
Instructor: Amol Deshpande

amol@cs.umd.edu

 Overview

 Course Logistics

 Background: 424 Summary

 Architecture of a Traditional Database System

 Abstractions, Models, and Implementations

 Cross-cutting Issues in Data Management

 No laptop use allowed in the class !!

 Why study databases

 Examples of databases

 Defining a database

 Brief history of databases from 60’s to today

60’s

Shared “data banks” in

military applications

Hierarchical and network

(CODASYL) models

COBOL

IBM: IMS Hierarchical

database for Apollo space
program

IMS still in use today

70’s

Ted Codd proposed the

relational model (1969)

Two prototypes: INGRES

(Stonebraker at Berkeley),

and System R (IBM)

1976: Entity-Relationship

Model (Peter Chen)

1977 Startup: Software

Development Laboratories

Fierce debates between
relational and CODASYL

camps

80’s

IBM DB2 (1983)

SQL became the standard
query language (1986)

Many proposals for richer

semantic models

Object-oriented, object-

relational databases

Post(-in)gres Project at

Berkeley (1986)

90’s

World Wide Web (1989)

Parallel Databases

Data mining/OLAP

Lot of tooling for business

analytics and app
development

Client-server model,
middleware

1996: PostgreSQL forked

from Postgres codebase

XML

Data integration emerging
as a key problem

20’s

Blockchain DBs (not much

uptake)

ML for databases (e.g.,

auto-tuning, NL → SQL)

Databases for ML

Unstructured analytics

LLMs for data integration,
information extraction, etc.

00-05

Many companies in data

warehousing/analytics
(Aster Data, Greenplum,

Vertica, Kickfire, …)

Columnar storage
architectures (MonetDB,

C-Store/Vertica)

Shared nothing (data

center) systems

Main-memory based
OLTP systems

06-10

Google MapReduce →

Hadoop project at Yahoo

Key-value stores – simpler

data model and no ACID,

but much higher scalability

Many KV stores

Document databases
(MongoDB, 2009)

Graph databases (Neo4j,

2007)

10’s

Cloud-hosted SaaS

offerings

Apache Spark (2011)

Both data warehouses

(Snowflake, Redshift, etc.)
and OLTP (Aurora,

CosmosDB, CockroachDB)

Data Lakes becoming

common (term coined

2011)

Fewer KV stores, but more

other stores (graph, time-
series, multi-model, vector)

A large fraction of the data still in traditional DBMS systems

 Still open and active research areas about improving performance, energy efficiency,
new functionalities, changing hardware spectrum (SSDs) and so on…

Much of the data not stored in traditional database systems today

 For a variety of fairly valid reasons

 - Stream processing systems (focusing on streaming data)

 - Special-purpose data warehousing systems (most start from some RDBMS)

 - Batch analysis frameworks (like Hadoop, Pregel, Spark, …)

 Typically data stored in distributed file systems

 - Key-value stores (like HBase, Cassandra, Redis, …)

 Basically persistent distributed hash tables

 - Semi-structured/Document data stores (for XML/JSON query processing)

 - Graph databases

 - Scientific data management

 - Machine learning data management

 - Vector Databases

 However, many lessons to be learned from database research

 We see much reinvention of the wheel and similar mistakes being made as early on

A large fraction of the data still in traditional DBMS systems

 A deeper study of traditional RDBMS solutions (compared to 424)

 New functionalities/features

 Revisit some of the old design decisions (e.g., lay out data column-by-column
instead of row-by-row, fully in-memory processing, etc)

Much of the data not stored in traditional database systems

 Basic ideas behind, and why different from RDBMS:

 Stream processing systems

 Special-purpose data warehousing systems

 Batch analysis frameworks (specifically MapReduce)

 Key-value stores (focus on the consistency issues)

 If time permits:

 Semi-structured data stores

 Graph databases

 Too many specialized data management systems at this time

 Leading to much silo-ed data stores that are can’t really talk to each
other well

 Building additional services (e.g., APIs) on top solves immediate
problems, but adds more complexity over the long time

 Makes security, privacy, and governance issues much worse

 Need to figure out how to make things simpler

 Relational-like model + Schemas + Declarative Languages/Frameworks
keep proving to be the winning combination
◦ e.g., Apache Spark started as a map-reduce-like system, but SQL is the primary

interface today

 We will cover:
◦ A blend of classic papers + ongoing research (more focus on

latter)

◦ Reference book:

 Readings in Database Systems, 5th edition. Mike Stonebraker, Joe
Hellerstein, Peter Bailis.

◦ Almost all papers are available online

◦ Book contains some very nice overview chapters though – all
available online at the book website (http://redbook.io)

 Prerequisite: CMSC 424
◦ Class notes off my webpage

 Background + Overview (1 week)

 Data Models, Programming Abstractions (2 weeks)

 Storage Models (2 weeks)

 Query Processing + Optimization (5 weeks)

 Streaming Data Management + Dataflow Systems (2 weeks)

 Intended to prepare you for data management research, broadly
defined
◦ Includes better understanding of data management issues in other fields

 Some specific goals:
◦ You should be able to read, understand, and hopefully critique a data

management paper

◦ Given a new application domain, you should be able to:

 ask the right questions to understand the key data management issues,
and design/suggest appropriate solutions.

 identify flaws (if any) with a proposed design or solution.

 devise and reason about abstraction (independence) layers and their
applicability to the application domain.

◦ You should also have enough familiarity with how big data systems are built
to be able to easily start using any of them, and reason about the observed
performance of a deployed system, if only superficially.

 4-6 Programming Assignments (20%)

◦ 3 on background (424 material) and released today

 Written assignments on the paper readings (30%)

◦ One covering background to be released today

◦ Rest on paper readings, including ”reviews” of recent papers

 Final (20%)

◦ Basically, a slightly longer written assignment

 Paper presentations, Participation (30%)

◦ 3 paper readings every 2-3 weeks from recent conferences

◦ Covered in 6 lectures as student presentations

◦ Reviews of these papers in the written assignments

 No research project

Presentation Schedule

 Gradescope for assignments

 Slack for communication
◦ Low volume – for project coordination, etc.

 See links on the webpage

 ChatGPT/Claude/Bard: Encouraged in most cases
◦ Especially reading/understanding papers, or for all phases of class project

◦ Don’t use when doing the assignments

 Motivation: Why study databases ?

 Course Logistics

 History of Databases

 Background: 424 Summary

 Architecture of a Traditional Database System

 Abstractions, Models, and Implementations

 Cross-cutting Issues in Data Management

 No laptop use allowed in the class !!

 Data redundancy and inconsistency

◦ Multiple file formats, duplication of information in different files

 Difficulty in accessing data

◦ Need to write a new program to carry out each new task

 Data isolation — multiple files and formats

 Integrity problems

◦ Integrity constraints (e.g., account balance > 0) become “buried”
in program code rather than being stated explicitly

◦ Hard to add new constraints or change existing ones

 Atomicity of updates

◦ Failures may leave database in an inconsistent state with partial
updates carried out

◦ Example: Transfer of funds from one account to another should
either complete or not happen at all

 Concurrent access by multiple users

◦ Concurrent access needed for performance

◦ Uncontrolled concurrent accesses can lead to inconsistencies

 Example: Two people reading a balance (say 100) and updating it by
withdrawing money (say 50 each) at the same time

 Security problems

◦ Hard to provide user access to some, but not all, data

 Provide a systematic way to answer many of these questions…

 Aim is to allow easy management of high volumes of data

◦ Storing , Updating, Querying, Analyzing ….

 What is a Database ?

◦ A large, integrated collection of (mostly structured) data

◦ Typically models and captures information about a real-world enterprise

 Entities (e.g. courses, students)

 Relationships (e.g. John is taking CMSC 424)

 Usually also contains:

 Knowledge of constraints on the data (e.g. course capacities)

 Business logic (e.g. pre-requisite rules)

 Encoded as part of the data model (preferable) or through external programs

 Data modeling
◦ Data model: A collection of concepts that describes how data is represented and

accessed

◦ Schema: A description of a specific collection of data, using a given data model

◦ Some examples of data models that we will see

 Relational, Entity-relationship model, XML…

 Object-oriented, object-relational, semantic data model, RDF…

◦ Why so many models ?

 Tension between descriptive power and ease of use/efficiency

 More powerful models → more data can be represented

 More powerful models → harder to use, to query, and less efficient

 Also called “Data Independence”

 Probably the most important purpose of a DBMS

 Goal: Hiding low-level details from the users of the
system
◦ Alternatively: the principle that

 applications and users should be insulated from how data is
structured and stored

 Through use of logical abstractions

Logical

Level

Physical

Level

View Level

View 1 View 2 View n…

How data is actually stored ?

 e.g. are we using disks ? Which

 file system ?

What data is stored ?

 describe data properties such as

 data semantics, data relationships

What data users and

application programs

see ?

Logical

Level

Physical

Level

View Level

View 1 View 2 View n…
Logical Data Independence

Protection from logical changes

to the schema

Physical Data Independence

Protection from changes to the

physical structure of the data

 A DBMS is a software system designed to store, manage,
facilitate access to databases

 Provides:
◦ Data Definition Language (DDL)

 For defining and modifying the schemas

◦ Data Manipulation Language (DML)

 For retrieving, modifying, analyzing the data itself

◦ Guarantees about correctness in presence of failures and concurrency, data
semantics etc.

 Common use patterns
◦ Handling transactions (e.g. ATM Transactions, flight reservations)

◦ Archival (storing historical data)

◦ Analytics (e.g. identifying trends, Data Mining)

 representing information

◦ data modeling

◦ semantic constraints

 languages and systems for querying data

◦ complex queries & query semantics

◦ over massive data sets

 concurrency control for data manipulation

◦ ensuring transactional semantics

 reliable data storage

◦ maintain data semantics even if you pull the plug

◦ fault tolerance

 representing information

◦ data modeling: relational models, E/R models

◦ semantic constraints: integrity constraints, triggers

 languages and systems for querying data

◦ complex queries & query semantics: SQL, MongoDB, Spark

◦ over massive data sets: indexes, query processing, optimization

 concurrency control for data manipulation

◦ ensuring transactional semantics: ACID properties

 reliable data storage

◦ maintain data semantics even if you pull the plug: durability

◦ fault tolerance: RAID

 Most widely used model today

 Main concepts:

◦ relation: basically a table with rows and columns

◦ schema (of the relation): description of the columns

 Example:

courses(dept char(4), courseID integer, name varchar(80), instructor varchar(80))

students(sid char(9), name varchar(80), …)

enrolled(sid char(9), courseID integer, …)

 This is pretty much the only construct

Dept CourseID Name Instructo

r

CMSC 424 … …

CMSC 427 … …

An instance of the courses relation

 More powerful model, commonly used during conceptual design
◦ Easier and more intuitive for users to work with in the beginning

 Has two main constructs:
◦ Entities: e.g. courses, students

◦ Relationships: e.g. enrolled

 Diagrammatic representation

course enrolled

dept

name

courseID

instructor

student

name

sid

semester

 Example schema: R(A, B)

 Practical languages
◦ SQL

 select A from R where B = 5;

◦ Datalog (sort of practical) – Has seen a resurgence in recent years

 q(A) :- R(A, 5)

 Formal languages
◦ Relational algebra

 πA (B=5 (R)) -- You will encounter this in many papers

◦ Tuple relational calculus

 { t : {A} | ∃ s : {A, B} (R(A, B) ∧ s.B = 5) }

◦ Domain relational calculus

 Similar to tuple relational calculus

 Important thing to keep in mind:
◦ SQL is not SET semantics, it is BAG semantics

◦ i.e., duplicates are not eliminated by default

 With the exception of UNION, INTERSECTION, MINUS

◦ Relational model is SET semantics

 Duplicates cannot exist by definition

 Relational algebra: Six basic operators
◦ Select (σ), Project (π), Carterisan Product (×)

◦ Set union (U), Set difference (-)

◦ Rename ()

 Tables: r(A, B), s(B, C)

name Symbol SQL Equivalent RA expression

cross product × select * from r, s; r × s

natural join ⋈ natural join πr.A, r.B, s.Cr.B = s.B(r x s)

theta join ⋈θ from .. where θ; θ(r x s)

equi-join ⋈θ (theta must be equality)

left outer join r ⟕ s left outer join (with “on”) (see previous slide)

full outer join r ⟗ s full outer join (with “on”) -

(left) semijoin r ⋉ s none πr.A, r.B(r ⋈ s)

(left) antijoin r ⊲ s none
r - πr.A, r.B(r ⋈ s)

 Goal: What is a “good” schema for a database? How to
define and achieve that

 Problems to avoid:
◦ Repetition of information

 For example, a table:

 accounts(owner_SSN, account_no, owner_name, owner_address, balance)

 Inherently repeats information if a customer is allowed to have more
than one account

◦ Avoid set-valued attributes

1. Encode and list all our knowledge about the schema

◦ Functional dependencies (FDs)

 SSN → name (means: SSN “implies” name)

◦ If two tuples have the same “SSN”, they must have the same “name”

 movietitle → length ???? Not true.

◦ But, (movietitle, movieYear) → length --- True.

2. Define a set of rules that the schema must follow to be considered good

◦ “Normal forms”: 1NF, 2NF, 3NF, BCNF, 4NF, …

◦ A normal form specifies constraints on the schemas and FDs

3. If not in a “normal form”, we modify the schema

See 424 class notes for more

 SQL supports defining integrity constraints over the data
◦ Basically a property that must always be valid

◦ E.g., a customer must have an SSN, a customer with a loan must
have a sufficiently high balance in checking account, etc.

 Triggers
◦ If something happens, then execute something

 E.g., if a tuple inserted in table R, then update table S as well

◦ Quite frequently used in practice, and surprising not as well
optimized for large numbers

 Storage:
◦ Need to be cognizant of the memory hierarchy

 Many of traditional DBMS decisions are based on:

 Disks are cheap, memory is expensive

 Disks much faster to access sequentially than randomly

 Much work in recent years on revisiting the design decisions…

◦ RAID: Surviving failures through redundancy

 Indexes
◦ One of the biggest keys to efficiency, and heavily used

◦ B+-trees most popular and pretty much the only ones used in
most systems

◦ Others: R-trees, kD-trees, …

1. Parsing and translation

2. Optimization

3. Evaluation

 Parallel and Distributed Environments

◦ Shared-nothing vs Shared-memory vs Shared-disk

◦ Speedup vs Scaleup

 How to ”parallelize” different relational operations

 Motivation for emergence of NoSQL Systems

 Map-reduce Framework for Large-scale Data Analysis

 Apache Spark: Resilient Distributed Dataset (RDD) Abstraction

 MongoDB
◦ JSON Data Model

◦ MongoDB Query Language

 Transaction: A sequence of database actions enclosed

within special tags

 Properties:

◦ Atomicity: Entire transaction or nothing

◦ Consistency: Transaction, executed completely, takes database from

one consistent state to another

◦ Isolation: Concurrent transactions appear to run in isolation

◦ Durability: Effects of committed transactions are not lost

 Consistency: programmer needs to guarantee that

 DBMS can do a few things, e.g., enforce constraints on the data

 Rest: DBMS guarantees

 Atomicity: Through “logging” of all operations to “stable

storage”, and reversing if the transaction did not finish

 Isolation:

◦ Locking-based mechanisms

◦ Multi-version concurrency control

 Durability: Through “logging” of all operations to “stable

storage”, and repeating if needed

 Some key concepts:

◦ Serializability, Recoverability, Snapshot Isolation, Two-phase

locking, Write-ahead logging, …

 We will cover some of the key topics from the
“Architecture” paper, and discuss some of the broader
data management issues

 First 3 programming assignments will be posted right
away (will be due over the next 4-6 weeks)

◦ Generally we are quite flexible about these assignments

 First written assignment will be out soon as well

◦ Focusing on first 2-3 readings

 Motivation: Why study databases ?

 Course Logistics

 History of Databases

 Background: 424 Summary

 Abstractions, Models, and Implementations

 Architecture of a Traditional Database System

 No laptop use allowed in the class !!

 User-facing

◦ Data Model

◦ Query Language and/or Programming Framework

◦ Transactions

◦ Performance Guarantees/Focus

◦ Consistency Guarantees

 Implementation

◦ In-memory and at-rest storage representations

◦ Target Computational Environment

◦ Query processing and optimization

◦ Transactions’ implementation

◦ Support for streaming, versioning, approximations, etc.

These ”define” the

“type” of the database

 A collection of concepts that describes how data is represented and
accessed
◦ Schema: A description of a specific collection of data, using a given data model

 Goal is to capture the properties of the data at the “right level”

◦ Too strict → may not be able to store the data we want

◦ Too loose → may not be able to build a query language on top, or efficiently
optimize

 Examples:
◦ Relational, Entity-relationship model, XML, JSON…

◦ Object-oriented, object-relational, semantic data model, RDF…

◦ Sets of ”objects”, ML models

 Define how to go from input data, to some desired output
◦ Depends to some extent on the data model, but still a lot of flexibility

 Want this to be as ”high-level” or “declarative” as possible
◦ Too high-level → fewer use cases will be covered

◦ Too low-level → harder to use, support or optimize

◦ Lot of work on trying to find the “right” level of abstraction

◦ Interest in formally defining the power of a language, etc.

 Examples:
◦ SQL: Input relations → output relations

◦ Apache Spark RDD or Map-Reduce: Input “set of objects” → output ”set of objects”

◦ BlinkDB: Input relations + approximation guarantees → output relations

◦ Visualization Tools: Input datasets → Plots

 If supporting “streaming” or “versioning” or “approximations”, need to
define what that means

 Support for updating the data in the DMS
◦ Some of the same issues as query language w.r.t. the expressiveness of the language

 Some considerations:
◦ Consistency guarantees around updates (ACID or not)

 Becomes more complicated in the distributed setting, with replication and sharding/partitioning

◦ Batch updates vs one-at-a-time (impact on staleness)

◦ Immutability: guarantees around no-tampering (e.g., blockchains)

◦ Versioning: ability to support multiple branches, and ”time-travel”

 If the language is not expressive enough, have to do more work in the applications → impact on
guarantees

◦ e.g., MongoDB (and many other NoSQL stores) didn’t support multi-collection updates for a
long time

 How is data laid out on disks (at rest) and in-memory, and across machines
◦ Significant impact on performance

◦ Depends somewhat on data model, but not fully (“Data Independence”)

◦ May use different representations when loading in memory (serialization/deserialization cost)

◦ Usually we also build “indexes” for efficient search

◦ Transmission over network also a concern

 Some options:
◦ Row-oriented storage for relational model

 Traditional approach: good for updates but bad for queries

◦ Column-oriented storage for relational model

 Really good performance for queries, but updates not easy to handle

◦ Object storage (e.g., with pointers) for object-oriented databases or Graph databases

 Pointers don’t translate from disk to memory easily

◦ Hierarchical storage for JSON/XML

◦ Structured file formats like CSV (row), Parquet (columnar) for Data Lakes

 Less up-front cost of “ingesting” the data, but more complex and less efficient to support

 Harder to put any “structure” or “data model” on top of it

 Thoughts:

◦ Cost of “ingest” must be amortized over many uses – for one-time use of data, prefer to leave in its native format

“Data Independence” → not

”required” to, e.g., use pointers
for graph databases – easy to

convert to row-oriented storage

 Many, many combinations here
◦ Single machine vs parallel (locally) vs geographically distributed

◦ Hardware

 e.g., multi-core vs many-core, large-memory, disks or SSDs, RDMA, cache assumptions, and so on

◦ Use of cloud/virtualization
 Can have a significant impact on performance guarantees

 Also, may put limits on what can be done (e.g., if using “serverless functions”)

 Hard to build a different system for each combination

 Increasing interest in “auto-tuning” through use of ML
◦ Try to ”learn” how to do things for a new environment

 Depends significantly on how “declarative” is the query language/framework

 Most systems support a collection of low-level “operators”
◦ Relational: joins, aggregates, etc.

◦ Apache Spark: map, reduce, joins, group-by, …

 Should choose a good set of operators
◦ Restricts the optimization abilities

◦ e.g., if only support “binary” joins then lose the ability to optimize multi-way joins

◦ In general, a sequence of operations will perform worse than a single equivalent operation

 Need to map from the overall “task” or “query” into those low-level operators
◦ Usually called a “query execution/evaluation plan”

◦ There may potentially be many many ways to do this (depending on how declarative)

◦ Try to choose in a “cost-based” manner

 Need the ability to estimate costs of different plans

 ”Heuristics” often preferred in less mature systems

 Cost measure
◦ Important to decide what resource you are optimizing

◦ Need to focus on the bottlenecks of the environment

◦ Traditionally: CPU, Memory, Disks

◦ Today, network costs play a very important role

◦ Also: optimizing for “total resources” or “wall-clock time” ?

 Especially important in parallel/distributed environments

 May wish to “pre-compute” certain queries to reduce the query execution times
◦ Especially for ”real-time” queries over “streaming” data

◦ Often called “materialized views” in the context of relational databases

◦ Any pre-computed data must be kept up-to-date

 Adaptive query processing
◦ May wish to “change” the query plan during execution based on what we are seeing

SQL ”Query Plan”

Apache Hive ”Query Plan”
(Hive is an SQL layer on top of Hadoop)

Machine Learning Pipeline

Data Preparation and Visualization Pipeline

Dataset 1

Dataset 2

Dataset 3

Dataset 4

Dataset 5

Binary
Operation 1

Unary
Operation 1

Binary
Operation 2

Ternary
Operation 1

Unary
Operation 1

Output
Dataset 1

Maybe Tables in an RDBMS, Files in HDFS,
or Images in a key-value store

Maybe Joins, or Aggregates, or Machine
Learning Tasks, or Data Cleaning Tasks,

or…

Maybe Another RDBMS Table, a New File,
or a Machine Learning Model

 Streaming
◦ Usually need to keep a lot of pre-built state to handle high-rate data streams

◦ Each new update → modify the pre-built state, and output results

◦ Hard to do this in a generic way

 A specialized system will likely have much lower response times (e.g., in financial settings)

 Versioning
◦ So far, the focus has primarily been on storage (i.e., how to compactly store the version history over time)

◦ The “retrieval” of old versions considered less important to date

 Immutability
◦ More interest in recent years on this, but still pretty open from a database perspective

 Approximate Query Processing
◦ Usually need additional constructs like “random samples”

 Not intended to cover all data management research, but as a helpful guide to
think about data management systems
◦ Data cleaning, visualizations, security, privacy, …

 Finding the right abstractions is often the key to wide usage

 More complex abstractions may provide short-term wins, but often become
difficult to manage and use over time

 Implementations have become very complex and involved today
◦ Easy to obtain significant benefits focusing on a specific workload and hardware

◦ But hard to get, and/or reason about performance in general settings

◦ Experimental evaluations can’t cover all different scenarios

 Motivation: Why study databases ?

 Course Logistics

 History of Databases

 Background: 424 Summary

 Abstractions, Models, and Implementations

 Architecture of a Traditional Database System

 No laptop use allowed in the class !!

 Paper by: Hellerstein, Stonebraker, Hamilton

 Covers the main components of a typical relational DBMS

 Goals for today:

◦ Discuss an end-to-end system and issues like admission control,
process models, etc.

◦ Won’t go deep into query processing, transactions, etc. – that will
be later

Clients connect using
standard or proprietary
protocols to submit
“queries”/”transactions”

Web Server

App Server

ODBC/JDBC

Admission Control

Assign a “thread of
computation”

Parse, compile, optimize
the query

Start fetching or
updating the data
- get locks
- create log records if

needed
- etc…

Return data batch-at-a-
time

 Question: How do we handle multiple user requests/queries “concurrently”?

 Lot of variations across Operating Systems

◦ OS Process: Private address space – scheduled by kernel

◦ OS (Kernel) Thread: Multiple threads per process – shared memory

 Support for this relatively recent (late 90’s, early 00’s)

 OS can “see” these threads and does the scheduling

◦ Lightweight threads in user space

 Scheduled by the application

 Need to be very very careful, because OS can’t pre-empt

 e.g., can’t do Synchronous I/O

◦ DBMS Threads

 Similar to general lightweight threads, but special-purpose

 Each query gets its own “process” (e.g., PostgreSQL, IBM D2, Oracle)*

◦ Heavy-weight, but easy to port to other systems

◦ Need support for “shared memory” (for lock tables, etc)

* All circa 2007 – may have changed since then.

 A single-multithreaded server

◦ Need support for “asynchronous” I/O (so threads don’t block)

◦ Easy to share state, but also makes it easy for queries to interfere

 Typically DBMS allots a pool of processes or threads, and multiplexes
clients/requests across those

 Buffer Pool

◦ Manages the disk blocks that are currently being used by the different workers

◦ Use some replacement strategy like Least-recently-used

 Log Tail

◦ All updates generate “log” records that need to properly numbered and flushed to disk

 Lock Table

◦ For synchronization across workers in case of conflicts

 Client Communication Buffers

◦ To keep track of what data has already been sent back to clients, and to buffer more
outputs

 Buffer Pool

◦ Manages the disk blocks that are currently being used by the different workers

◦ Use some replacement strategy like Least-recently-used

 Log Tail

◦ All updates generate “log” records that need to properly numbered and flushed to disk

 Lock Table

◦ For synchronization across workers in case of conflicts

 Client Communication Buffers

◦ To keep track of what data has already been sent back to clients, and to buffer more
outputs

 Shared-memory and shared-nothing architectures prevalent today

 Shared-memory: easy to evolve to because of shared data structures

 Shared-nothing: require more coordination

◦ Data must be partitioned across disks, and query processing needs to be aware of that

◦ Single-machine failures need to be handled gracefully

 Shared-disk (e.g., through use of Storage Area Networks)

◦ Somewhat easier to administer, but requires specialized hardware

◦ Main difference between this and shared-nothing is primarily the retrieval costs

 Non-uniform Memory Access (NUMA)

◦ Seen increasingly today with many-core systems

◦ Any processor can access any other processor’s memory, but the costs vary

Query Parsing and Authorization

Query Rewrite

Query Optimizer

Query Executor

Access Methods

View expansion, subquery

flattening, logical rewrites of
expressions, etc.

Search plan space, selectivity

estimation, top-down vs
bottom-up, parallelism, query

compilation

Iterator model, pipelining vs

materialization, Batch-at-a-
time

 Widely used today for large-scale analytics

 Use specialized index structures (like bitmap indexes)

 Bulk uploads of batches of data

 Materialized Views

 OLAP and Data Cubes

 Specialized optimization techniques
◦ Snowflake schemas are very common

◦ Often use techniques like Bloom Filters or bitmap based operations

◦ Use Columnar Storage today

 Databases need to be able to control:
◦ Where data is physically stored on the storage devices, especially what is sequentially stored (i.e.,

spatial locality)

 To reduce/estimate costs of operations

◦ What is in memory vs not in memory (temporal locality)

 To optimize query execution

◦ How is memory managed

 To avoid double copying of data

◦ In which order data is written out of volatile storage (memory) into non-volatile storage
(disks/SSDs)

 For guaranteeing correctness in presence of failures

 Operating systems often get in the way
◦ Databases often allocate a large file on disk and manage spatial locality themselves (no guarantees

that the file is sequential though)

◦ Use memory mapping to reduce double copying within memory

◦ And many other tricks to get around OS restrictions…

 ACID properties
◦ Atomicity, Isolation, and Durability are database guarantees – Consistency is typically a

programmer guarantee

 Serializability: A notion of “correctness” of concurrent transactions
◦ Standard approaches: Strict 2-phase Locking, Multi-version Concurrency Control, Optimistic

Concurrency Control

◦ A lot of work in the last 15 years – MVCC probably considered the best option today

 Difference between “locking” and “latching”
◦ Latches are more low-level, basically synchronization primitives

◦ Locks are logical and taken on, e.g., relations/tuples/objects, etc.

 Isolation Levels
◦ From the early days, databases supported looser definitions of consistency

◦ Not easy to formalize

 Recovery
◦ Traditionally done through “logging”, i.e., keep a record of all updates and use it for undoing bad

changes, and redoing good changes

 Catalog Manager (more appropriately today: “Metadata” Manager)
◦ Usually stored as special system tables

◦ Pulled into memory at the start for efficiency, into special data structures

 Memory Allocator
◦ Need to be very careful with allocating new chunks of memory

◦ PostgreSQL query processor basically pre-allocates everything and reuses all the memory

 Disk Management Subsystems
◦ Many different storage devices widely used (e.g., RAID)

◦ Need to support a uniform interface on top (through abstractions)

◦ Makes optimization harder

 Replication Services

 Administration, Monitoring, Utilities

 Read the “Architecture” paper, and raise any questions/clarification issues

 Although outdated, this will form the basis on which the rest of the semester
builds up
◦ First written assignment will cover some of these topics as well

 Next two weeks:
◦ Different data models/query languages/programming frameworks

◦ Will ignore the implementation issues in the papers

	Slide 1: CMSC 724: Database Management Systems Introduction/Background
	Slide 2: Outline
	Slide 3: Overview
	Slide 4: Databases: A Brief History
	Slide 5: Databases: A Brief History
	Slide 6: Data Management Today
	Slide 7: What we will cover
	Slide 8: Databases: Thoughts
	Slide 9: Course Overview
	Slide 10: Course Structure
	Slide 11: Learning Goals
	Slide 12: Course Overview: Grading
	Slide 13: Course Overview: Grading
	Slide 14: Course Overview: More Logistics
	Slide 15: Outline
	Slide 16: Why not use file systems to store data?
	Slide 17: Why not use file systems to store data?
	Slide 18: DBMSs to the Rescue
	Slide 19: DBMSs to the Rescue: Data Modeling
	Slide 20: DBMSs to the Rescue: Data Abstraction
	Slide 21: Data Abstraction
	Slide 22: Data Abstraction
	Slide 23: What about a Database System ?
	Slide 24: Basic topics covered in 424
	Slide 25: Basic topics covered in 424
	Slide 26: Relational Data Model
	Slide 27: Entity-Relationship (E/R) Data Model
	Slide 28: Relational Query Languages
	Slide 29: Relational Query Languages
	Slide 30: Join Variations (SQL and Relational Alg.)
	Slide 31: Relational Model: Normalization
	Slide 32: Relational Model: Normalization
	Slide 33: Semantic Constraints
	Slide 34: Storage
	Slide 35: Query Processing
	Slide 36: Parallel and NoSQL
	Slide 37: Transactions
	Slide 38: Transactions: How?
	Slide 39: Next class…
	Slide 40: Outline
	Slide 41: Design Dimensions for a DMS
	Slide 42: Data Models
	Slide 43: Query Languages/Frameworks
	Slide 44: Transactions/Updates (User-facing)
	Slide 45: In-memory and at-rest storage representations
	Slide 46: Target Computational Environment
	Slide 47: Query Processing and Optimization
	Slide 48: Query Processing and Optimization
	Slide 49: Query Plans vs…
	Slide 50: vs … Data Transformation Pipelines
	Slide 51: Many similarities across systems…
	Slide 52: Support for Streaming, Versioning, Approximations, etc…
	Slide 53: Recap
	Slide 54: Outline
	Slide 55: Architecture of a Traditional DBMS
	Slide 56: Main Components
	Slide 57: Life of a Query
	Slide 58: Process Models
	Slide 59: Process per DBMS Worker
	Slide 60: Thread per DBMS Worker
	Slide 61: Process (or Thread) Pools
	Slide 62: Shared Data Structures
	Slide 63: Shared Data Structures
	Slide 64: Parallel Architectures
	Slide 65: Parallel Architectures
	Slide 66: Relational Query Processor
	Slide 67: Data Warehouses
	Slide 68: Storage Management
	Slide 69: Transactions
	Slide 70: Shared Components
	Slide 71: Recap, and Next Steps

