuple vector as input. In
�g. 3b, p1 (lines 6–7) and p2 (lines 8–12) are generated functions
for the query’s conjunctive �lter. p1 calls on a builtin vectorized
selection primitive, while p2 uses fused tuple-at-a-time logic.

Lastly, line 2 in �g. 3b initializes a runtime data structure with
a list of �lter functions. This structure encapsulates the �ltering
and permutation logic. A sequential scan is generated over A on
line 3 using a batch-oriented iteration loop, and the �lter is applied
to each tuple batch in the table on line 4.

Runtime Permutation: Given the array of �lter functions cre-
ated previously during code-generation, this optimization seeks to
order them to minimize the �lter’s evaluation time. This process is
illustrated in �g. 3b. When the DBMS invokes the permutable �lter
on an input batch, it decides whether to recollect statistics on each
�lter component. The frequency of collection and precisely what
data to collect are con�gurable policies. A simple approach that we

SELECT col1, COUNT(*) FROM A GROUP BY col1

(a) Example Input SQL Query

Policies

Hash 
Hot Set?

17 fun aggregateMerge(
 ↪     hot:[*]Agg,ht:*HashTable){
18   ht[hot[0].col1]=hot[0]
19   ht[hot[1].col1]=hot[1]}

 1 fun query() {
 2   var aggregator = {[
 3     ..., // Normal funcs
 4     aggregateHot,
 5     aggregateMerge
 6   ]} 
 7   for (v in foo) {
 8     aggregator.Run(v)
 9   }}

Count
≈5#Keys

Profile

Probe

Create + Initialize

Update

No

Initialize Hot

Aggregate Hot

Merge Hot

Yes

Hot Cold
10 fun aggregateHot(
 ↪     v:*Vec, hot:[*]Agg){
11   for(t in v) {
12     if(t.col1==hot[0].col1){
13       hot[0].c++}
14     elif(t.col1==hot[1].col1){
15       hot[1].c++}   
16   }}

(b) Generated Code and Execution of Adaptive Aggregation
Figure 4: Adaptive Aggregations – The input query in (a) is trans-
lated into TPL on the left side of (b). The right side of (b) steps
through one execution of PCQ aggregation.

use is to sample selectivities and runtimes randomly with a �xed
probability ? . We explore the e�ect of ? in sec. 5.

If the policy chooses not to sample selectivities, the DBMS in-
vokes the �ltering functions in their current order on the tuple
batch. Functions within a summand incrementally �lter tuples out,
and each summand’s results are combined together to produce the
result of the �lter. If the policy chooses to re-sample statistics, the
DBMS executes each predicate on all input tuples and tracks their
selectivity and invocation time to construct a pro�le. The DBMS
uses a predicate’s A0=: as the metric by which to order predicate
terms. The rank of a predicate accounts for both its selectivity and
its evaluation costs, and is computed as 1�B

2 , where B speci�es the
selectivity of the factor, and 2 speci�es the per-tuple evaluation cost.
After rank computation, the DBMS stores the refreshed statistics in
an in-memory statistics table. It then reorders the predicates using
both their new rank values and the �lter’s permutation policy.

When the policy recollects statistics, the DBMS evaluates all
�lters to capture their true selectivities (i.e., no short-circuiting).
This means the DBMS performs redundant work that impacts query
performance. Therefore, policies must balance unnecessary work
with the ability to respond to shifting data skew quickly.

4.2 Adaptive Aggregations
The next optimization is to extract “hot” group-by keys in hash-
based aggregations and generate a separate code path for maintain-
ing their values that do no probe the hash table. Hash aggregations
are composed of �ve batch-oriented steps: (1) hashing, (2) probing,
(3) key-equality check, (4) initialization, and (5) update. Parallel
aggregations require an additional sixth step to merge thread-local
partial aggregates into a global aggregation hash table. The Trans-
lator generates custom code for aggregate initialization, update,
and merging because these are often computationally heavy and
query-speci�c. The other steps rely on vectorized primitives.

We now present PCQ adaptive aggregations that exploit skew
in the grouping keys.

Preparation / Code-Gen: The Translator �rst creates a special-
ized function to handle the hot keys. This function, aggregateHot
on lines 10–16 in �g. 4, takes a batch of input tuples and an ar-
ray of # aggregate payload structures for the extracted hot keys.
Each element in the array stores both the grouping key and the
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(a) Example Input SQL Query
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Figure 3: Filter Reordering – The Translator converts the query in
(a) into the TPL on the left side of (b). This program uses a data struc-
ture template with query-speci�c �lter logic for each �lter clause.
The right side of (b) shows how the policy collects metrics and then
permutes the ordering.

selective �lter �rst will discard more tuples, but it may be expen-
sive to run. Likewise, the fastest �lter may discard too few tuples,
causing the DBMS to waste cycles applying subsequent �lters.

Preparation / Code-Gen: The �rst step is to prepare the phys-
ical plan to support reordering. The DBMS normalizes �lter expres-
sions into their disjunctive normal form (DNF). An expression in
DNF is composed of a disjunction of summands, B1 _ B2 _ . . . B" .
Each summand, B8 , is a conjunction of factors, 51 ^ 52 ^ . . . 5# . Each
factor constitutes a single predicate in the larger �lter expression
(e.g., col4 < 44). The DBMS can reorder factors within a summand,
as well as summands within a DNF expression. Thus, there are
' = "!# ! possible overall orderings of a �lter in DNF.

Decomposing and structuring �lters as functions has two bene-
�ts. First, it allows the DBMS to explore di�erent orderings without
having to recompile the query. Re-arranging two factors incurs neg-
ligible overhead as it involves a function pointer swap. The second
bene�t is that the DBMS utilizes both code-generation and vector-
ization where each is best suited. The system implements complex
arithmetic expressions in generated code to remove the overhead
of materializing intermediate results, while simpler predicates fall
back to a library of ⇠250 vectorized primitives.

Since the WHERE clause in �g. 3a is in DNF, the query requires
no further modi�cation. Next, the Translator generates a function
for each factor in the �lter that accepts a tuple vector as input. In
�g. 3b, p1 (lines 6–7) and p2 (lines 8–12) are generated functions
for the query’s conjunctive �lter. p1 calls on a builtin vectorized
selection primitive, while p2 uses fused tuple-at-a-time logic.

Lastly, line 2 in �g. 3b initializes a runtime data structure with
a list of �lter functions. This structure encapsulates the �ltering
and permutation logic. A sequential scan is generated over A on
line 3 using a batch-oriented iteration loop, and the �lter is applied
to each tuple batch in the table on line 4.

Runtime Permutation: Given the array of �lter functions cre-
ated previously during code-generation, this optimization seeks to
order them to minimize the �lter’s evaluation time. This process is
illustrated in �g. 3b. When the DBMS invokes the permutable �lter
on an input batch, it decides whether to recollect statistics on each
�lter component. The frequency of collection and precisely what
data to collect are con�gurable policies. A simple approach that we

SELECT col1, COUNT(*) FROM A GROUP BY col1

(a) Example Input SQL Query

Policies

Hash 
Hot Set?

17 fun aggregateMerge(
 ↪     hot:[*]Agg,ht:*HashTable){
18   ht[hot[0].col1]=hot[0]
19   ht[hot[1].col1]=hot[1]}

 1 fun query() {
 2   var aggregator = {[
 3     ..., // Normal funcs
 4     aggregateHot,
 5     aggregateMerge
 6   ]} 
 7   for (v in foo) {
 8     aggregator.Run(v)
 9   }}

Count
≈5#Keys

Profile

Probe

Create + Initialize

Update

No

Initialize Hot

Aggregate Hot

Merge Hot

Yes

Hot Cold
10 fun aggregateHot(
 ↪     v:*Vec, hot:[*]Agg){
11   for(t in v) {
12     if(t.col1==hot[0].col1){
13       hot[0].c++}
14     elif(t.col1==hot[1].col1){
15       hot[1].c++}   
16   }}

(b) Generated Code and Execution of Adaptive Aggregation
Figure 4: Adaptive Aggregations – The input query in (a) is trans-
lated into TPL on the left side of (b). The right side of (b) steps
through one execution of PCQ aggregation.

use is to sample selectivities and runtimes randomly with a �xed
probability ? . We explore the e�ect of ? in sec. 5.

If the policy chooses not to sample selectivities, the DBMS in-
vokes the �ltering functions in their current order on the tuple
batch. Functions within a summand incrementally �lter tuples out,
and each summand’s results are combined together to produce the
result of the �lter. If the policy chooses to re-sample statistics, the
DBMS executes each predicate on all input tuples and tracks their
selectivity and invocation time to construct a pro�le. The DBMS
uses a predicate’s A0=: as the metric by which to order predicate
terms. The rank of a predicate accounts for both its selectivity and
its evaluation costs, and is computed as 1�B

2 , where B speci�es the
selectivity of the factor, and 2 speci�es the per-tuple evaluation cost.
After rank computation, the DBMS stores the refreshed statistics in
an in-memory statistics table. It then reorders the predicates using
both their new rank values and the �lter’s permutation policy.

When the policy recollects statistics, the DBMS evaluates all
�lters to capture their true selectivities (i.e., no short-circuiting).
This means the DBMS performs redundant work that impacts query
performance. Therefore, policies must balance unnecessary work
with the ability to respond to shifting data skew quickly.

4.2 Adaptive Aggregations
The next optimization is to extract “hot” group-by keys in hash-
based aggregations and generate a separate code path for maintain-
ing their values that do no probe the hash table. Hash aggregations
are composed of �ve batch-oriented steps: (1) hashing, (2) probing,
(3) key-equality check, (4) initialization, and (5) update. Parallel
aggregations require an additional sixth step to merge thread-local
partial aggregates into a global aggregation hash table. The Trans-
lator generates custom code for aggregate initialization, update,
and merging because these are often computationally heavy and
query-speci�c. The other steps rely on vectorized primitives.

We now present PCQ adaptive aggregations that exploit skew
in the grouping keys.

Preparation / Code-Gen: The Translator �rst creates a special-
ized function to handle the hot keys. This function, aggregateHot
on lines 10–16 in �g. 4, takes a batch of input tuples and an ar-
ray of # aggregate payload structures for the extracted hot keys.
Each element in the array stores both the grouping key and the
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running aggregate value. The policy determines the size of # . For
east of illustration, we choose to extract two heavy-hitter keys. The
Translator generates a loop to iterate over each tuple in the batch
and checks for a key-equality match against one of the keys in the
hot array. As # is a query compile-time constant, the Translator
generates # conditional branches. Tuples that �nd a match update
their aggregates according to the query; others fall through to the
“cold” key code path.

Next, the Translator generates amerge function, aggregateMerge
on lines 17–19, that takes a list of partially computed aggregates
and merges them into the hash table. As before, because # is a
compile-time constant, the Translator unrolls and inlines the merge
logic for the # aggregates into the function.

Finally, in the main query processing function, the Translator
creates the data structure (aggregator) on lines 2–6 and injects it
with pointers to generated functions encapsulating each step in the
aggregation, including the new functions to exploit key skew.

Runtime Permutation: Aggregation proceeds similarly as it
would without any optimization, but with one adjustment. While
computing the hash values of grouping keys in a batch, the DBMS
also tracks an approximate distinct key count using HyperLogLog
(HLL) [15]. Collecting this metric is inexpensive since HLLs have a
compact representation and incur minimal computational overhead
in comparison to the more complex aggregation processing logic.
After hashing all tuples, if the HLL estimates fewer than # unique
grouping keys in the input batch, we follow the optimized pipeline.

In the optimized �ow, the DBMS �rst allocates an array of ag-
gregate values. It initializes this array with the hottest keys in the
current batch. The method for identifying these keys is de�ned
by the system’s con�gured policy. A simple policy is to use the
�rst # unique keys in the batch. A more sophisticated option is
to randomly sample from within the current batch until # unique
keys are found. In this work, we use the former as we found it o�ers
the best performance versus cost trade-o�.

After initializing the hot aggregates array, the DBMS invokes
the optimized aggregation function. On return, partially aggregated
data is merged back into the hash table using the merging function.
Since HLL estimations have errors, it is possible for some tuples to
not �nd a match in the hot set. In this case, the batch is processed
using the cold path as well. Thus, there is a risk of an additional pass,
but the DBMS mitigates this by tuning the HLL estimation error.
Supporting parallel aggregation requires neither a modi�cation to
the algorithm described earlier, or the generation of additional code.
Each execution thread performs thread-local aggregation as before.

4.3 Adaptive Joins
A PCQ DBMS optimizes hash joins by (1) tailoring the hash table
implementation based on runtime information and (2) reordering
the application of joins in right- or left-deep query plans.We discuss
data structure specialization before describing the steps required
during code-generation and runtime to implement join reordering.
We use the convention that the left input to a hash join is the build
side, and the right input is the probe side.

Hash table construction proceeds in two phases. First, the DBMS
materializes the tuples from the left join input into a thread-local
memory bu�er in row-wise format along with the computed hash

SELECT * FROM A
INNER JOIN B ON A.col1 = B.col1
INNER JOIN C ON A.col2 = C.col1

(a) Example Input SQL Query

B

C A
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(b) Possible Join Orderings
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 1 fun query() {
 2   // HT on B, C built.
 3   var joinExec = {[
 4     {ht_B, joinB},
 5     {ht_C, joinC}]} 
 6   for (v in A) {
 7    joinExec.Run(v)
 8   }}

 9 fun joinB(
 ↪     v:*Vec,m:[*]Entry){
10   for (t in v){
11     if (t.col1==m[t].col1){
12       v[t]=true}}}  

13 fun joinC(
 ↪     v:*Vec,m:[*]Entry) {
14   @gatherSelectEq(v.col2,
 ↪                   m,0)}

Hash Probe 

B

C

Stats

B

C

Policies

(c) Generated Code and Execution of Permutable Joins
Figure 5: Adaptive Joins – The DBMS translates the query in (a) to
the program in (c). The right side of (c) illustrates one execution of
a permutable join that includes a metric collection step.

of the join columns. The DBMS also tracks an approximate count
of unique keys using an HLL estimator. Once the left join input
is exhausted, the DBMS uses HLL to estimate the hash table size.
If the estimated size is smaller than the CPU’s L3 cache capacity,
the DBMS constructs a concise hash table (CHT [31]); otherwise, it
constructs a bucket-chained hash table with pointer-tagging [22].
With this, the DBMS is able to perfectly size the hash table, thereby
eliminating the need to resize during construction. Furthermore,
deferring the choice of table implementation to runtime allows
the DBMS to tune itself according to the data distribution. In the
second phase, each execution thread scans its memory bu�ers to
build a global hash table. If a bucket-chained hash table was selected,
pointers to thread-local tuples are inserted using atomic compare-
and-swap instructions. If a CHT was selected, a partitioned build is
performed as described in [31]. We now describe how to implement
permutable joins using �g. 5 as the running example.

Preparation / Code-Gen: The DBMS’s optimizer supports per-
mutable joins in right-deep query plans containing consecutive
joins, as in �g. 5a. The system designates one table as the “driver”
that it joins with one or more tables (i.e., one per join). The DBMS
may use either hash or index joins depending on the selected access
method. The DBMS applies the joins in any order regardless of the
join type (i.e., inner vs. outer) since each driver tuple is independent
of other tuples in the table and intermediate iteration state is tran-
sient for a batch of tuples. In �g. 5b, the DBMS can join the tuples in
A either against C or B �rst. The best ordering may change over the
duration of a query on a per-block basis due to variations in data
distributions. Our implementation in NoisePage has an additional
requirement that the driver table contains all key columns required
across all joins.

During code generation, the Translator �rst generates one key-
check function per join. In �g. 5c, joinB (lines 9–12) and joinC
(lines 13–14) are the key-check functions for joining tuples from A
against tables B and C, respectively. These functions take in a vector
of input tuples and a vector of potential join candidates, and then
evaluates the join predicate for each tuple. As described earlier,
the DBMS may implement these functions either by dispatching
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to vectorized primitives or using tuple-at-a-time logic directly in
bytecode. In the example, joinC uses a built-in primitive to perform
a fused gather and select operation with SIMD instructions.

Next, the Translator constructs a data structure (joinExec on
lines 3–5) in the pipeline to manage the join and permutation logic.
This structure requires three inputs for each join: (1) a pointer to
the hash table to probe, (2) a list of attribute indexes forming the
join key, and (3) a pointer to the join’s key-check function. Finally,
the Translator generates the scan code for A on lines 6–8 and the
invocation of the join executor for each tuple batch on line 7.

Runtime Permutation:During execution, the DBMS �rst com-
putes a hash value for each tuple in the input batch. Next, a policy
decision is made whether to recollect statistics on each join. As-
suming the a�rmative, the DBMS then probes each hash table.

The probing process is decomposed into two steps. Since hash ta-
bles embed Bloom �lters, the DBMS performs the combined lookup
and �lter operation using only the hash values computed in the
previous step. The second step invokes each join’s key-equality
function to resolve false positives from the �rst step. The DBMS
ensures that only tuples that pass previous joins are processed in
the remaining joins. After completion, the system creates a pro�le
that captures selectivity and timing information for each join step.
Similar to �lters, the DBMS saves the pro�le to its internal catalog
and then permutes the join according to the policy.

5 EVALUATION
We now present an analysis of the PCQ method and correspond-
ing system architecture. We implemented our PCQ framework
and execution engine in the NoisePage DBMS [4]. NoisePage is a
PostgreSQL-compatible HTAPDBMS that usesHyPer-styleMVCC [29]
over the Apache Arrow in-memory columnar data [25]. It uses
LLVM (v9) to JIT compile our bytecode into machine code.

We performed our evaluation on machine with 2 ⇥ 10-core Intel
Xeon Silver 4114 CPUs (2.2GHz, 25 MB L3 cache per-core, with
AVX512) and 128 GB of DRAM. We ensure that the DBMS loads
the entire database into the same NUMA region using numactl.
We implemented our microbenchmarks using the Google Bench-
mark [2] library which runs each experiment a su�cient number
of iterations to get a statistically stable execution times.

We begin by describing the workloads that we use in our evalu-
ation. We then measure PCQ’s ability to improve the performance
of compiled queries. We execute these �rst experiments using a sin-
gle thread to minimize scheduling interference. Lastly, we present
a comparison of NoisePage on multi-threaded queries with PCQ
against two state-of-the-art OLAP DBMSs.

5.1 Workloads
We �rst describe the three workloads that we use in our evaluation:

Microbenchmark:We created a synthetic benchmark to isolate
and measure aspects of the DBMS’s runtime behavior. The database
contains six tables (A–F) that each contain six 64-bit signed integer
columns (col1–col6). Each table contains 3m tuples and occupies
144 MB of memory. For each experiment that uses this benchmark,
we vary the distributions and correlations of the database’s columns’
values to highlight a speci�c component. The workload contains
three query types that each target a separate optimization from

Figure 6: Performance Over Time – Execution time of three static
�lter orderings and our PCQ �lter during a sequential table scan.

sec. 4: (1) a scan query with three predicates, (2) an aggregation
query with groupings, and (3) a multi-way join query.

TPC-H: This is a decision support system workload that sim-
ulates an OLAP environment [37]. It contains eight tables in 3NF
schema. We use a scale factor of 10 (⇠10 GB). To better represent
real-world applications, we use a skewed version of the TPC-H gen-
erator [5]. We select nine queries that cover the TPC-H choke-point
categories [8] that vary from compute- to memory/join-intensive
queries. Thus, we expect our results to generalize and extend to the
remaining queries in the benchmark.

Star Schema Benchmark (SSB): This workload simulates a
data warehousing environment [30]. It is based on TPC-H, but
with three di�erences: (1) it denormalizes the two largest tables (i.e.,
LINEITEM and ORDERS) into a single new fact table (i.e., LINEORDER),
(2) it drops the PARTSUPP table, and (3) it creates a new DATE dimen-
sion table. SSB consists of thirteen queries and is characterized by
its join complexity. We use a scale factor of 10 (⇠10 GB) using the
default uniformly random data generator.

5.2 Filter Adaptivity
We begin with evaluating PCQ’s ability to optimize and permute
�lter ordering in response to shifting data distributions. We use the
microbenchmark workload with a SELECT query that performs a
sequential scan over a single table:
SELECT * FROM A
WHERE col1 < 1000 AND col3 < 1000 AND col3 < 3000
The constant values in the WHERE clause’s predicates enable the

data generators in each experiment to target a speci�c selectivity.
Performance Over Time: The �rst experiment evaluates the

performance of PCQ �lters during a table scan as we vary the selec-
tivity of individual predicates. We populate each column such that
one of the predicates has a selectivity of ⇠2% while the remaining
two have 98% selectivity each. We alternate which predicate is the
most selective over disjoint sections of the table. That is, for the
�rst 500 blocks of tuples, the predicate on col1 is the most selective.
Then for the next 500 blocks, the predicate on col2 is the most
selective. Thus, each predicate is optimal for only 1

3 of the table.
We execute this query with PCQ’s permutable �lters con�gured

using a 10% sampling rate policy (i.e., the DBMS will collect metrics
per block with a 10% probability). We also execute the query using
three “static” orderings that each evaluate a di�erent predicate �rst.
These static orderings represent how existing JIT compilation-based
DBMSs execute queries without permutability.

The results in �g. 6 show the processing time per block during
the scan. Each of the static orderings is only optimal for a por-
tion of the table, while PCQ discovers new optimal orderings after
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Figure 12: Varying Number of Joins – Execution time to perform a
multi-step join while keeping the overall join selectivity at 10%.

auto-vectorization of the key-equality check function. Although
the overall selectivity is constant, as the number of joins increase,
PCQ outperforms the static plan by discovering the most selective
joins and dynamically reordering them earlier in processing. PCQ
is 3⇥ faster than static when performing two joins, and 2.5⇥ faster
when performing greater than three joins.

5.5 System Comparison
Lastly, we compare NoisePage with and without PCQ against two
state-of-the-art in-memory databases: Actian Vector (v9.2) and
Tableau HyPer (v5.1). Vector [1] is a columnar DBMS based on Mon-
etDB/x100 [9] that uses a vectorized execution engine comprised of
SIMD-optimized primitives. We modi�ed Vector’s con�guration to
fully utilize system memory and CPU threads for parallel execution.
HyPer [3] is a columnar DBMS that uses the LLVM to generate
tuple-at-a-time query plans that are either interpreted or JIT com-
piled. The version of HyPer we use also supports SIMD predicate
evaluation. After consulting with Tableau’s engineers, we did not
modify any con�guration options for HyPer.

In this section we evaluate the TPC-H and SSB benchmarks.
After loading the data into each system, we run their requisite
statistics collection and optimization operations. We warm each
DBMS by running the workload queries once before reporting the
average execution time over �ve consecutive runs. We make a
good faith e�ort to ensure the DBMSs execute equivalent query
plans by manually inspecting them. We note, however, that the
DBMSs include additional optimizations that are not present in
all systems. For NoisePage, we use the query plan generated by
HyPer’s optimizer.

5.5.1 Skewed TPC-H. We �rst evaluate the TPC-H benchmark
using Microsoft’s skewed data generator [5], using a skew of 2.0
(i.e., high-skew). The results are shown �g. 13. We also show the
e�ect of each optimization in table 1. Each cell shows the relative
speedup of enabling the associated optimization atop all previous
optimizations. Numbers close to 1.0 mean the optimization had
little impact, while large numbers indicate greater impact. Gray
(i.e., blank) entries signify that the optimization was not applied.

Q1: This query computes �ve aggregates over four group-by
keys in a single table. Increased skew a�ects the distribution among
the four grouping keys. The hottest grouping key pair receives 49%
of the updates when there is no skew, and 86% with signi�cant skew.
NoisePage’s PCQ aggregation optimization is triggered resulting
in a 1.7⇥ improvement since the bulk of processing time is spent
performing the aggregation. Although NoisePage with PCQ is 4.8⇥
faster than Vector, it is 1.2⇥ slower than HyPer. We believe this is

due to HyPer’s use of �xed-point arithmetic which is faster than
the �oating-point math used in NoisePage.

Q4: This query computes a single aggregate over �ve group-by
keys (triggering the PCQ aggregation optimization), and contains a
permutable �lter on ORDERS. The selectivity of the range predicate
on o_orderdate is 0.08% with high skew. NoisePage with PCQ
�ips the range predicate and applies the aggregation optimization
resulting in a 2⇥ improvement over both NoisePage without PCQ
and commercial systems. table 1 shows that the bulk of the bene�t
is attributed to the optimized aggregation.

Q5: This query joins six tables, but contains only two permutable
joins. The �nal aggregation computes one summation on two group-
by keys, which triggers the PCQ aggregation optimization. This
query also contains vectorizable predicates that are supported by
all DBMSs. In NoisePage, the bene�t of permutable �lters is modest,
while the optimized aggregation leads to a 1.33⇥ improvement over
the baseline. The two permutable joins are never rearranged, hence
there is no improvement from PCQ joins. Overall, NoisePage with
PCQ is 3⇥ faster than HyPer and 5⇥ faster than Vector.

Q6: The performance of Q6 depends on the DBMS’s implemen-
tation of the highly selective (0.05%) �lter over LINEITEM. We note
that increased skew does not a�ect the ordering of the LINEITEM
predicate. Thus, NoisePage’s PCQ permutable �lter adds minor
overhead resulting in 4% slowdown over the baseline. This is a
direct result of resampling with a �xed probability, and can be
remedied by using a more advanced sampling policy. All systems
leverage SIMD �lter evaluation with comparable performance.

Q7: This is a join-heavy query where HyPer chooses a bushy join
plan that is 4⇥ slower than a right-deep plan. Although no tuples
reach the �nal aggregation, PCQ �ips the application order of the
range predicate on l_shipdate resulting in a 1.2⇥ improvement.

Q11: This query also contains �ve joins, but none are permutable.
It also contains two separate aggregations, but whose cardinalities
never trigger the PCQ optimizations. Finally, it contains multiple
vectorizable predicates, but all have single terms making permu-
tation unnecessary. Thus, Q11 represents a query where none of
the PCQ optimizations are tripped. We include it to show that PCQ
incurs negligible overhead, and to serve as an example of where
an optimizer can assist in identifying better plans in the presence
of data skew. NoisePage (with an without PCQ) o�ers comparable
performance to HyPer, and is 4⇥ faster than Vector.

Q16: This query has a right-deep join pipeline using PARTSUPP
as the driver, a multi-part �lter on PART and a hash aggregation.
The cardinality of the aggregation exceeds the optimization thresh-
old (i.e., �ve). PCQ reorders the PART �lters, yielding a boost of
almost 1.2⇥. Next, PCQ reorders the join to use SIMD gathers due
to the size of the build table, which improves performance by 1.2⇥.
NoisePage with PCQ is 7.4⇥ and 3⇥ faster than HyPer and Vector,
respectively. HyPer chooses a worse plan at high-skew: it decides
on a left anti-join rather than a right anti-join. We believe that
HyPer’s performance would improve with a better plan.

Q18: Like Q16, this query also contains a right-deep join pipeline
using ORDERS as the driver. Additionally, there is an aggregation,
but whose cardinality exceeds the optimization’s threshold. PCQ
reorders the joins in order to utilize SIMD gathers on the smaller
table resulting in a 1.19⇥ improvement over the baseline. Inter-
estingly, HyPer chooses a worse query plan at high skew, using
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Adaptivity Loop

Measure what ? 
Cardinalities/selectivities, operator costs, resource utilization

Measure when ?
Continuously (eddies); using a random sample (A-greedy); 
at materialization points (mid-query reoptimization)

Measurement overhead ?
Simple counter increments (mid-query) to very high

Actuate

PlanAnalyze

Measure



Adaptivity Loop

Analyze/replan what decisions ?
(Analyze actual vs. estimated selectivities)
Evaluate costs of alternatives and switching (keep state in mind)

Analyze / replan when ?
Periodically; at materializations (mid-query); at conditions (A-greedy)

Plan how far ahead ?
Next tuple; batch; next stage (staged); possible remainder of plan (CQP)

Planning overhead ?
Switch stmt (parametric) to dynamic programming (CQP, mid-query)

ActuateMeasure

PlanAnalyze



Adaptivity Loop

Actuation:  How do they switch to the new plan/new routing strategy ?

Actuation overhead ?
At the end of pipelines à free (mid-query)
During pipelines:

History-independent à Essentially free (selections, MJoins)
History-dependent à May need to migrate state (STAIRs, CAPE)

Measure

PlanAnalyze

Actuate



} Not much work on adaptive query processing in the last 10 
years
◦ SkinnerDB [2019] another relevant work

} More work on adapting the execution of a single operator 
◦ e.g., changing things based on available resources

} Likely to re-emerge as an important topic in the next few years
◦ As QP in many systems becomes more mature…

◦ As SQL starts becoming more and more common as the query language 
(e.g., in Spark, Pandas, etc).



} Query evaluation techniques for large databases, Skew 
Avoidance, Query compilation/vectorization

} Query Optimization: Overview, How good are the query 
optimizers, really?, Reordering for Outerjoins, Query Rewriting

} Adaptive Query Processing

} Worst-case Optimal Join Processing

} Froid: UDFs and Databases



} Consider an ”edges” relation with N edges, capturing an 
“undirected” graph,

} And a query to find the number of ”triangles”

source target
v1 v2
v2 v1
v1 v3
v3 v1
v2 v3
v3 v2

select count(*)/6
from edges e1, edges e2, edges e3
where e1.target = e2.source and 

e2.target = e3.source and
e3.target = e1.source

Any “binary joins” plan will be “sub-optimal”
Worst case = O(N^2)
However, output size bounded by O(N^1.5)



A B
a1 b1
a2 b1
a3 b1
a4 b1
a5 b1
a6 b1
… …

q() :- R(A, B), S(B, C), T(C, D)

B C
b1 c1
b1 c2
b1 c3
… …
b2 c0
b3 c0
… …

C D
c0 d1
c0 d2
c0 d3
c0 d4
c0 d5
c0 d6
… …

1M tuples with B = b1 1M tuples with C = c01M tuples with C = c0
1M tuples with B = b1

However: No results in the output

Boolean Conjunctive Query
Answer is a True/False



A B
a1 b1
a2 b1
a3 b1
a4 b1
a5 b1
a6 b1
… …

q() :- R(A, B), S(B, C), T(C, D)

B C
b1 c1
b1 c2
b1 c3
… …
b2 c0
b3 c0
… …

C D
c0 d1
c0 d2
c0 d3
c0 d4
c0 d5
c0 d6
… …

1M tuples with B = b1 1M tuples with C = c0

1M tuples with C = c0
1M tuples with B = b1

No Binary Join Tree Works

R JOIN S == generates 1 trillion tuples
(none of which match T)

S JOIN T == generates 1T tuples

R JOIN T == cross product == 1T tuples



A B
a1 b1
a2 b1
a3 b1
a4 b1
a5 b1
a6 b1
… …

q() :- R(A, B), S(B, C), T(C, D)

B C
b1 c1
b1 c2
b1 c3
… …
b2 c0
b3 c0
… …

C D
c0 d1
c0 d2
c0 d3
c0 d4
c0 d5
c0 d6
… …

1M tuples with B = b1 1M tuples with C = c0

1M tuples with C = c0
1M tuples with B = b1

B C
b1 c1
b1 c2
b1 c3
… …

First, do S SEMIJOIN R

Removes tuples from S 
that don’t contribute to the final
output
(e.g., (b2, c0) will never
join with anything from R)



A B
a1 b1
a2 b1
a3 b1
a4 b1
a5 b1
a6 b1
… …

q() :- R(A, B), S(B, C), T(C, D)

B C
b1 c1
b1 c2
b1 c3
… …
b2 c0
b3 c0
… …

C D
c0 d1
c0 d2
c0 d3
c0 d4
c0 d5
c0 d6
… …

1M tuples with B = b1 1M tuples with C = c0

1M tuples with C = c0
1M tuples with B = b1

B C
b1 c1
b1 c2
b1 c3
… …

First, do S SEMIJOIN R

Then: X1 = T SEMIJOIN 
(S SEMIJOIN R)

C D

Then, do X2 = S SEMIJOIN X1

To further “reduce” S by 
removing tuples that don’t join 
with anything from T



A B
a1 b1
a2 b1
a3 b1
a4 b1
a5 b1
a6 b1
… …

q() :- R(A, B), S(B, C), T(C, D)

B C
b1 c1
b1 c2
b1 c3
… …
b2 c0
b3 c0
… …

C D
c0 d1
c0 d2
c0 d3
c0 d4
c0 d5
c0 d6
… …

1M tuples with B = b1 1M tuples with C = c0

1M tuples with C = c0
1M tuples with B = b1

B C
b1 c1
b1 c2
b1 c3
… …

First, do S SEMIJOIN R

Then: X1 = T SEMIJOIN 
(S SEMIJOIN R)

C D

Then, do X2 = S SEMIJOIN X1

Finally, do X3 = R SEMIJOIN X2



} Called “semi-join reducer sequences”
◦ Basically get rid of tuples from each relation that don’t contribute to the 

output

◦ Result EMPTY in our example, but in general, only relevant tuples will be 
left

} Once this is done, you can do join in any order
◦ Guaranteed that the total time is “linear” in the total size of the inputs 

and output

◦ Can’t avoid dependence on the output -- the join query may do a 
Cartesian product

} Can be generalized to any “acyclic” query



} Conjunctive queries as “hypergraphs”

q() :- R1(A, B, C), R2(B, C, D), R3(C, D, E)

A

B

C

D

E

Each attribute == a vertex
Each relation == a “hyperedge”



} Conjunctive queries as “hypergraphs”

q() :- R1(A, B, C), R2(C, D, E), R3(A, E)

A

B

C

D

E

Each attribute == a vertex
Each relation == a “hyperedge”



} If all relations are 2 attributes, then the hypergraph is same as a 
graph

q() :- R1(A, B), R2(B, C), R3(C, D), R4(D, A)

A

B

C

D

Acyclic queries in this case == 
the graph has no cycles, i.e., the 
graph is a tree

More complex for hypergraphs



} For “acyclic” queries, can always find a semijoin reducer sequence
◦ Can be done in optimal time: linear in size of inputs + output

} What about non-acyclic queries?
◦ Try to define how “far” from acyclic-ness

◦ Captured as ”width” of the hypergraph

� Width of acyclic hypergraphs = 1

} AGM [FOCS, 2008] defined “fractional hypertree width”, and an 
algorithm that runs in O(N^(fhw+1) log N)

} Several more practical algorithms since then, including one that 
was implemented before it was proved optimal



Said another way, the width approach disregards the input relation sizes and summarizes them in a single
number, N. As a result, the run time of these structural approaches is OpNw`1 log Nq, where N is the input
size and w is the corresponding width measure. On the other hand, commercial RDBMSs seem to place
little emphasis on the structural property of the query and tremendous emphasis on the cardinality side of
join processing. Commercial databases often process a join query by breaking a complex multiway join into
a series of pairwise joins; an approach first described in the seminal System R, Selinger-style optimizer from
the 1970 [38]. However, throwing away this structural information comes at a cost: any join-project plan is
destined to be slower than the best possible run time by a polynomial factor in the data size.

Bridging This Gap A major recent result from AGM [3, 23] is the key to bridging this gap: AGM derived
a tight bound on the output size of a join query as a function of individual input relation sizes and a much
finer notion of “width”. The AGM bound leads to the notion of fractional query number and eventually
fractional hypertree width (fhw) which is strictly more general than all of the above width notions [31]. To
summarize, for the same query, it can be shown that

fhw § ghw § qw § tw ` 1,

and the join-project algorithm from AGM runs in time OpNfhw`1 log Nq. AGM’s bound is sharp enough to
take into account cardinality information, and they can be much better when the input relation sizes vary.
The bound takes into account both the input relation statistics and the structural properties of the query. The
question is whether it is possible and how to turn the bound into join algorithms, with runtime OpNfwh

q and
much better when input relations do not have the same size.

The first such worst-case optimal join algorithm was designed by the authors (and Porat) in 2012 [32].
Soon after, an algorithm (with a simpler description) with a similar optimality guarantee was presented soon
after called “Leapfrog Triejoin” [42]. Remarkably this algorithm was implemented in a commercial database
system before its optimality guarantees were discovered. A key idea in the algorithms is handling skew in
a theoretically optimal way, and uses many of the same techniques that database management systems have
used for decades heuristically [12, 43, 44]

A technical contribution of this survey is to describe the algorithms from [32] and [42] and their analyses
in one unifying (and simplified) framework. In particular, we make the observation that these join algorithms
are in fact special cases of a single join algorithm. This result is new and serves to explain the common link
between these join algorithms. We also illustrate some unexpected connections with geometry, which we
believe are interesting in their own right and may be the basis for further theoretical development.

2 Much ado about the triangle

We begin with the triangle query

Q4 “ RpA, Bq Z S pB,Cq Z T pA,Cq.

The above query is the simplest cyclic query and is rich enough to illustrate most of the ideas in the new join
algorithms.2 We first describe the traditional way to evaluate this query and how skew impacts this query.
We then develop two closely related algorithmic ideas allowing us to mitigate the impact of skew in these
examples; they are the key ideas behind the recent join processing algorithms.

2This query can be used to list all triangles in a given graph G “ pV, Eq, if we set R, S and T to consist of all pairs pu, vq and
pv, uq for which uv is an edge. Due to symmetry, each triangle in G will be listed 6 times in the join.

2.1 Why traditional join plans are suboptimal

The textbook way to evaluate any join query, including Q4, is to determine the best pair-wise join plan [35,
Ch. 15]. Figure 1 illustrates three plans that a conventional RDBMS would use for this query. For example,
the first plan is to compute the intermediate join P “ R Z T and then compute P Z S as the final output.
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Figure 1: The three pair-wise join plans for Q4.

We next give a family of instances for which any of the above three join plans must run in time ⌦pN2
q

because the intermediate relation P is too large. Let m • 1 be a positive integer. The instance family is
illustrated in Figure 2, where the domain of the attributes A, B and C are {a0, a1, . . . , am}, {b0, b1, . . . , bm},
and {c0, c1, . . . , cm} respectively. In Figure 2, the unfilled circles denote the values a0, b0 and c0 respectively
while the black circles denote the rest of the values.

For this instance each relation has N “ 2m ` 1 tuples and |Q4| “ 3m ` 1; however, any pair-wise join
has size m2

` m. Thus, for large m, any of the three join plans will take ⌦pN2
q time. In fact, it can be

shown that even if we allow projections in addition to joins, the ⌦pN2
q bound still holds. (See Lemma 4.2.)

By contrast, the two algorithms shown in the next section runs in time OpNq, which is optimal because the
output itself has ⌦pNq tuples!

2.2 Algorithm 1: The Power of Two Choices

Inspecting the bad example above, one can see a root cause for the large intermediate relation: a0 has “high
degree” or in the terminology to follow it is heavy. In other words, it is an example of skew. To cope with
skew, we shall take a strategy often employed in database systems: we deal with nodes of high and low skew
using di↵erent join techniques [12, 44]. The first goal then is to understand when a value has high skew. To
shorten notations, for each ai define

Q4rais :“ ⇡B,Cp�A“aipQ4qq.

We will call ai heavy if
|�A“aipR Z T q| • |Q4rais|.

In other words, the value ai is heavy if its contribution to the size of intermediate relation R Z S is greater
than its contribution to the size of the output. Since

|�A“aipR Z S q| “ |�A“aiR| ¨ |�A“aiS |,

we can easily compute the left hand side of the above inequality from an appropriate index of the input
relations. Of course, we do not know |Q4rais| until after we have computed Q4. However, note that we
always have Q4rais Ñ S . Thus, we will use |S | as a proxy for |Q4rais|. The two choices come from the
following two ways of computing Q4rais:

(i) Compute �A“aipRq Z �A“aipT q and filter the results by probing against S or

R “ {a0}ˆ {b0, . . . , bm}Y {a0, . . . , am}ˆ {b0}

S “ {b0}ˆ {c0, . . . , cm}Y {b0, . . . , bm}ˆ {c0}

T “ {a0}ˆ {c0, . . . , cm}Y {a0, . . . , am}ˆ {c0}
C

A

B

Figure 2: Counter-example for join-project only plans for the triangles (left) and an illustration for m “ 4
(right). The pairs connected by the red/green/blue edges form the tuples in the relations R/S /T respectively.
Note that the in this case each relation has N “ 2m ` 1 “ 9 tuples and there are 3m ` 1 “ 13 output tuples
in Q4. Any pair-wise join however has size m2

` m “ 20.

(ii) Consider each tuple in pb, cq P S and check if pai, bq P R and pai, cq P T .

We pick option (i) when ai is light (low skew) and pick option (ii) when ai is heavy (high skew).

Example 1. Let us work through the motivating example from Figure 2. When we compute Q4ra0s, we
realize that a0 is heavy and hence, we use option (ii) above. Since here we just scan tuples in S , computing
Q4ra0s takes Opmq time. On the other hand, when we want to compute Q4rais for i • 1, we realize that these
ai’s are light and so we take option (i). In these cases |�A“aiR| “ |�A“aiT | “ 1 and hence the algorithm
runs in time Op1q. As there are m such light ai’s, the algorithm overall takes Opmq each on the heavy and
light vertices and thus Opmq “ OpNq overall which is best possible since the output size is ⇥pNq.

Algorithm and Analysis Algorithm 1 fully specifies how to compute Q4 using the above idea of two
choices. Given that the relations R, S , and T are already indexed appropriately, computing L in line 2 can
easily be done in time Opmin{|R|, |S |, |T |}q. Then, for each a P L, the body of the for loop from line 4 to
line 11 clearly takes time in the order of

min
�
|�A“aR| ¨ |�A“aT |, |S |

�
,

thanks to the power of two choices! Thus, the overall time spent by the algorithm is up to constant factors
X

aPL

min
�
|�A“aR| ¨ |�A“aT |, |S |

�
. (1)

We bound the sum above by using two inequalities. The first is the simple observation that for any
x, y • 0

minpx, yq §
p

xy. (2)

The second is the famous Cauchy-Schwarz inequality3:

X

aPL

xa ¨ ya §

sX

aPL

x2
a ¨

sX

aPL

y2
a, (3)

3The inner product of two vectors is at most the product of their length

Each relation has: 2m + 1 tuples
Output = 3m + 1
Any pairwise join has size: m^2 + m
Projections/Semi-joins don’t help



2.1 Why traditional join plans are suboptimal

The textbook way to evaluate any join query, including Q4, is to determine the best pair-wise join plan [35,
Ch. 15]. Figure 1 illustrates three plans that a conventional RDBMS would use for this query. For example,
the first plan is to compute the intermediate join P “ R Z T and then compute P Z S as the final output.
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Figure 1: The three pair-wise join plans for Q4.

We next give a family of instances for which any of the above three join plans must run in time ⌦pN2
q

because the intermediate relation P is too large. Let m • 1 be a positive integer. The instance family is
illustrated in Figure 2, where the domain of the attributes A, B and C are {a0, a1, . . . , am}, {b0, b1, . . . , bm},
and {c0, c1, . . . , cm} respectively. In Figure 2, the unfilled circles denote the values a0, b0 and c0 respectively
while the black circles denote the rest of the values.

For this instance each relation has N “ 2m ` 1 tuples and |Q4| “ 3m ` 1; however, any pair-wise join
has size m2

` m. Thus, for large m, any of the three join plans will take ⌦pN2
q time. In fact, it can be

shown that even if we allow projections in addition to joins, the ⌦pN2
q bound still holds. (See Lemma 4.2.)

By contrast, the two algorithms shown in the next section runs in time OpNq, which is optimal because the
output itself has ⌦pNq tuples!

2.2 Algorithm 1: The Power of Two Choices

Inspecting the bad example above, one can see a root cause for the large intermediate relation: a0 has “high
degree” or in the terminology to follow it is heavy. In other words, it is an example of skew. To cope with
skew, we shall take a strategy often employed in database systems: we deal with nodes of high and low skew
using di↵erent join techniques [12, 44]. The first goal then is to understand when a value has high skew. To
shorten notations, for each ai define

Q4rais :“ ⇡B,Cp�A“aipQ4qq.

We will call ai heavy if
|�A“aipR Z T q| • |Q4rais|.

In other words, the value ai is heavy if its contribution to the size of intermediate relation R Z S is greater
than its contribution to the size of the output. Since

|�A“aipR Z S q| “ |�A“aiR| ¨ |�A“aiS |,

we can easily compute the left hand side of the above inequality from an appropriate index of the input
relations. Of course, we do not know |Q4rais| until after we have computed Q4. However, note that we
always have Q4rais Ñ S . Thus, we will use |S | as a proxy for |Q4rais|. The two choices come from the
following two ways of computing Q4rais:

(i) Compute �A“aipRq Z �A“aipT q and filter the results by probing against S or

2.1 Why traditional join plans are suboptimal

The textbook way to evaluate any join query, including Q4, is to determine the best pair-wise join plan [35,
Ch. 15]. Figure 1 illustrates three plans that a conventional RDBMS would use for this query. For example,
the first plan is to compute the intermediate join P “ R Z T and then compute P Z S as the final output.
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We next give a family of instances for which any of the above three join plans must run in time ⌦pN2
q

because the intermediate relation P is too large. Let m • 1 be a positive integer. The instance family is
illustrated in Figure 2, where the domain of the attributes A, B and C are {a0, a1, . . . , am}, {b0, b1, . . . , bm},
and {c0, c1, . . . , cm} respectively. In Figure 2, the unfilled circles denote the values a0, b0 and c0 respectively
while the black circles denote the rest of the values.

For this instance each relation has N “ 2m ` 1 tuples and |Q4| “ 3m ` 1; however, any pair-wise join
has size m2

` m. Thus, for large m, any of the three join plans will take ⌦pN2
q time. In fact, it can be

shown that even if we allow projections in addition to joins, the ⌦pN2
q bound still holds. (See Lemma 4.2.)

By contrast, the two algorithms shown in the next section runs in time OpNq, which is optimal because the
output itself has ⌦pNq tuples!

2.2 Algorithm 1: The Power of Two Choices

Inspecting the bad example above, one can see a root cause for the large intermediate relation: a0 has “high
degree” or in the terminology to follow it is heavy. In other words, it is an example of skew. To cope with
skew, we shall take a strategy often employed in database systems: we deal with nodes of high and low skew
using di↵erent join techniques [12, 44]. The first goal then is to understand when a value has high skew. To
shorten notations, for each ai define

Q4rais :“ ⇡B,Cp�A“aipQ4qq.

We will call ai heavy if
|�A“aipR Z T q| • |Q4rais|.

In other words, the value ai is heavy if its contribution to the size of intermediate relation R Z S is greater
than its contribution to the size of the output. Since

|�A“aipR Z S q| “ |�A“aiR| ¨ |�A“aiS |,

we can easily compute the left hand side of the above inequality from an appropriate index of the input
relations. Of course, we do not know |Q4rais| until after we have computed Q4. However, note that we
always have Q4rais Ñ S . Thus, we will use |S | as a proxy for |Q4rais|. The two choices come from the
following two ways of computing Q4rais:

(i) Compute �A“aipRq Z �A“aipT q and filter the results by probing against S or

Skew in the relations: a_0 generates a lot of intermediate 
tuples, but not as many output tuples

Call a_i heavy if:

Two Choices for each a_i:

2.1 Why traditional join plans are suboptimal

The textbook way to evaluate any join query, including Q4, is to determine the best pair-wise join plan [35,
Ch. 15]. Figure 1 illustrates three plans that a conventional RDBMS would use for this query. For example,
the first plan is to compute the intermediate join P “ R Z T and then compute P Z S as the final output.
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We next give a family of instances for which any of the above three join plans must run in time ⌦pN2
q

because the intermediate relation P is too large. Let m • 1 be a positive integer. The instance family is
illustrated in Figure 2, where the domain of the attributes A, B and C are {a0, a1, . . . , am}, {b0, b1, . . . , bm},
and {c0, c1, . . . , cm} respectively. In Figure 2, the unfilled circles denote the values a0, b0 and c0 respectively
while the black circles denote the rest of the values.

For this instance each relation has N “ 2m ` 1 tuples and |Q4| “ 3m ` 1; however, any pair-wise join
has size m2

` m. Thus, for large m, any of the three join plans will take ⌦pN2
q time. In fact, it can be

shown that even if we allow projections in addition to joins, the ⌦pN2
q bound still holds. (See Lemma 4.2.)

By contrast, the two algorithms shown in the next section runs in time OpNq, which is optimal because the
output itself has ⌦pNq tuples!

2.2 Algorithm 1: The Power of Two Choices

Inspecting the bad example above, one can see a root cause for the large intermediate relation: a0 has “high
degree” or in the terminology to follow it is heavy. In other words, it is an example of skew. To cope with
skew, we shall take a strategy often employed in database systems: we deal with nodes of high and low skew
using di↵erent join techniques [12, 44]. The first goal then is to understand when a value has high skew. To
shorten notations, for each ai define

Q4rais :“ ⇡B,Cp�A“aipQ4qq.

We will call ai heavy if
|�A“aipR Z T q| • |Q4rais|.

In other words, the value ai is heavy if its contribution to the size of intermediate relation R Z S is greater
than its contribution to the size of the output. Since

|�A“aipR Z S q| “ |�A“aiR| ¨ |�A“aiS |,

we can easily compute the left hand side of the above inequality from an appropriate index of the input
relations. Of course, we do not know |Q4rais| until after we have computed Q4. However, note that we
always have Q4rais Ñ S . Thus, we will use |S | as a proxy for |Q4rais|. The two choices come from the
following two ways of computing Q4rais:

(i) Compute �A“aipRq Z �A“aipT q and filter the results by probing against S or
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S “ {b0}ˆ {c0, . . . , cm}Y {b0, . . . , bm}ˆ {c0}

T “ {a0}ˆ {c0, . . . , cm}Y {a0, . . . , am}ˆ {c0}
C

A

B

Figure 2: Counter-example for join-project only plans for the triangles (left) and an illustration for m “ 4
(right). The pairs connected by the red/green/blue edges form the tuples in the relations R/S /T respectively.
Note that the in this case each relation has N “ 2m ` 1 “ 9 tuples and there are 3m ` 1 “ 13 output tuples
in Q4. Any pair-wise join however has size m2

` m “ 20.

(ii) Consider each tuple in pb, cq P S and check if pai, bq P R and pai, cq P T .

We pick option (i) when ai is light (low skew) and pick option (ii) when ai is heavy (high skew).

Example 1. Let us work through the motivating example from Figure 2. When we compute Q4ra0s, we
realize that a0 is heavy and hence, we use option (ii) above. Since here we just scan tuples in S , computing
Q4ra0s takes Opmq time. On the other hand, when we want to compute Q4rais for i • 1, we realize that these
ai’s are light and so we take option (i). In these cases |�A“aiR| “ |�A“aiT | “ 1 and hence the algorithm
runs in time Op1q. As there are m such light ai’s, the algorithm overall takes Opmq each on the heavy and
light vertices and thus Opmq “ OpNq overall which is best possible since the output size is ⇥pNq.

Algorithm and Analysis Algorithm 1 fully specifies how to compute Q4 using the above idea of two
choices. Given that the relations R, S , and T are already indexed appropriately, computing L in line 2 can
easily be done in time Opmin{|R|, |S |, |T |}q. Then, for each a P L, the body of the for loop from line 4 to
line 11 clearly takes time in the order of

min
�
|�A“aR| ¨ |�A“aT |, |S |

�
,

thanks to the power of two choices! Thus, the overall time spent by the algorithm is up to constant factors
X

aPL

min
�
|�A“aR| ¨ |�A“aT |, |S |

�
. (1)

We bound the sum above by using two inequalities. The first is the simple observation that for any
x, y • 0

minpx, yq §
p

xy. (2)

The second is the famous Cauchy-Schwarz inequality3:

X

aPL

xa ¨ ya §

sX

aPL

x2
a ¨

sX

aPL

y2
a, (3)

3The inner product of two vectors is at most the product of their length

If a_i is light

If a_i is heavy

Can prove to run in : O(N^1.5)



Algorithm 1 Computing Q4 with power of two choices.
Input: RpA, Bq, S pB,Cq,T pA,Cq in sorted order

1: Q4 – H

2: L – ⇡ApRq X ⇡ApT q

3: For each a P L do
4: If |�A“aR| ¨ |�A“aT | • |S | then
5: For each pb, cq P S do
6: If pa, bq P R and pa, cq P T then
7: Add pa, b, cq to Q4
8: else
9: For each b P ⇡Bp�A“aRq ^ c P ⇡Cp�A“aT q do

10: If pb, cq P S then
11: Add pa, b, cq to Q4
12: Return Q

where pxaqaPL and pyaqaPL are vectors of real values. Applying (2) to (1), we obtain
X

aPL

q
|�A“aR| ¨ |�A“aT | ¨ |S | (4)

“

q
|S | ¨

X

aPL

q
|�A“aR| ¨

q
|�A“aT | (5)

§

q
|S | ¨

sX

aPL

|�A“aR| ¨

sX

aPL

|�A“aT |

§

q
|S | ¨

s X

aP⇡ApRq
|�A“aR| ¨

s X

aP⇡ApTq
|�A“aT |

“

q
|S | ¨

q
|R| ¨

q
|T |.

If |R| “ |S | “ |T | “ N, then the above is OpN3{2
q as claimed in the introduction. We will generalize

the above algorithm beyond triangles to general join queries in Section 4. Before that, we present a second
algorithm that has exactly the same worst-case run-time and a similar analysis to illustrate the recursive
structure of the generic worst-case join algorithm described in Section 4.

2.3 Algorithm 2: Delaying the Computation

Now we present a second way to compute Q4rais that di↵erentiates between heavy and light values ai P A
in a di↵erent way. We don’t try to estimate the heaviness of ai right o↵ the bat. Algorithm 2 “looks deeper”
into what pair pb, cq can go along with ai in the output by computing c for each candidate b.

Algorithm 2 works as follows. By computing the intersection ⇡Bp�A“aiRq X ⇡BS , we only look at the
candidates b that can possibly participate with ai in the output pai, b, cq. Then, the candidate set for c is
⇡Cp�B“bS qX⇡Cp�A“aiT q.When ai is really skewed toward the heavy side, the candidates b and then c help
gradually reduce the skew toward building up the final solution Q4.

Example 2. Let us now see how delaying computation works on the bad example. As we have observed
in using the power of two choices, computing the intersection of two sorted sets takes time at most the
minimum of the two sizes.

R and T are in sorted order
Either build indexes, or do a variation of binary search



For each value a_i, compute valid values of B that join with it: 

For each value of b in the above result, compute valid values of C:

Can prove to run in : O(N) on our bad example
General worst-case complexity the same as the previous algorithm

Algorithm 1 Computing Q4 with power of two choices.
Input: RpA, Bq, S pB,Cq,T pA,Cq in sorted order

1: Q4 – H

2: L – ⇡ApRq X ⇡ApT q
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If |R| “ |S | “ |T | “ N, then the above is OpN3{2
q as claimed in the introduction. We will generalize

the above algorithm beyond triangles to general join queries in Section 4. Before that, we present a second
algorithm that has exactly the same worst-case run-time and a similar analysis to illustrate the recursive
structure of the generic worst-case join algorithm described in Section 4.

2.3 Algorithm 2: Delaying the Computation

Now we present a second way to compute Q4rais that di↵erentiates between heavy and light values ai P A
in a di↵erent way. We don’t try to estimate the heaviness of ai right o↵ the bat. Algorithm 2 “looks deeper”
into what pair pb, cq can go along with ai in the output by computing c for each candidate b.

Algorithm 2 works as follows. By computing the intersection ⇡Bp�A“aiRq X ⇡BS , we only look at the
candidates b that can possibly participate with ai in the output pai, b, cq. Then, the candidate set for c is
⇡Cp�B“bS qX⇡Cp�A“aiT q.When ai is really skewed toward the heavy side, the candidates b and then c help
gradually reduce the skew toward building up the final solution Q4.

Example 2. Let us now see how delaying computation works on the bad example. As we have observed
in using the power of two choices, computing the intersection of two sorted sets takes time at most the
minimum of the two sizes.
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If |R| “ |S | “ |T | “ N, then the above is OpN3{2
q as claimed in the introduction. We will generalize

the above algorithm beyond triangles to general join queries in Section 4. Before that, we present a second
algorithm that has exactly the same worst-case run-time and a similar analysis to illustrate the recursive
structure of the generic worst-case join algorithm described in Section 4.

2.3 Algorithm 2: Delaying the Computation

Now we present a second way to compute Q4rais that di↵erentiates between heavy and light values ai P A
in a di↵erent way. We don’t try to estimate the heaviness of ai right o↵ the bat. Algorithm 2 “looks deeper”
into what pair pb, cq can go along with ai in the output by computing c for each candidate b.

Algorithm 2 works as follows. By computing the intersection ⇡Bp�A“aiRq X ⇡BS , we only look at the
candidates b that can possibly participate with ai in the output pai, b, cq. Then, the candidate set for c is
⇡Cp�B“bS qX⇡Cp�A“aiT q.When ai is really skewed toward the heavy side, the candidates b and then c help
gradually reduce the skew toward building up the final solution Q4.

Example 2. Let us now see how delaying computation works on the bad example. As we have observed
in using the power of two choices, computing the intersection of two sorted sets takes time at most the
minimum of the two sizes.



Algorithm 2 Computing Q4 by delaying computation.
Input: RpA, Bq, S pB,Cq,T pA,Cq in sorted order

1: Q – H

2: LA – ⇡AR X ⇡AT
3: For each a P LA do
4: La

B – ⇡B�A“aR X ⇡BS
5: For each b P La

B do
6: La,b

C – ⇡C�B“bS X ⇡C�A“aT
7: For each c P La,b

C do
8: Add pa, b, cq to Q
9: Return Q

For a0, we consider all b P {b0, b1, . . . , bm}. When b “ b0, we have

⇡Cp�B“b0S q “ ⇡Cp�A“a0T q “ {c0, . . . , cm},

so we output the m ` 1 triangles in total time Opmq. For the pairs pa0, biq when i • 1, we have |�B“biS | “ 1
and hence we spend Op1q time on each such pair, for a total of Opmq overall.

Now consider ai for i • 1. In this case, b “ b0 is the only candidate. Further, for pai, b0q, we have
|�A“aiT | “ 1, so we can handle each such ai in Op1q time leading to an overall run time of Opmq. Thus on
this bad example Algorithm 2 runs in OpNq time.

Appendix B has the full analysis of Algorithm 2: its worst-case runtime is exactly the same as that of
Algorithm 1. What is remarkable is that both of these algorithms follow exactly the same recursive structure
and they are special cases of a generic worst-case optimal join algorithm.

3 A User’s Guide to the AGM bound

We now describe one way to generalize the bound of the output size of a join (mirroring the OpN3{2
q bound

we saw for the triangle query) and illustrate its use with a few examples.

3.1 AGM Bound

To state the AGM bound, we need some notation. The natural join problem can be defined as follows. We
are given a collection of m relations. Each relation is over a collection of attributes. We useV to denote the
set of attributes; let n “ |V|. The join query Q is modeled as a hypergraph H “ pV,Eq, where for each
hyperedge F P E there is a relation RF on attribute set F. Figure 3 shows several example join queries, their
associated hypergraphs, and illustrates the bounds below.

Atserias-Grohe-Marx [3] and Grohe-Marx [23] proved the following remarkable inequality, which shall
be referred to as the AGM’s inequality henceforth. Let x “ pxFqFPE be any point in the following polyhe-
dron: 8>><

>>:x |

X

F:vPF

xF • 1,@v P V, x • 0
9>>=
>>; .

Such a point x is called a fractional edge cover of the hypergraphH . Then, AGM’s inequality states that the
join size can be bounded by

|Q| “ | ZFPE RF | §

Y

FPE
|RF |

xF . (6)



q() :- R1(A, B, C), R2(B, C, D), R3(C, D, E)

A

B

C

D

E

Assign a weight to each of 
R1, R2, and R3
Say: 
R1 à 0.5
R2 à 0.5
R3 à 0.5

Total for B = 0.5 + 0.5 >= 1
B is “covered”

C (1.5), and D (1) are covered

A and E are not covered.

A set of weights is called “fractional edge cover” if all 
attributes are covered
Infinite number of fractional edge covers
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Figure 3: A handful of queries and their covers.

3.2 Example Bounds

We now illustrate the AGM bound on some specific join queries. We begin with the triangle query Q4. In
this case the corresponding hypergraph H is as in the left part of Figure 3. We consider two covers (which
are also marked in Figure 3). The first one is xR “ xT “ xS “

1
2 . This is a valid cover since the required

inequalities are satisfied for every vertex. For example, for vertex C, the two edges incident on it are S and
T and we have xS ` xT “ 1 • 1 as required. In this case the bound (6) states that

|Q4| §

q
|R| ¨ |S | ¨ |T |. (7)

Another valid cover is xR “ xT “ 1 and xS “ 0 (this cover is also marked in Figure 3). This is a valid cover,
e.g. since for C we have xS ` xT “ 1 • 1 and for vertex A, we have xR ` xT “ 2 • 1 as required. For this
cover, bound (6) gives

|Q4| § |R| ¨ |T |. (8)

These two bounds can be better in di↵erent scenarios. E.g. when |R| “ |S | “ |T | “ N, then (7) gives an
upper bound of N3{2 (which is the tight answer) while (8) gives a bound of N2, which is worse. However, if
|R| “ |T | “ 1 and |S | “ N, then (7) gives a bound of

p
N, which has a lot of slack; while (8) gives a bound

of 1, which is tight.
For another class of examples, consider the “clique” query. In this case there are n • 3 attributes and

m “

⇣
n
2

⌘
relations: one Ri, j for every i † j P rns: we will call this query Kn. Note that K3 is Q4. The middle

part of Figure 3 considers the K4 query. We highlight one cover: xRi, j “
1

n´1 for every i † j P rns. This is
a valid cover since every attribute is contained in n ´ 1 relations. Further, in this case (6) gives a bound of

n´1
qQ

i† j |Ri, j|, which simplifies to Nn{2 for the case when every relation has size N.
Finally, we consider the Loomis-Whitney LWn queries. In this case there are n attributes and there are

m “ n relations. In particular, for every i P rns there is a relation R´i “ Rrnsz{i}. Note that LW3 is Q4. See
the right of Figure 3 for the LW4 query. We highlight one cover: xRi, j “

1
n´1 for every i † j P rns. This is

a valid cover since every attribute is contained in n ´ 1 relations. Further, in this case (6) gives a bound of
n´1
pQ

i |R´i|, which simplifies to N1` 1
n´1 for the case when every relation has size N. Note that this bound

approaches N as n becomes larger.

Examples, with some fractional edge covers



Why do we care?

Say we have “l” relations in a query q, with sizes N_j, j = 1, …, l

Let u denote any fractional edge cover -- so u_j is the weight for relation with size N_j

Then, the size of the result is bounded by:
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3.2 Example Bounds

We now illustrate the AGM bound on some specific join queries. We begin with the triangle query Q4. In
this case the corresponding hypergraph H is as in the left part of Figure 3. We consider two covers (which
are also marked in Figure 3). The first one is xR “ xT “ xS “

1
2 . This is a valid cover since the required

inequalities are satisfied for every vertex. For example, for vertex C, the two edges incident on it are S and
T and we have xS ` xT “ 1 • 1 as required. In this case the bound (6) states that

|Q4| §

q
|R| ¨ |S | ¨ |T |. (7)

Another valid cover is xR “ xT “ 1 and xS “ 0 (this cover is also marked in Figure 3). This is a valid cover,
e.g. since for C we have xS ` xT “ 1 • 1 and for vertex A, we have xR ` xT “ 2 • 1 as required. For this
cover, bound (6) gives

|Q4| § |R| ¨ |T |. (8)

These two bounds can be better in di↵erent scenarios. E.g. when |R| “ |S | “ |T | “ N, then (7) gives an
upper bound of N3{2 (which is the tight answer) while (8) gives a bound of N2, which is worse. However, if
|R| “ |T | “ 1 and |S | “ N, then (7) gives a bound of

p
N, which has a lot of slack; while (8) gives a bound

of 1, which is tight.
For another class of examples, consider the “clique” query. In this case there are n • 3 attributes and

m “

⇣
n
2

⌘
relations: one Ri, j for every i † j P rns: we will call this query Kn. Note that K3 is Q4. The middle

part of Figure 3 considers the K4 query. We highlight one cover: xRi, j “
1

n´1 for every i † j P rns. This is
a valid cover since every attribute is contained in n ´ 1 relations. Further, in this case (6) gives a bound of

n´1
qQ

i† j |Ri, j|, which simplifies to Nn{2 for the case when every relation has size N.
Finally, we consider the Loomis-Whitney LWn queries. In this case there are n attributes and there are

m “ n relations. In particular, for every i P rns there is a relation R´i “ Rrnsz{i}. Note that LW3 is Q4. See
the right of Figure 3 for the LW4 query. We highlight one cover: xRi, j “

1
n´1 for every i † j P rns. This is

a valid cover since every attribute is contained in n ´ 1 relations. Further, in this case (6) gives a bound of
n´1
pQ

i |R´i|, which simplifies to N1` 1
n´1 for the case when every relation has size N. Note that this bound

approaches N as n becomes larger.

Using the first cover, result size bounded by:

If |R| = |S| = |T|, then the bound is N^1.5 -- which is tight

But if |R| = |T| = 1, and |S| = N, then the bound is sqrt(N)
-- Far from tight -- there can only be 1 triangle
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3.2 Example Bounds

We now illustrate the AGM bound on some specific join queries. We begin with the triangle query Q4. In
this case the corresponding hypergraph H is as in the left part of Figure 3. We consider two covers (which
are also marked in Figure 3). The first one is xR “ xT “ xS “

1
2 . This is a valid cover since the required

inequalities are satisfied for every vertex. For example, for vertex C, the two edges incident on it are S and
T and we have xS ` xT “ 1 • 1 as required. In this case the bound (6) states that

|Q4| §

q
|R| ¨ |S | ¨ |T |. (7)

Another valid cover is xR “ xT “ 1 and xS “ 0 (this cover is also marked in Figure 3). This is a valid cover,
e.g. since for C we have xS ` xT “ 1 • 1 and for vertex A, we have xR ` xT “ 2 • 1 as required. For this
cover, bound (6) gives

|Q4| § |R| ¨ |T |. (8)

These two bounds can be better in di↵erent scenarios. E.g. when |R| “ |S | “ |T | “ N, then (7) gives an
upper bound of N3{2 (which is the tight answer) while (8) gives a bound of N2, which is worse. However, if
|R| “ |T | “ 1 and |S | “ N, then (7) gives a bound of

p
N, which has a lot of slack; while (8) gives a bound

of 1, which is tight.
For another class of examples, consider the “clique” query. In this case there are n • 3 attributes and

m “

⇣
n
2

⌘
relations: one Ri, j for every i † j P rns: we will call this query Kn. Note that K3 is Q4. The middle

part of Figure 3 considers the K4 query. We highlight one cover: xRi, j “
1

n´1 for every i † j P rns. This is
a valid cover since every attribute is contained in n ´ 1 relations. Further, in this case (6) gives a bound of

n´1
qQ

i† j |Ri, j|, which simplifies to Nn{2 for the case when every relation has size N.
Finally, we consider the Loomis-Whitney LWn queries. In this case there are n attributes and there are

m “ n relations. In particular, for every i P rns there is a relation R´i “ Rrnsz{i}. Note that LW3 is Q4. See
the right of Figure 3 for the LW4 query. We highlight one cover: xRi, j “

1
n´1 for every i † j P rns. This is

a valid cover since every attribute is contained in n ´ 1 relations. Further, in this case (6) gives a bound of
n´1
pQ

i |R´i|, which simplifies to N1` 1
n´1 for the case when every relation has size N. Note that this bound

approaches N as n becomes larger.

Using the second cover, result size bounded by:

If |R| = |S| = |T|, then the bound is N^2 -- not great

But if |R| = |T| = 1, and |S| = N, then the bound is 1
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3.2 Example Bounds

We now illustrate the AGM bound on some specific join queries. We begin with the triangle query Q4. In
this case the corresponding hypergraph H is as in the left part of Figure 3. We consider two covers (which
are also marked in Figure 3). The first one is xR “ xT “ xS “

1
2 . This is a valid cover since the required

inequalities are satisfied for every vertex. For example, for vertex C, the two edges incident on it are S and
T and we have xS ` xT “ 1 • 1 as required. In this case the bound (6) states that

|Q4| §

q
|R| ¨ |S | ¨ |T |. (7)

Another valid cover is xR “ xT “ 1 and xS “ 0 (this cover is also marked in Figure 3). This is a valid cover,
e.g. since for C we have xS ` xT “ 1 • 1 and for vertex A, we have xR ` xT “ 2 • 1 as required. For this
cover, bound (6) gives

|Q4| § |R| ¨ |T |. (8)

These two bounds can be better in di↵erent scenarios. E.g. when |R| “ |S | “ |T | “ N, then (7) gives an
upper bound of N3{2 (which is the tight answer) while (8) gives a bound of N2, which is worse. However, if
|R| “ |T | “ 1 and |S | “ N, then (7) gives a bound of

p
N, which has a lot of slack; while (8) gives a bound

of 1, which is tight.
For another class of examples, consider the “clique” query. In this case there are n • 3 attributes and

m “

⇣
n
2

⌘
relations: one Ri, j for every i † j P rns: we will call this query Kn. Note that K3 is Q4. The middle

part of Figure 3 considers the K4 query. We highlight one cover: xRi, j “
1

n´1 for every i † j P rns. This is
a valid cover since every attribute is contained in n ´ 1 relations. Further, in this case (6) gives a bound of

n´1
qQ

i† j |Ri, j|, which simplifies to Nn{2 for the case when every relation has size N.
Finally, we consider the Loomis-Whitney LWn queries. In this case there are n attributes and there are

m “ n relations. In particular, for every i P rns there is a relation R´i “ Rrnsz{i}. Note that LW3 is Q4. See
the right of Figure 3 for the LW4 query. We highlight one cover: xRi, j “

1
n´1 for every i † j P rns. This is

a valid cover since every attribute is contained in n ´ 1 relations. Further, in this case (6) gives a bound of
n´1
pQ

i |R´i|, which simplifies to N1` 1
n´1 for the case when every relation has size N. Note that this bound

approaches N as n becomes larger.



Process each attribute (variable)
at a time

Find all relations that contain
that attribute

Do an intersection across all the 
relations for that attribute

For each value that is present
for v_i in all of R_join:
- Select from each relation only 

those where v_i = k_i
- Recurse with those relations 

plus the rest of the relations



} Quite a bit of work on this topic in the last 10 years

} Several implementations
◦ Often in the context of graph querying

◦ Usually require significant pre-computations and specialized indexes

� The “intersection” step in the previous slide is a key one

◦ Some recent work (VLDB 2020) on a more practical implementation using 
hash indexes instead of sort-based tries

} Still not clear when to use them and when to use binary joins

} Open theoretical issues

} What about outerjoins, etc?



} Part 1 Slides
◦ Query evaluation techniques for large databases, Skew Avoidance, Query 

compilation/vectorization

◦ Query Optimization: Overview, How good are the query optimizers, 
really?, Reordering for Outerjoins, Query Rewriting

} Adaptive Query Processing

} Worst-case Optimal Join Processing

} Froid: UDFs and Databases
◦ Background

◦ Froid



} Supported by database systems since late 80s



} Supported by database systems since late 80s

} Three main benefits:
◦ Modular code

◦ Easier to write some code in an imperative language (e.g., ML)

◦ Fewer round-trips between application and database

� Significant performance issues if done repeatedly (e.g., for every order)
Each of these is a 
separate call from the 
application to the 
server



} Supported by database systems since late 80s

} Three main benefits:
◦ Modular code

◦ Easier to write some code in an imperative language (e.g., ML)

◦ Fewer round-trips between application and database

� Significant performance issues if done repeatedly (e.g., for every order)

} Stonebraker notes the latter as the primary reason for adoption 
of OR features (”what comes around goes around” paper)
◦ “Put differently, the major contribution of the OR efforts turned out to be 

a better mechanism for stored procedures and user-defined access 
methods.”

} Also called “stored procedures”, with some minor differences 
across systems



} User-defined functions
◦ Scalar (return a single value) or Table Functions (return a relation)

◦ Can be used in queries (WHERE/SELECT/FROM, etc), depending on scalar 
or table function

◦ UDFs typically not allowed to make changes to the database

} Stored procedures
◦ Similar, but can only be executed using a CALL or EXECUTE command

◦ Usually mutate the state of the database

} Triggers
◦ Something that happens because of an event (e.g., an insert in orders 

results in an insert in another table)

◦ Similar to stored procedures for the actual action

Procedural Extensions of SQL; VLDB 2021 



} Optimization
◦ UDFs can be very expensive -- coverage() does image analysis of some 

form

◦ Cost of UDFs is hard to estimate -- may depend on the inputs

◦ Selectivity of UDFs is hard to estimate -- statistics don’t really help

Example from: “Predicate Migration; Hellerstein and 
Stonebraker; SIGMOD 1993



} Optimization
◦ UDFs can be very expensive -- coverage() does image analysis of some 

form

◦ Cost of UDFs is hard to estimate -- may depend on the inputs

◦ Selectivity of UDFs is hard to estimate -- statistics don’t really help

} UDFs cannot be parallelized easily 
◦ May result in single-threaded execution

} Forces tuple-at-a-time execution
◦ Hard to use any of subquery decorrelation techniques 

} Often interpreted execution

} Well-known issues resulting in bad performance in many 
practical scenarios



} Part 1 Slides
◦ Query evaluation techniques for large databases, Skew Avoidance, Query 

compilation/vectorization

◦ Query Optimization: Overview, How good are the query optimizers, 
really?, Reordering for Outerjoins, Query Rewriting

} Adaptive Query Processing

} Worst-case Optimal Join Processing

} Froid: UDFs and Databases
◦ Background

◦ Froid



} SQL Server supports: UDFs (cannot modify state), and Stored 
Procedures (can modify state)

achieves this goal using a novel technique to automatically
convert imperative programs into equivalent relational alge-
braic forms whenever possible. Froid models blocks of im-
perative code as relational expressions, and systematically
combines them into a single expression using the Apply [14]
operator, thereby enabling the query optimizer to choose
e�cient set-oriented, parallel query plans.

Further, we demonstrate how Froid’s relational algebraic
transformations can be used to arrive at the same result
as that of applying compiler optimizations (such as dead
code elimination, program slicing and constant folding) to
imperative code. Although Froid’s current focus is T-SQL
UDFs, the underlying technique is language-agnostic, and
therefore extending it to other imperative languages is quite
straightforward, as we show in this paper.

There have been some recent works that aim to convert
fragments of database application code into SQL in order
to improve performance [12, 4]. However, to the best of our
knowledge, Froid is the first framework that can optimize
imperative programs in a relational database by transform-
ing them into relational expressions. While Froid is built
into Microsoft SQL Server, its underlying techniques can be
integrated into any RDBMS.

We make the following contributions in this paper.

1. We describe the unique challenges in optimization of
imperative code executing in relational databases, and
analyze the reasons for their poor performance.

2. We describe the novel techniques underlying Froid, an
extensible framework to optimize UDFs in Microsoft
SQL Server. We show how Froid integrates with the
query processing lifecycle and leverages existing sub-
query optimization techniques to transform ine�cient,
iterative, serial UDF execution strategies into highly
e�cient, set-oriented, parallel plans.

3. We show how several compiler optimizations such as
dead code elimination, dynamic slicing, constant prop-
agation and folding can be expressed as relational al-
gebraic transformations and simplifications that arrive
at the same end result. Thereby, Froid brings these
additional benefits to UDFs with no extra e↵ort.

4. We discuss the design and implementation of Froid,
and present an experimental evaluation on several real
world customer workloads, showing significant benefits
in performance and resource utilization.

The rest of the paper is organized as follows. Section 2
gives the background. Sections 3, 4, 5 and 6 describe Froid
and its techniques. Design details are discussed in Section 7
followed by an evaluation in Section 8. We discuss related
work in Section 9 and conclude in Section 10.

2. BACKGROUND
In this section, we provide some background regarding

the way imperative code is currently evaluated in Microsoft
SQL Server and analyze the reasons for their poor perfor-
mance. SQL Server primarily supports imperative code in
two forms: UDFs and Stored Procedures (SPs). UDFs can-
not modify the database state whereas SPs can. UDFs and
SPs can be implemented in either T-SQL or Common Lan-
guage Runtime (CLR). T-SQL expands on the SQL stan-
dard to include imperative constructs, various utility func-
tions, etc. CLR integration allows UDFs and SPs to be

Figure 1: Example T-SQL User defined functions

written in any .NET framework language such as C# [5].
UDFs can be further classified into two types. Functions
that return a single value are referred to as scalar UDFs,
and those that return a set of rows are referred to as Table
Valued Functions (TVFs). SQL Server also supports inline
TVFs, which are single-statement TVFs analogous to pa-
rameterized views [13]. In this paper we focus primarily on
Scalar T-SQL UDFs. Extensions to support other impera-
tive languages are discussed in Section 7.3.

2.1 Scalar UDF Example
In SQL Server, UDFs are created using the CREATE

FUNCTION statement [13] as shown in Figure 1. The func-
tion total price accepts a customer key, and returns the total
price of all the orders made by that customer. It computes
the price in the preferred currency of the customer by look-
ing up the currency code from the customer prefs table and
performs currency conversion if necessary. It calls another
UDF xchg rate, that retrieves the exchange rate between the
two currencies. Finally it converts the price to a string, ap-
pends the currency code and returns it. Consider a simple
query that invokes this UDF.

select c name, dbo.total price(c custkey)

from customer ;
For each customer, the above query displays the name,

and the total price of all orders made by that customer. We
will use this simple query and the UDFs in Figure 1 as an
example to illustrate our techniques in this paper.

2.2 UDF Evaluation in SQL Server
We now describe the life cycle of an SQL query that in-

cludes a UDF. At the outset we note that this is a simplified
description with a focus on how UDFs are evaluated cur-
rently. We refer the reader to [8, 2, 14] for details.

Parsing, Binding and Normalization: The query first
goes through syntactic validation, and is parsed into a tree
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} Steps
◦ Parsing, binding, normalization: scalar UDFs bound as a UDF operator, but 

the definition not analyzed

◦ Cost-based optimization: Query plans (including for each statement in a 
UDF) are cached

◦ Execution: For each tuple, scalar evaluation sub-system is called

� May make calls back to the relational execution engine

� Compilation for an UDF happens on the first call

} Drawbacks
◦ Iterative invocations (one at a time) -- leads to repeated context switches

◦ No costing, Interpreted statement-by-statement (with caching of plans)

◦ No intra-query parallelism (as of 2017) 



} Inline the UDFs by analyzing the code



} Makes use of APPLY Operator
◦ Basically a “flatmap”

◦ For each tuple r of R, combine it with each output of E(r) to generate new 
tuples

◦ The “join” can be: cross product, left outer-join, left-semijion, or left-
antijoin

} SQL Server already uses these extensively for subquery 
decorrelation (as we saw earlier)

Figure 3: Overview of the Froid framework

Given these observations, the intuition behind Froid can
be succintly stated as follows. If the entire body of an imper-

ative UDF can be expressed as a single relational expression

R, then any query that invokes this UDF can be transformed

into a query with R as a nested sub-query in place of the

UDF. We term this semantics-preserving transformation as
unnesting or inlining of the UDF into the calling query.

Once we perform this transformation, we can leverage ex-
isting sub-query optimization techniques to get better plans
for queries with UDFs. This transformation forms the crux
of Froid. Note that although we use the term inlining to de-
note this transformation, it is fundamentally di↵erent com-
pared to inlining in imperative programming languages.

3.2 The APPLY operator
Froid makes use of the Apply operator while building a

relational expression for UDFs. Specifically, it is used to
combine multiple relational expressions into a single expres-
sion. The Apply operator (A) was originally designed to
model correlated execution of sub-queries algebraically in
SQL Server [14, 10]. It accepts a relational input R and
a parameterized relational expression E(r). For each row
r 2 R, it evaluates E(r) and emits tuples as a join between
r and E(r). More formally, it is defined as follows [14]:

R A⌦ E =
[

r2R

({r}⌦ E(r))

where ⌦, known as the join type, is either cross product,
left outer-join, left semijoin or left antijoin. SQL Server’s
query optimizer has a suite of transformation rules for sub-
query decorrelation, which remove the Apply operator and
enable the use of set-oriented relational operations whenever
possible. Details with examples can be found in [14, 10, 31].

3.3 Overview of Approach
For a UDF with a single RETURN statement in its body,

such as the function xchg rate in Figure 1, the transforma-
tion is straightforward. The body of such a UDF is already
a single relational expression, and therefore it can be substi-
tuted easily into the calling context, like view substitution.

Expressing the body of a multi-statement UDF (such as
the function total price in Figure 1) as a single relational ex-
pression is a non-trivial task. Multi-statement UDFs typi-
cally use imperative constructs such as variable declarations,

assignments, conditional branching, and loops. Froid mod-
els individual imperative constructs as relational expressions
and systematically combines them to form one expression.
Figure 3 depicts the high-level approach of Froid, consist-

ing of two phases: UDF algebrization followed by substi-
tution. As a part of binding, the query tree is traversed
and each node is bound, as described in Section 2.2. Dur-
ing binding, if a UDF operator is encountered, the control
is transferred to Froid, and UDF algebrization is initiated.
UDF algebrization involves parsing the statements of the
UDF and constructing an equivalent relational expression
for the entire UDF body (described in Section 4). This re-
sulting expression is then substituted, or embedded in the
query tree of the calling query in place of the UDF operator
(described in Section 5). This query tree with the substi-
tuted UDF expression is bound using the regular binding
process. If references to other (nested) UDF operators are
encountered, the same process is repeated. This transfor-
mation finally results in a bound query tree, which forms
the input to normalization and optimization.

3.4 Supported UDFs and queries
Froid currently supports the following imperative con-

structs in scalar UDFs.

• DECLARE, SET:Variable declaration and assignments.
• SELECT: SQL query with multiple variable assignments.
• IF/ELSE: Branching with arbitrary levels of nesting.
• RETURN: Single or multiple return statements.
• UDF: Nested/recursive function calls.
• Others: Relational operations such as EXISTS, ISNULL.

Table 1 (column 1) shows the supported constructs more
formally. In Table 1, @var and @var1 denote variable names,
expr is any valid T-SQL expression including a scalar sub-
query; prj expr represents a projected column/expression;
sql expr is any SQL query; pred expr is a boolean expres-
sion; t stmt and f stmt are T-SQL statements [33].
Froid’s techniques do not impose any limitations on the

size or depths of UDFs and complexity of queries that invoke
them. The only precondition for our transformations is that
the UDF has to use the supported constructs. However, in
practice, there are certain special cases where we partially
restrict the application of our transformations; they are dis-
cussed in Section 7.2.

4. UDF ALGEBRIZATION
We now describe the first phase of Froid in detail. The

goal here is to build a single relational expression which is
semantically equivalent to the UDF. This involves trans-
forming imperative constructs into equivalent relational ex-
pressions and combining them in a way that strictly adheres
to the procedural intent of the UDF. UDF algebrization con-
sists of the following three steps.

4.1 Construction of Regions
First, each statement in the UDF is parsed and the body

of the UDF is divided into a hierarchy of program regions.
Regions represent structured fragments of programs such as
basic blocks, if-else blocks and loops [17]. Basic blocks are
referred to as sequential regions, if-else blocks are referred
to as conditional regions, and loops are referred to as loop
regions. Regions by definition contain other regions; the
UDF as a whole is also a region.

435



} Supports imperative constructs in scalar UDFs

Table 1: Relational algebraic expressions for imperative statements (using standard T-SQL notation from [33])

Imperative Statement (T-SQL) Relational expression (T-SQL)

DECLARE {@var data type [= expr]}[, . . . n]; SELECT {expr|null AS var}[, . . . n];
SET {@var = expr}[, . . . n]; SELECT {expr AS var}[, . . . n];

SELECT {@var1 = prj expr1}[, . . . n] FROM sql expr; {SELECT prj expr1 AS var1 FROM sql expr}; [, . . . n]

IF (pred expr) {t stmt; [. . . n]} ELSE {f stmt; [, . . . n]} SELECT CASE WHEN pred expr THEN 1 ELSE 0 END AS pred val;

{SELECT CASE WHEN pred val = 1 THEN t stmt ELSE f stmt; }[. . . n]
RETURN expr; SELECT expr AS returnV al;

Function total price of Figure 1 is a sequential region R0
(lines 1-9). It is in turn composed of three consecutive sub-
regions denoted R1, R2 and R3. R1 is a sequential region
(lines 1-5), R2 is a conditional region (lines 6-8), and R3 is a
sequential region (line 9) as indicated in Figure 1. Regions
can be constructed in a single pass over the UDF body.

4.2 Relational Expressions for Regions
Once regions are constructed, the next step is to construct

a relational expression for each region.

4.2.1 Imperative statements to relational expressions
Froid first constructs relational expressions for individual

imperative statements, and then combines them to form a
single expression for a region. These constructions make use
of the ConstantScan and ComputeScalar operators in SQL
Server [20]. The ConstantScan operator introduces one row
with no column. A ComputeScalar, typically used after a
ConstantScan, adds computed columns to the row.

Variable declarations and assignments: The T-SQL
constructs DECLARE, SET and SELECT fall under this
category. These statements are converted into relational
equivalents by modeling them as projections of computed
columns in relational algebra as shown in Table 1 (rows 1,
2, 3). For example, consider line 3 of Figure 1:

set @default currency = ‘USD’ ;
This is represented in relational form as

select ‘USD’ as default currency.
Observe that program variables are transformed into at-

tributes projected by the relational expression. The RHS
of the assignment could be any scalar expression including
a scalar valued SQL query (when the SELECT construct is
used). In this case, we construct a ScalarSubQuery instead
of ComputeScalar. For example, the assignment statement
in line 4 of Figure 1 is represented in relational form as

select( select sum(o totalprice) from orders

where o custkey = @key) as price .
Variable declarations without initial assignments are con-

sidered as assignments to null or the default values of the
corresponding data types. Note that the DECLARE and
SELECT constructs can assign to one or more variables in a
single statement, but Froid handles them as multiple assign-
ment statements. Modeling them as multiple assignment
statements might lead to RHS expressions being repeated.
However, common sub-expression elimination can remove
such duplication in most cases.

Conditional statements: These are specified using the
IF-ELSE T-SQL construct, consisting of a predicate, a true

block, and a false block. This can be algebrized using SQL
Server’s CASE construct as given in Table 1 (row 4). The
switch-case construct is also internally expressed as IF-ELSE,
and behaves similarly. Consider the following example:

if(@total > 1000)

set @val = ‘high’;

else

set @val = ‘low’;

The above statement is represented in relational form as
select( case when total > 1000 then ‘high’

else ‘low’ end ) as val.
This approach works for simple cases. For complex and

nested conditional blocks, this approach may lead to redun-
dant computations of the predicate thereby violating the
procedural intent of the UDF. Re-evaluating a predicate
multiple times not only goes against our principle of ad-
herence to intent, but it might also hurt performance if the
predicate is expensive to evaluate. Froid addresses this by
assigning the value of the predicate evaluation to an implicit
boolean variable (shown as pred val in row 4 of Table 1).
Subsequently, whenever necessary, it uses the CASE expres-
sion to check the value of this implicit boolean variable.

Return statements: Return statements denote the end
of function execution and provide the value that needs to
be returned from the function. Note that a UDF may have
multiple return statements, one per code path. Froid mod-
els return statements as assignments to an implicit variable
called returnVal (shown in row 5 of Table 1) followed by an
unconditional jump to the end of the UDF. This uncondi-
tional jump means that no statement should be evaluated
once the returnVal has been assigned a valid return value
(note that null could also be a valid return value). Froid
implicitly declares the variable returnVal at the first occur-
rance of a return statement. Any subsequent occurrance of
a return statement is treated as an assignment to returnVal.
Unconditional jumps are modeled using the probe and

pass-through functionality of the Apply operator [10]. The
probe is used to denote whether returnVal has been assigned,
and the pass-through predicate ensures that subsequent op-
erations are executed only if it has not yet been assigned.
Although unconditional jumps could be modeled without

using probe and pass-through, there are disadvantages to
that approach. First, it increases the size and complexity
of the resulting expression. This is because all successor re-
gions of a return statement would need to be wrapped within
a case expression. Second, the introduction of case expres-
sions hinders the applicability of scalar expression folding
and simplification. As we shall describe in Section 6, Froid
brings optimizations such as constant folding and constant
propagation to UDFs. The applicability of these optimiza-
tions would be restricted by the use of case expressions to
model unconditional jumps.

Function invocations: UDFs may invoke other functions,
and may also be recursive. When a UDF invocation state-
ment is encountered, Froid simply retains the UDF operator
as the expression for that UDF. As part of binding, Froid is
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} Construction of regions
◦ Basic sequential regions, condition regions (if-else), and loop regions 

(loops)

◦ Hierarchical (regions can contain regions)

} Relational expressions for each region
◦ Variable declarations/assignments

Table 1: Relational algebraic expressions for imperative statements (using standard T-SQL notation from [33])

Imperative Statement (T-SQL) Relational expression (T-SQL)

DECLARE {@var data type [= expr]}[, . . . n]; SELECT {expr|null AS var}[, . . . n];
SET {@var = expr}[, . . . n]; SELECT {expr AS var}[, . . . n];

SELECT {@var1 = prj expr1}[, . . . n] FROM sql expr; {SELECT prj expr1 AS var1 FROM sql expr}; [, . . . n]

IF (pred expr) {t stmt; [. . . n]} ELSE {f stmt; [, . . . n]} SELECT CASE WHEN pred expr THEN 1 ELSE 0 END AS pred val;

{SELECT CASE WHEN pred val = 1 THEN t stmt ELSE f stmt; }[. . . n]
RETURN expr; SELECT expr AS returnV al;

Function total price of Figure 1 is a sequential region R0
(lines 1-9). It is in turn composed of three consecutive sub-
regions denoted R1, R2 and R3. R1 is a sequential region
(lines 1-5), R2 is a conditional region (lines 6-8), and R3 is a
sequential region (line 9) as indicated in Figure 1. Regions
can be constructed in a single pass over the UDF body.

4.2 Relational Expressions for Regions
Once regions are constructed, the next step is to construct

a relational expression for each region.

4.2.1 Imperative statements to relational expressions
Froid first constructs relational expressions for individual

imperative statements, and then combines them to form a
single expression for a region. These constructions make use
of the ConstantScan and ComputeScalar operators in SQL
Server [20]. The ConstantScan operator introduces one row
with no column. A ComputeScalar, typically used after a
ConstantScan, adds computed columns to the row.

Variable declarations and assignments: The T-SQL
constructs DECLARE, SET and SELECT fall under this
category. These statements are converted into relational
equivalents by modeling them as projections of computed
columns in relational algebra as shown in Table 1 (rows 1,
2, 3). For example, consider line 3 of Figure 1:

set @default currency = ‘USD’ ;
This is represented in relational form as

select ‘USD’ as default currency.
Observe that program variables are transformed into at-

tributes projected by the relational expression. The RHS
of the assignment could be any scalar expression including
a scalar valued SQL query (when the SELECT construct is
used). In this case, we construct a ScalarSubQuery instead
of ComputeScalar. For example, the assignment statement
in line 4 of Figure 1 is represented in relational form as

select( select sum(o totalprice) from orders

where o custkey = @key) as price .
Variable declarations without initial assignments are con-

sidered as assignments to null or the default values of the
corresponding data types. Note that the DECLARE and
SELECT constructs can assign to one or more variables in a
single statement, but Froid handles them as multiple assign-
ment statements. Modeling them as multiple assignment
statements might lead to RHS expressions being repeated.
However, common sub-expression elimination can remove
such duplication in most cases.

Conditional statements: These are specified using the
IF-ELSE T-SQL construct, consisting of a predicate, a true

block, and a false block. This can be algebrized using SQL
Server’s CASE construct as given in Table 1 (row 4). The
switch-case construct is also internally expressed as IF-ELSE,
and behaves similarly. Consider the following example:

if(@total > 1000)

set @val = ‘high’;

else

set @val = ‘low’;

The above statement is represented in relational form as
select( case when total > 1000 then ‘high’

else ‘low’ end ) as val.
This approach works for simple cases. For complex and

nested conditional blocks, this approach may lead to redun-
dant computations of the predicate thereby violating the
procedural intent of the UDF. Re-evaluating a predicate
multiple times not only goes against our principle of ad-
herence to intent, but it might also hurt performance if the
predicate is expensive to evaluate. Froid addresses this by
assigning the value of the predicate evaluation to an implicit
boolean variable (shown as pred val in row 4 of Table 1).
Subsequently, whenever necessary, it uses the CASE expres-
sion to check the value of this implicit boolean variable.

Return statements: Return statements denote the end
of function execution and provide the value that needs to
be returned from the function. Note that a UDF may have
multiple return statements, one per code path. Froid mod-
els return statements as assignments to an implicit variable
called returnVal (shown in row 5 of Table 1) followed by an
unconditional jump to the end of the UDF. This uncondi-
tional jump means that no statement should be evaluated
once the returnVal has been assigned a valid return value
(note that null could also be a valid return value). Froid
implicitly declares the variable returnVal at the first occur-
rance of a return statement. Any subsequent occurrance of
a return statement is treated as an assignment to returnVal.
Unconditional jumps are modeled using the probe and

pass-through functionality of the Apply operator [10]. The
probe is used to denote whether returnVal has been assigned,
and the pass-through predicate ensures that subsequent op-
erations are executed only if it has not yet been assigned.
Although unconditional jumps could be modeled without

using probe and pass-through, there are disadvantages to
that approach. First, it increases the size and complexity
of the resulting expression. This is because all successor re-
gions of a return statement would need to be wrapped within
a case expression. Second, the introduction of case expres-
sions hinders the applicability of scalar expression folding
and simplification. As we shall describe in Section 6, Froid
brings optimizations such as constant folding and constant
propagation to UDFs. The applicability of these optimiza-
tions would be restricted by the use of case expressions to
model unconditional jumps.

Function invocations: UDFs may invoke other functions,
and may also be recursive. When a UDF invocation state-
ment is encountered, Froid simply retains the UDF operator
as the expression for that UDF. As part of binding, Froid is
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Table 1: Relational algebraic expressions for imperative statements (using standard T-SQL notation from [33])

Imperative Statement (T-SQL) Relational expression (T-SQL)

DECLARE {@var data type [= expr]}[, . . . n]; SELECT {expr|null AS var}[, . . . n];
SET {@var = expr}[, . . . n]; SELECT {expr AS var}[, . . . n];

SELECT {@var1 = prj expr1}[, . . . n] FROM sql expr; {SELECT prj expr1 AS var1 FROM sql expr}; [, . . . n]

IF (pred expr) {t stmt; [. . . n]} ELSE {f stmt; [, . . . n]} SELECT CASE WHEN pred expr THEN 1 ELSE 0 END AS pred val;

{SELECT CASE WHEN pred val = 1 THEN t stmt ELSE f stmt; }[. . . n]
RETURN expr; SELECT expr AS returnV al;

Function total price of Figure 1 is a sequential region R0
(lines 1-9). It is in turn composed of three consecutive sub-
regions denoted R1, R2 and R3. R1 is a sequential region
(lines 1-5), R2 is a conditional region (lines 6-8), and R3 is a
sequential region (line 9) as indicated in Figure 1. Regions
can be constructed in a single pass over the UDF body.

4.2 Relational Expressions for Regions
Once regions are constructed, the next step is to construct

a relational expression for each region.

4.2.1 Imperative statements to relational expressions
Froid first constructs relational expressions for individual

imperative statements, and then combines them to form a
single expression for a region. These constructions make use
of the ConstantScan and ComputeScalar operators in SQL
Server [20]. The ConstantScan operator introduces one row
with no column. A ComputeScalar, typically used after a
ConstantScan, adds computed columns to the row.

Variable declarations and assignments: The T-SQL
constructs DECLARE, SET and SELECT fall under this
category. These statements are converted into relational
equivalents by modeling them as projections of computed
columns in relational algebra as shown in Table 1 (rows 1,
2, 3). For example, consider line 3 of Figure 1:

set @default currency = ‘USD’ ;
This is represented in relational form as

select ‘USD’ as default currency.
Observe that program variables are transformed into at-

tributes projected by the relational expression. The RHS
of the assignment could be any scalar expression including
a scalar valued SQL query (when the SELECT construct is
used). In this case, we construct a ScalarSubQuery instead
of ComputeScalar. For example, the assignment statement
in line 4 of Figure 1 is represented in relational form as

select( select sum(o totalprice) from orders

where o custkey = @key) as price .
Variable declarations without initial assignments are con-

sidered as assignments to null or the default values of the
corresponding data types. Note that the DECLARE and
SELECT constructs can assign to one or more variables in a
single statement, but Froid handles them as multiple assign-
ment statements. Modeling them as multiple assignment
statements might lead to RHS expressions being repeated.
However, common sub-expression elimination can remove
such duplication in most cases.

Conditional statements: These are specified using the
IF-ELSE T-SQL construct, consisting of a predicate, a true

block, and a false block. This can be algebrized using SQL
Server’s CASE construct as given in Table 1 (row 4). The
switch-case construct is also internally expressed as IF-ELSE,
and behaves similarly. Consider the following example:

if(@total > 1000)

set @val = ‘high’;

else

set @val = ‘low’;

The above statement is represented in relational form as
select( case when total > 1000 then ‘high’

else ‘low’ end ) as val.
This approach works for simple cases. For complex and

nested conditional blocks, this approach may lead to redun-
dant computations of the predicate thereby violating the
procedural intent of the UDF. Re-evaluating a predicate
multiple times not only goes against our principle of ad-
herence to intent, but it might also hurt performance if the
predicate is expensive to evaluate. Froid addresses this by
assigning the value of the predicate evaluation to an implicit
boolean variable (shown as pred val in row 4 of Table 1).
Subsequently, whenever necessary, it uses the CASE expres-
sion to check the value of this implicit boolean variable.

Return statements: Return statements denote the end
of function execution and provide the value that needs to
be returned from the function. Note that a UDF may have
multiple return statements, one per code path. Froid mod-
els return statements as assignments to an implicit variable
called returnVal (shown in row 5 of Table 1) followed by an
unconditional jump to the end of the UDF. This uncondi-
tional jump means that no statement should be evaluated
once the returnVal has been assigned a valid return value
(note that null could also be a valid return value). Froid
implicitly declares the variable returnVal at the first occur-
rance of a return statement. Any subsequent occurrance of
a return statement is treated as an assignment to returnVal.
Unconditional jumps are modeled using the probe and

pass-through functionality of the Apply operator [10]. The
probe is used to denote whether returnVal has been assigned,
and the pass-through predicate ensures that subsequent op-
erations are executed only if it has not yet been assigned.
Although unconditional jumps could be modeled without

using probe and pass-through, there are disadvantages to
that approach. First, it increases the size and complexity
of the resulting expression. This is because all successor re-
gions of a return statement would need to be wrapped within
a case expression. Second, the introduction of case expres-
sions hinders the applicability of scalar expression folding
and simplification. As we shall describe in Section 6, Froid
brings optimizations such as constant folding and constant
propagation to UDFs. The applicability of these optimiza-
tions would be restricted by the use of case expressions to
model unconditional jumps.

Function invocations: UDFs may invoke other functions,
and may also be recursive. When a UDF invocation state-
ment is encountered, Froid simply retains the UDF operator
as the expression for that UDF. As part of binding, Froid is
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Table 1: Relational algebraic expressions for imperative statements (using standard T-SQL notation from [33])

Imperative Statement (T-SQL) Relational expression (T-SQL)

DECLARE {@var data type [= expr]}[, . . . n]; SELECT {expr|null AS var}[, . . . n];
SET {@var = expr}[, . . . n]; SELECT {expr AS var}[, . . . n];

SELECT {@var1 = prj expr1}[, . . . n] FROM sql expr; {SELECT prj expr1 AS var1 FROM sql expr}; [, . . . n]

IF (pred expr) {t stmt; [. . . n]} ELSE {f stmt; [, . . . n]} SELECT CASE WHEN pred expr THEN 1 ELSE 0 END AS pred val;

{SELECT CASE WHEN pred val = 1 THEN t stmt ELSE f stmt; }[. . . n]
RETURN expr; SELECT expr AS returnV al;

Function total price of Figure 1 is a sequential region R0
(lines 1-9). It is in turn composed of three consecutive sub-
regions denoted R1, R2 and R3. R1 is a sequential region
(lines 1-5), R2 is a conditional region (lines 6-8), and R3 is a
sequential region (line 9) as indicated in Figure 1. Regions
can be constructed in a single pass over the UDF body.

4.2 Relational Expressions for Regions
Once regions are constructed, the next step is to construct

a relational expression for each region.

4.2.1 Imperative statements to relational expressions
Froid first constructs relational expressions for individual

imperative statements, and then combines them to form a
single expression for a region. These constructions make use
of the ConstantScan and ComputeScalar operators in SQL
Server [20]. The ConstantScan operator introduces one row
with no column. A ComputeScalar, typically used after a
ConstantScan, adds computed columns to the row.

Variable declarations and assignments: The T-SQL
constructs DECLARE, SET and SELECT fall under this
category. These statements are converted into relational
equivalents by modeling them as projections of computed
columns in relational algebra as shown in Table 1 (rows 1,
2, 3). For example, consider line 3 of Figure 1:

set @default currency = ‘USD’ ;
This is represented in relational form as

select ‘USD’ as default currency.
Observe that program variables are transformed into at-

tributes projected by the relational expression. The RHS
of the assignment could be any scalar expression including
a scalar valued SQL query (when the SELECT construct is
used). In this case, we construct a ScalarSubQuery instead
of ComputeScalar. For example, the assignment statement
in line 4 of Figure 1 is represented in relational form as

select( select sum(o totalprice) from orders

where o custkey = @key) as price .
Variable declarations without initial assignments are con-

sidered as assignments to null or the default values of the
corresponding data types. Note that the DECLARE and
SELECT constructs can assign to one or more variables in a
single statement, but Froid handles them as multiple assign-
ment statements. Modeling them as multiple assignment
statements might lead to RHS expressions being repeated.
However, common sub-expression elimination can remove
such duplication in most cases.

Conditional statements: These are specified using the
IF-ELSE T-SQL construct, consisting of a predicate, a true

block, and a false block. This can be algebrized using SQL
Server’s CASE construct as given in Table 1 (row 4). The
switch-case construct is also internally expressed as IF-ELSE,
and behaves similarly. Consider the following example:

if(@total > 1000)

set @val = ‘high’;

else

set @val = ‘low’;

The above statement is represented in relational form as
select( case when total > 1000 then ‘high’

else ‘low’ end ) as val.
This approach works for simple cases. For complex and

nested conditional blocks, this approach may lead to redun-
dant computations of the predicate thereby violating the
procedural intent of the UDF. Re-evaluating a predicate
multiple times not only goes against our principle of ad-
herence to intent, but it might also hurt performance if the
predicate is expensive to evaluate. Froid addresses this by
assigning the value of the predicate evaluation to an implicit
boolean variable (shown as pred val in row 4 of Table 1).
Subsequently, whenever necessary, it uses the CASE expres-
sion to check the value of this implicit boolean variable.

Return statements: Return statements denote the end
of function execution and provide the value that needs to
be returned from the function. Note that a UDF may have
multiple return statements, one per code path. Froid mod-
els return statements as assignments to an implicit variable
called returnVal (shown in row 5 of Table 1) followed by an
unconditional jump to the end of the UDF. This uncondi-
tional jump means that no statement should be evaluated
once the returnVal has been assigned a valid return value
(note that null could also be a valid return value). Froid
implicitly declares the variable returnVal at the first occur-
rance of a return statement. Any subsequent occurrance of
a return statement is treated as an assignment to returnVal.
Unconditional jumps are modeled using the probe and

pass-through functionality of the Apply operator [10]. The
probe is used to denote whether returnVal has been assigned,
and the pass-through predicate ensures that subsequent op-
erations are executed only if it has not yet been assigned.
Although unconditional jumps could be modeled without

using probe and pass-through, there are disadvantages to
that approach. First, it increases the size and complexity
of the resulting expression. This is because all successor re-
gions of a return statement would need to be wrapped within
a case expression. Second, the introduction of case expres-
sions hinders the applicability of scalar expression folding
and simplification. As we shall describe in Section 6, Froid
brings optimizations such as constant folding and constant
propagation to UDFs. The applicability of these optimiza-
tions would be restricted by the use of case expressions to
model unconditional jumps.

Function invocations: UDFs may invoke other functions,
and may also be recursive. When a UDF invocation state-
ment is encountered, Froid simply retains the UDF operator
as the expression for that UDF. As part of binding, Froid is
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} Relational expressions for each region
◦ Variable declarations/assignments

◦ Conditional statements

◦ Return statements

� Code may have multiple return points

� Modeled as a “jump” to the end of the codeblock

� Implemented through use of “probe” and “pass-through” of APPLY

Table 1: Relational algebraic expressions for imperative statements (using standard T-SQL notation from [33])

Imperative Statement (T-SQL) Relational expression (T-SQL)

DECLARE {@var data type [= expr]}[, . . . n]; SELECT {expr|null AS var}[, . . . n];
SET {@var = expr}[, . . . n]; SELECT {expr AS var}[, . . . n];

SELECT {@var1 = prj expr1}[, . . . n] FROM sql expr; {SELECT prj expr1 AS var1 FROM sql expr}; [, . . . n]

IF (pred expr) {t stmt; [. . . n]} ELSE {f stmt; [, . . . n]} SELECT CASE WHEN pred expr THEN 1 ELSE 0 END AS pred val;

{SELECT CASE WHEN pred val = 1 THEN t stmt ELSE f stmt; }[. . . n]
RETURN expr; SELECT expr AS returnV al;

Function total price of Figure 1 is a sequential region R0
(lines 1-9). It is in turn composed of three consecutive sub-
regions denoted R1, R2 and R3. R1 is a sequential region
(lines 1-5), R2 is a conditional region (lines 6-8), and R3 is a
sequential region (line 9) as indicated in Figure 1. Regions
can be constructed in a single pass over the UDF body.

4.2 Relational Expressions for Regions
Once regions are constructed, the next step is to construct

a relational expression for each region.

4.2.1 Imperative statements to relational expressions
Froid first constructs relational expressions for individual

imperative statements, and then combines them to form a
single expression for a region. These constructions make use
of the ConstantScan and ComputeScalar operators in SQL
Server [20]. The ConstantScan operator introduces one row
with no column. A ComputeScalar, typically used after a
ConstantScan, adds computed columns to the row.

Variable declarations and assignments: The T-SQL
constructs DECLARE, SET and SELECT fall under this
category. These statements are converted into relational
equivalents by modeling them as projections of computed
columns in relational algebra as shown in Table 1 (rows 1,
2, 3). For example, consider line 3 of Figure 1:

set @default currency = ‘USD’ ;
This is represented in relational form as

select ‘USD’ as default currency.
Observe that program variables are transformed into at-

tributes projected by the relational expression. The RHS
of the assignment could be any scalar expression including
a scalar valued SQL query (when the SELECT construct is
used). In this case, we construct a ScalarSubQuery instead
of ComputeScalar. For example, the assignment statement
in line 4 of Figure 1 is represented in relational form as

select( select sum(o totalprice) from orders

where o custkey = @key) as price .
Variable declarations without initial assignments are con-

sidered as assignments to null or the default values of the
corresponding data types. Note that the DECLARE and
SELECT constructs can assign to one or more variables in a
single statement, but Froid handles them as multiple assign-
ment statements. Modeling them as multiple assignment
statements might lead to RHS expressions being repeated.
However, common sub-expression elimination can remove
such duplication in most cases.

Conditional statements: These are specified using the
IF-ELSE T-SQL construct, consisting of a predicate, a true

block, and a false block. This can be algebrized using SQL
Server’s CASE construct as given in Table 1 (row 4). The
switch-case construct is also internally expressed as IF-ELSE,
and behaves similarly. Consider the following example:

if(@total > 1000)

set @val = ‘high’;

else

set @val = ‘low’;

The above statement is represented in relational form as
select( case when total > 1000 then ‘high’

else ‘low’ end ) as val.
This approach works for simple cases. For complex and

nested conditional blocks, this approach may lead to redun-
dant computations of the predicate thereby violating the
procedural intent of the UDF. Re-evaluating a predicate
multiple times not only goes against our principle of ad-
herence to intent, but it might also hurt performance if the
predicate is expensive to evaluate. Froid addresses this by
assigning the value of the predicate evaluation to an implicit
boolean variable (shown as pred val in row 4 of Table 1).
Subsequently, whenever necessary, it uses the CASE expres-
sion to check the value of this implicit boolean variable.

Return statements: Return statements denote the end
of function execution and provide the value that needs to
be returned from the function. Note that a UDF may have
multiple return statements, one per code path. Froid mod-
els return statements as assignments to an implicit variable
called returnVal (shown in row 5 of Table 1) followed by an
unconditional jump to the end of the UDF. This uncondi-
tional jump means that no statement should be evaluated
once the returnVal has been assigned a valid return value
(note that null could also be a valid return value). Froid
implicitly declares the variable returnVal at the first occur-
rance of a return statement. Any subsequent occurrance of
a return statement is treated as an assignment to returnVal.
Unconditional jumps are modeled using the probe and

pass-through functionality of the Apply operator [10]. The
probe is used to denote whether returnVal has been assigned,
and the pass-through predicate ensures that subsequent op-
erations are executed only if it has not yet been assigned.
Although unconditional jumps could be modeled without

using probe and pass-through, there are disadvantages to
that approach. First, it increases the size and complexity
of the resulting expression. This is because all successor re-
gions of a return statement would need to be wrapped within
a case expression. Second, the introduction of case expres-
sions hinders the applicability of scalar expression folding
and simplification. As we shall describe in Section 6, Froid
brings optimizations such as constant folding and constant
propagation to UDFs. The applicability of these optimiza-
tions would be restricted by the use of case expressions to
model unconditional jumps.

Function invocations: UDFs may invoke other functions,
and may also be recursive. When a UDF invocation state-
ment is encountered, Froid simply retains the UDF operator
as the expression for that UDF. As part of binding, Froid is
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Table 1: Relational algebraic expressions for imperative statements (using standard T-SQL notation from [33])

Imperative Statement (T-SQL) Relational expression (T-SQL)

DECLARE {@var data type [= expr]}[, . . . n]; SELECT {expr|null AS var}[, . . . n];
SET {@var = expr}[, . . . n]; SELECT {expr AS var}[, . . . n];

SELECT {@var1 = prj expr1}[, . . . n] FROM sql expr; {SELECT prj expr1 AS var1 FROM sql expr}; [, . . . n]

IF (pred expr) {t stmt; [. . . n]} ELSE {f stmt; [, . . . n]} SELECT CASE WHEN pred expr THEN 1 ELSE 0 END AS pred val;

{SELECT CASE WHEN pred val = 1 THEN t stmt ELSE f stmt; }[. . . n]
RETURN expr; SELECT expr AS returnV al;

Function total price of Figure 1 is a sequential region R0
(lines 1-9). It is in turn composed of three consecutive sub-
regions denoted R1, R2 and R3. R1 is a sequential region
(lines 1-5), R2 is a conditional region (lines 6-8), and R3 is a
sequential region (line 9) as indicated in Figure 1. Regions
can be constructed in a single pass over the UDF body.

4.2 Relational Expressions for Regions
Once regions are constructed, the next step is to construct

a relational expression for each region.

4.2.1 Imperative statements to relational expressions
Froid first constructs relational expressions for individual

imperative statements, and then combines them to form a
single expression for a region. These constructions make use
of the ConstantScan and ComputeScalar operators in SQL
Server [20]. The ConstantScan operator introduces one row
with no column. A ComputeScalar, typically used after a
ConstantScan, adds computed columns to the row.

Variable declarations and assignments: The T-SQL
constructs DECLARE, SET and SELECT fall under this
category. These statements are converted into relational
equivalents by modeling them as projections of computed
columns in relational algebra as shown in Table 1 (rows 1,
2, 3). For example, consider line 3 of Figure 1:

set @default currency = ‘USD’ ;
This is represented in relational form as

select ‘USD’ as default currency.
Observe that program variables are transformed into at-

tributes projected by the relational expression. The RHS
of the assignment could be any scalar expression including
a scalar valued SQL query (when the SELECT construct is
used). In this case, we construct a ScalarSubQuery instead
of ComputeScalar. For example, the assignment statement
in line 4 of Figure 1 is represented in relational form as

select( select sum(o totalprice) from orders

where o custkey = @key) as price .
Variable declarations without initial assignments are con-

sidered as assignments to null or the default values of the
corresponding data types. Note that the DECLARE and
SELECT constructs can assign to one or more variables in a
single statement, but Froid handles them as multiple assign-
ment statements. Modeling them as multiple assignment
statements might lead to RHS expressions being repeated.
However, common sub-expression elimination can remove
such duplication in most cases.

Conditional statements: These are specified using the
IF-ELSE T-SQL construct, consisting of a predicate, a true

block, and a false block. This can be algebrized using SQL
Server’s CASE construct as given in Table 1 (row 4). The
switch-case construct is also internally expressed as IF-ELSE,
and behaves similarly. Consider the following example:

if(@total > 1000)

set @val = ‘high’;

else

set @val = ‘low’;

The above statement is represented in relational form as
select( case when total > 1000 then ‘high’

else ‘low’ end ) as val.
This approach works for simple cases. For complex and

nested conditional blocks, this approach may lead to redun-
dant computations of the predicate thereby violating the
procedural intent of the UDF. Re-evaluating a predicate
multiple times not only goes against our principle of ad-
herence to intent, but it might also hurt performance if the
predicate is expensive to evaluate. Froid addresses this by
assigning the value of the predicate evaluation to an implicit
boolean variable (shown as pred val in row 4 of Table 1).
Subsequently, whenever necessary, it uses the CASE expres-
sion to check the value of this implicit boolean variable.

Return statements: Return statements denote the end
of function execution and provide the value that needs to
be returned from the function. Note that a UDF may have
multiple return statements, one per code path. Froid mod-
els return statements as assignments to an implicit variable
called returnVal (shown in row 5 of Table 1) followed by an
unconditional jump to the end of the UDF. This uncondi-
tional jump means that no statement should be evaluated
once the returnVal has been assigned a valid return value
(note that null could also be a valid return value). Froid
implicitly declares the variable returnVal at the first occur-
rance of a return statement. Any subsequent occurrance of
a return statement is treated as an assignment to returnVal.
Unconditional jumps are modeled using the probe and

pass-through functionality of the Apply operator [10]. The
probe is used to denote whether returnVal has been assigned,
and the pass-through predicate ensures that subsequent op-
erations are executed only if it has not yet been assigned.
Although unconditional jumps could be modeled without

using probe and pass-through, there are disadvantages to
that approach. First, it increases the size and complexity
of the resulting expression. This is because all successor re-
gions of a return statement would need to be wrapped within
a case expression. Second, the introduction of case expres-
sions hinders the applicability of scalar expression folding
and simplification. As we shall describe in Section 6, Froid
brings optimizations such as constant folding and constant
propagation to UDFs. The applicability of these optimiza-
tions would be restricted by the use of case expressions to
model unconditional jumps.

Function invocations: UDFs may invoke other functions,
and may also be recursive. When a UDF invocation state-
ment is encountered, Froid simply retains the UDF operator
as the expression for that UDF. As part of binding, Froid is
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} Combining expressions for multiple statements
◦ For each statement: compute a “read-set” and  a “write-set”

Table 2: Derived tables for regions in function total price.
Region Write-sets (Derived table schema)

R1 DT1 (price float, rate float,
default currency char(3), pref currency char(3))

R2 DT2 (price float, rate float)
R3 DT3 (returnVal char(50))

again invoked for the nested UDF, thereby inlining it. Some
special cases with deeply nested/recursive functions, where
we choose not to optimize are discussed in Section 7.2.

Others: Relational operations such as EXISTS, NOT EX-
ISTS, ISNULL etc. can appear in imperative constructs
such as the predicate of an IF-ELSE block. Froid simply
uses the corresponding relational operators in these cases.
In addition to the above constructs, we have prototyped al-
gebrization of cursor loops. However, from our analysis of
many real world workloads, we found that scalar UDFs with
loops are quite rare (see Section 8). Therefore, we have cur-
rently disabled support for loops and may enable it in future.

4.2.2 Derived table representation
We now show how expressions for individual statements

are combined into a single expression for a region using de-
rived tables. A derived table is a statement-local temporary
table created by a sub-query. Derived tables can be aliased
and referenced just like normal tables. Froid constructs the
expression of each region as a derived table as follows.

Every statement in an imperative program has a read-set

and a write-set, representing sets of variables that are read
from and written to within that statement respectively. Sim-
ilarly, every region R can be seen as a compound statement
that has a read-set and a write-set. Informally, the read-set

of region R is the union of the read-sets of all statements
within R. The write-set of R is the union of the write-set of
all statements within R.

A relational expression that captures the semantics of a
region R has to expose the write-set of R to its subsequent
regions. This is because the variables written to in region R
would be read/modified in subsequent regions of the UDF.
The write-set of region R is therefore used to define the
schema of the relational expression for R. The schema is
defined by treating every variable in the write-set of R as
an attribute. The implicit variable returnVal appears in the
write-set of all regions that have a RETURN statement.
The write-sets of all the regions in function total price

of Figure 1 are given in Table 2. Using the schema, along
with the relational expressions for each statement, we can
construct a relational expression for the entire region R. A
single ConstantScan followed by ComputeScalar operators,
one per variable, results in a derived table with a single tu-
ple. This derived table represents the values of all variables
written to in R. The derived table aliases for regions R1, R2
and R3 are shown as DT1, DT2, and DT3 in Table 2.

4.3 Combining expressions using APPLY
Once we have a relational expression per region, we now

proceed to create a single expression for the entire function.
The relational expression for a region R uses attributes from
its prior regions, and exposes its attributes to subsequent
regions. Therefore, we need a mechanism to connect variable
definitions to their uses and (re-)definitions.

Figure 4: Relational expression for UDF total price

Froid makes use of the relational Apply operator to sys-
tematically combine region expressions. The derived tables
of each region are combined depending upon the type of the
parent region. For a region R, we denote the corresponding
relational expression as E(R). For the total price function
in Figure 1, E(R1) = DT1, E(R2) = DT2, E(R3) = DT3.
Figure 4 shows the relational expression for the entire

UDF. The dashed boxes in Figure 4 indicate relational ex-
pressions for individual regions R1, R2 and R3. Note that
Froid’s transformations are performed on the relational query
tree structure and not at the SQL language layer. Figure 4
shows an SQL representation for ease of presentation.
The relational expression for a sequential region such as

R0 is constructed using a sequence of Apply operators be-
tween its consecutive sub-regions i.e.,

E(R0) = (E(R1) Ao E(R2)) Ao E(R3)

The SQL form of this equation can be seen in Figure 4. The
Apply operators make the values in DT1 available for use
in DT2, the values in DT1 and DT2 available for DT3, and
so on. We use the outer join type for these Apply operators
(Ao). In the presence of multiple return statements, we
make use of Apply with probe (which internally uses left
semijoin) and pass-through (outer join) [10].
Consider the variable @pref currency as an example. It is

first computed in R1, and hence is an attribute of the derived
table DT1 (as shown in Figure 4). R2 uses this variable, but
does not modify it. Therefore @pref currency is not in the
schema of DT2. All the uses of @pref currency in R2 now re-
fer to it as DT1.pref currency. R3 also uses @pref currency

but does not modify it. The value of @pref currency that
R3 uses comes from R1. Therefore R3 also makes use of
DT1.pref currency in its computation of returnVal.
Observe that the expression in Figure 4 has no reference

to the intermediate variable @rate. As a simplification, we
generate expressions for variables only when they are first
assigned a value, and we expose only those variables that are
live at the end of the region (i.e., used subsequently). The
@rate variable gets eliminated due to these simplifications.
Finally, observe that the only attribute exposed by R0 (the
entire function) is the returnVal attribute. This expression
shown in Figure 4, is a relational expression that returns a
value equal to the return value of the function total price.

4.4 Correctness and Semantics Preservation
We now reason about the correctness of our transforma-

tions, and describe how they preserve the procedural seman-
tics of UDFs. As described earlier, Froid first constructs
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Use these as the “schemas” of derived tables
to be computed



} Combining expressions for multiple statements
◦ For each statement: compute a “read-set” and  a “write-set”

◦ Use these as schemas of derived tables

◦ Connect the regions using APPLY (with pass-through in case of multiple return 
statements)

} Correctness?
◦ Each individual transformation correct by itself

◦ All derived tables contain a single tuple

◦ Outer apply preserves the semantics of combined execution

} Note: Doesn’t handle loops -- may be trickier to model



} Replace the scalar UDF with the relational expression (not as SQL, but rather 
operators)

} Let the optimizer de-correlate and optimize

} Resulting plan looks complex, but decorrelates as desired



} Dynamic slicing: use compile-time constants to simplify queries

} Constant folding and propagation: already done by SQL server

} Dead code elimination: optimizer handles these during project pushdown



} Should this inlining be done in a cost-based manner?
◦ Influences whether it takes place during binding or during query optimization

◦ Experiments showed it is almost always beneficial + hard to modify optimizers è
do it in the binding phase

} Constraints
◦ Put a constraint on the maximum size of UDFs that can be algebrized

} Froid is extensible -- could handle other languages as well

} Security and permissions
◦ A user may not have permission on the UDF but on the tables, and vice versa

◦ Need to be careful with caches as well



} Applicability
◦ Used top 100 customer workloads from Azure SQL à 85329 scalar UDFs

◦ Froid could handle 60% or so
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Figure 6: Varying the number of UDF
invocations

Figure 7: Elapsed time for Compilation
and execution (using cold plan cache)

Figure 8: TPC-H queries using UDFs

Figure 9: Example for Section 8.2.6

optimization. The largest case in W2 resulted in more than
300 imperative statements being transformed into a single
expression, having more than 7000 nodes. Note that this
is prior to optimizations described in Section 6. This illus-
trates the complexity of UDFs handled by Froid.

8.2 Performance improvements
We now present a performance evaluation of Froid on

workloads W1 and W2. Since our primary focus is to mea-
sure the performance of UDF evaluation, the queries that
invoke UDFs are kept simple so that UDF execution forms
their main component. Evaluation of complex queries with
UDFs is considered in Section 8.2.4.

8.2.1 Number of UDF invocations
The number of times a UDF is invoked as part of a query

has a significant impact on the overal query performance.
In order to compare the relationship between the number of
UDF invocations and the corresponding performance gains,
we consider a function F1 (which in turn calls another func-
tion F2). F1 and F2 are functions adapted from workload
W1, and their definitions are given in [27]. We use a simple
query to invoke this UDF, of the form

select dbo.F1(T.a, T.b) from T

Since the UDF is invoked for every tuple in T, we can control
the number of UDF invocations by varying the cardinality of
T. Figure 6 shows the results of this experiment conducted
with a warm cache. The x-axis denotes the cardinality of ta-
ble T (and hence the number of UDF invocations), and the
y-axis shows the time taken in seconds, in log scale. Note
that in this experiment, the time shown in the y-axis does
not include query compilation time, since the query plans
were already present in the cache.

We vary the cardinality of T from 10 to 100000. With
Froid disabled, we observe that the time taken grows with
cardinality (the solid line in Figure 6). With Froid enabled,
we see an improvement of one to three orders of magnitude
(the dashed line). The advantages start to be noticeable
right from a cardinality of 10.

8.2.2 Impact of parallelism
As described in this paper, Froid brings the benefits of

set-oriented plans, compiler optimizations, and parallelism
to UDFs. In order to isolate the impact of parallelism from
the rest of the optimizations (since enabling parallelism is
a by-product of Froid’s transformations), we conducted ex-
periments where we enabled Froid but limited the Degree
Of Parallelism (DOP). The dotted line in Figure 6 shows a
result of this experiment. It includes all the optimizations of
Froid, but forces the DOP to 1 using a query hint. For this
particular UDF, SQL Server switches to a parallel plan when
the cardinality of the table is greater than 10000 (indicated
by the dashed line). The key observation we make here is
that even without parallelism, Froid achieves improvements
up to two orders of magnitude.

8.2.3 Compile time overhead
Since Froid is invoked during query compilation, there

could be an increase in compilation time. This increase
is not a concern as it is o↵set by the performance gains
achieved. To quantify this, we measured the total elapsed
time including compilation and execution by clearing the
plan cache before running queries. This keeps the bu↵er
pool warm, but the plan cache cold. The results of this ex-
periment on 15 randomly chosen UDFs (sorted in descending
order of elapsed time) of workload W2 are shown in Figure 7.
The y-axis shows total elapsed time which includes compila-
tion and execution. We observe gains of more than an order
of magnitude for all these UDFs. Note that the compilation
time of each of these UDFs is less than 10 seconds.

8.2.4 Complex Analytical Queries With UDFs
In the above experiments, we kept the queries simple so

that the UDF forms the main component. To evaluate Froid
in situations where the queries invoking UDFs are complex,
we considered TPC-H [32] queries, and looked for oppor-
tunities where parts of queries could be expressed using
scalar UDFs. We extracted several UDFs and then mod-
ified the queries to use these UDFs. The UDF definitions
and rewritten queries are given in our technical report [27].
Figure 8 shows the results on a 10GB TPC-H dataset with
warm cache for 6 randomly chosen queries. For each query,
we show the time taken for (a) the original query (with-
out UDFs), (b) the rewritten query with UDFs (with Froid
OFF), and (c) the rewritten query with Froid ON.
Observe that for all queries, Froid leads to improvements

of multiple orders of magnitude (compare (b) vs. (c)). We
also see that in most cases, there is no overhead to using
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Table 4: Benefits of Froid on row and column stores (total
elapsed time with cold cache) for the example in Figure 9 .

Configuration Froid OFF Froid ON

Row store 24241 ms 822 ms
Column store 19153 ms 155 ms

UDFs when Froid is enabled (see (a) vs. (c)). These im-
provements are the outcome of all the optimizations that are
enabled by Froid. For some queries (eg. Q5, Q14), there is a
small overhead when compared with original queries. There
are also cases (eg. Q11, Q22) where Froid does slightly bet-
ter than the original. An analysis of query plans revealed
that these are due to small variations in the chosen plan.

8.2.5 Factor of improvement
We now consider the overall performance gains achieved

due to Froid on workloads W1 and W2 (row store), shown in
Figures 10 and 11. The size of table T was fixed at 100,000
rows, and queries were run with warm cache (averaged over
3 runs). In these figures, UDFs are plotted along the x-
axis, ordered by the observed improvement with Froid (in
descending order). The y-axis shows the factor of improve-
ment (in log scale). We observe improvements in the range
of 5x-1000x across both workloads. In total, there were 5
UDFs that showed no improvement or performed slightly
worse due to Froid. One of the main reasons for this was
the presence of complex recursive functions. These can be
handled by appropriately tuning the constraints as described
in Section 7.2. UDFs that invoke expensive TVFs was an-
other reason. Since our implementation currently does not
handle TVFs, such UDFs do not benefit from Froid.

8.2.6 Columnstore indexes
We now present the results of our experiments on col-

umn stores. Column-stores achieve better performance be-
cause of high compression rates, smaller memory footprint,
and batch execution [6]. However, encapsulating aggrega-
tions and certain other operations inside a UDF prevents
the optimizer from using batch mode for those operations.
Froid brings the benefits of batch mode execution to UDFs.
Consider a simple example based on the TPC-H schema as
shown in Figure 9. The results of running this on a TPC-H
1GB database with a cold cache are shown in Table 4.

For this example, without Froid, using a clustered column-
store index (CCI) led to about 20% improvement in perfor-
mance over row store. With Froid, however, we get about
5x improvement in performance by using column store over
row store. Along with other reasons, the fact that the pred-

Table 5: Benefits of Froid with native compilation (total
elapsed time with warm cache) for the UDF in [28].

Configuration Froid OFF Froid ON

Query and UDF interpreted 41729 ms 2056 ms
Interpreted query, native UDF 27376 ms NA

Native query, native UDF 9230 ms 2005 ms

icate and discount computation can now happen in batch
mode contributes to the performance gains.

8.2.7 Natively compiled queries and UDFs
Hekaton, the memory-optimized OLTP engine in SQL

Server performs native compilation of procedures [9], which
allows more e�cient query execution than interpreted T-
SQL [22]. Due to its non-intrusive design, Froid seamlessly
integrates with Hekaton and provides additional benefits.
For this expriment, we considered the UDFs (dbo.FarePerMile)
used in an MSDN article about native compilation [28] (UDFs
are reproduced in [27]). We considered a memory optimized
table with 3.5 million rows and 25 columns, with a CCI. The
results of this experiment are shown in Table 5.
First, in the classic mode of interpreted T-SQL, we see

a 20x improvement due to Froid. Next, we natively com-
piled the UDF, but ran the query in interpreted mode. This
results in a 1.5x improvement compared to the fully inter-
preted mode with Froid disabled. Froid is not applicable
here since a compiled module cannot be algebrized.
Finally, we natively compiled both the UDF and the query,

and ran it with and without Froid enabled. With Froid dis-
abled, we see the full benefits of native compilation over
interpreted mode, with a 4.5x improvement. With Froid
enabled, we get the combined benefits of algebrization and
native compilation. Froid first inlines the UDF, and then
the resulting query is natively compiled, giving an addi-

tional 4.6x improvement over native compilation. Although
native compilation makes UDFs faster, the benefits are lim-
ited as the query still invokes the UDF for each tuple. Froid
removes this fundamental limitation and hence combining
Froid with native compilation leads to more gains.

8.3 Resource consumption
In addition to significant performance gains, our tech-

niques o↵er an additional advantage – they significantly re-
duce the resources consumed by such queries. The reduction
in CPU time due to Froid is shown in Figure 12. Due to lack
of space, we show the results for a randomly chosen subset of
UDFs from workload W2; the results were similar across all
the workloads we evaluated. Observe that Froid reduces the

442



} CTE == Common Table Expressions (i.e., WITH clause)

} Another approach taken by a recent paper
◦ Functional-style SQL UDFs with a Capital ‘F’; SIGMOD 2020

15-721 (Spring 2020)

S T E P  # 1  S T A T I C  S I N G L E  A S S I G N M E N T

33

CREATE FUNCTION pow(x int, n int) 
RETURNS int AS
$$
DECLARE
i int = 0;
p int = 1;
BEGIN
WHILE i < n LOOP
p = p * x;
i = i + 1;

END LOOP;
RETURN p;
END;
$$

Source: Torsten Grust

pow(x,n):
i0 ← 0;
p0 ← 0;

while: i1 ← Φ(i0,i2);
p1 ← Φ(p0,p2);
if i1 < n then

goto loop;
else
goto exit;

loop: p2 ← p1 * x;
i2 ← i1 + 1;
goto while;

exit: return p1;

15-721 (Spring 2020)

pow(x,n) =
let i0 = 0 in
let p0 = 1 in
run(i0,p0,x,n)

run(i1,p1,x,n) =
let t0 = i1 >= n in
if t0 then p1
else
let p2 = p1 * x in
let i2 = i1 + 1 in
run(i2,p2,x,n)

S T E P  # 4  W I T H  R E C U R S I V E
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Source: Torsten Grust

WITH RECURSIVE
run("call?",i1,p1,x,n,result) AS (

SELECT true,0,1,x,n,NULL

UNION ALL
SELECT iter.* FROM run, LATERAL (

SELECT false,0,0,0,0,p1
WHERE i1 >= n

UNION ALL
SELECT true,i1+1,p1*x,x,n,0
WHERE i1 < n

) AS iter("call?",i1,p1,x,n,result)
WHERE run."call?"

)
SELECT * FROM run;      


