
Instructor: Amol Deshpande

amol@cs.umd.edu

 Overview

 Course Logistics

 Background: 424 Summary

 Architecture of a Traditional Database System

 Abstractions, Models, and Implementations

 Cross-cutting Issues in Data Management

 No laptop use allowed in the class !!

 Why study databases

 Examples of databases

 Defining a database

 Brief history of databases from 60’s to today

60’s

Shared “data banks” in

military applications

Hierarchical and network

(CODASYL) models

COBOL

IBM: IMS Hierarchical

database for Apollo space
program

IMS still in use today

70’s

Ted Codd proposed the

relational model (1969)

Two prototypes: INGRES

(Stonebraker at Berkeley),

and System R (IBM)

1976: Entity-Relationship

Model (Peter Chen)

1977 Startup: Software

Development Laboratories

Fierce debates between
relational and CODASYL

camps

80’s

IBM DB2 (1983)

SQL became the standard
query language (1986)

Many proposals for richer

semantic models

Object-oriented, object-

relational databases

Post(-in)gres Project at

Berkeley (1986)

90’s

World Wide Web (1989)

Parallel Databases

Data mining/OLAP

Lot of tooling for business

analytics and app
development

Client-server model,
middleware

1996: PostgreSQL forked

from Postgres codebase

XML

Data integration emerging
as a key problem

20’s

Blockchain DBs (not much

uptake)

ML for databases (e.g.,

auto-tuning, NL → SQL)

Databases for ML

Unstructured analytics

LLMs for data integration,
information extraction, etc.

00-05

Many companies in data

warehousing/analytics
(Aster Data, Greenplum,

Vertica, Kickfire, …)

Columnar storage
architectures (MonetDB,

C-Store/Vertica)

Shared nothing (data

center) systems

Main-memory based
OLTP systems

06-10

Google MapReduce →

Hadoop project at Yahoo

Key-value stores – simpler

data model and no ACID,

but much higher scalability

Many KV stores

Document databases
(MongoDB, 2009)

Graph databases (Neo4j,

2007)

10’s

Cloud-hosted SaaS

offerings

Apache Spark (2011)

Both data warehouses

(Snowflake, Redshift, etc.)
and OLTP (Aurora,

CosmosDB, CockroachDB)

Data Lakes becoming

common (term coined

2011)

Fewer KV stores, but more

other stores (graph, time-
series, multi-model, vector)

A large fraction of the data still in traditional DBMS systems

 Still open and active research areas about improving performance, energy efficiency,
new functionalities, changing hardware spectrum (SSDs) and so on…

Much of the data not stored in traditional database systems today

 For a variety of fairly valid reasons

 - Stream processing systems (focusing on streaming data)

 - Special-purpose data warehousing systems (most start from some RDBMS)

 - Batch analysis frameworks (like Hadoop, Pregel, Spark, …)

 Typically data stored in distributed file systems

 - Key-value stores (like HBase, Cassandra, Redis, …)

 Basically persistent distributed hash tables

 - Semi-structured/Document data stores (for XML/JSON query processing)

 - Graph databases

 - Scientific data management

 - Machine learning data management

 - Vector Databases

 However, many lessons to be learned from database research

 We see much reinvention of the wheel and similar mistakes being made as early on

A large fraction of the data still in traditional DBMS systems

 A deeper study of traditional RDBMS solutions (compared to 424)

 New functionalities/features

 Revisit some of the old design decisions (e.g., lay out data column-by-column
instead of row-by-row, fully in-memory processing, etc)

Much of the data not stored in traditional database systems

 Basic ideas behind, and why different from RDBMS:

 Stream processing systems

 Special-purpose data warehousing systems

 Batch analysis frameworks (specifically MapReduce)

 Key-value stores (focus on the consistency issues)

 If time permits:

 Semi-structured data stores

 Graph databases

 Too many specialized data management systems at this time

 Leading to much silo-ed data stores that are can’t really talk to each
other well

 Building additional services (e.g., APIs) on top solves immediate
problems, but adds more complexity over the long time

 Makes security, privacy, and governance issues much worse

 Need to figure out how to make things simpler

 Relational-like model + Schemas + Declarative Languages/Frameworks
keep proving to be the winning combination
◦ e.g., Apache Spark started as a map-reduce-like system, but SQL is the primary

interface today

 We will cover:
◦ A blend of classic papers + ongoing research (more focus on

latter)

◦ Reference book:

 Readings in Database Systems, 5th edition. Mike Stonebraker, Joe
Hellerstein, Peter Bailis.

◦ Almost all papers are available online

◦ Book contains some very nice overview chapters though – all
available online at the book website (http://redbook.io)

 Prerequisite: CMSC 424
◦ Class notes off my webpage

 Background + Overview (1 week)

 Data Models, Programming Abstractions (2 weeks)

 Storage Models (2 weeks)

 Query Processing + Optimization (5 weeks)

 Streaming Data Management + Dataflow Systems (2 weeks)

 Intended to prepare you for data management research, broadly
defined
◦ Includes better understanding of data management issues in other fields

 Some specific goals:
◦ You should be able to read, understand, and hopefully critique a data

management paper

◦ Given a new application domain, you should be able to:

 ask the right questions to understand the key data management issues,
and design/suggest appropriate solutions.

 identify flaws (if any) with a proposed design or solution.

 devise and reason about abstraction (independence) layers and their
applicability to the application domain.

◦ You should also have enough familiarity with how big data systems are built
to be able to easily start using any of them, and reason about the observed
performance of a deployed system, if only superficially.

 4-6 Programming Assignments (20%)

◦ 3 on background (424 material) and released today

 Written assignments on the paper readings (30%)

◦ One covering background to be released today

◦ Rest on paper readings, including ”reviews” of recent papers

 Final (20%)

◦ Basically, a slightly longer written assignment

 Paper presentations, Participation (30%)

◦ 3 paper readings every 2-3 weeks from recent conferences

◦ Covered in 6 lectures as student presentations

◦ Reviews of these papers in the written assignments

 No research project

Presentation Schedule

 Gradescope for assignments

 Slack for communication
◦ Low volume – for project coordination, etc.

 See links on the webpage

 ChatGPT/Claude/Bard: Encouraged in most cases
◦ Especially reading/understanding papers, or for all phases of class project

◦ Don’t use when doing the assignments

 Motivation: Why study databases ?

 Course Logistics

 History of Databases

 Background: 424 Summary

 Architecture of a Traditional Database System

 Abstractions, Models, and Implementations

 Cross-cutting Issues in Data Management

 No laptop use allowed in the class !!

 Data redundancy and inconsistency

◦ Multiple file formats, duplication of information in different files

 Difficulty in accessing data

◦ Need to write a new program to carry out each new task

 Data isolation — multiple files and formats

 Integrity problems

◦ Integrity constraints (e.g., account balance > 0) become “buried”
in program code rather than being stated explicitly

◦ Hard to add new constraints or change existing ones

 Atomicity of updates

◦ Failures may leave database in an inconsistent state with partial
updates carried out

◦ Example: Transfer of funds from one account to another should
either complete or not happen at all

 Concurrent access by multiple users

◦ Concurrent access needed for performance

◦ Uncontrolled concurrent accesses can lead to inconsistencies

 Example: Two people reading a balance (say 100) and updating it by
withdrawing money (say 50 each) at the same time

 Security problems

◦ Hard to provide user access to some, but not all, data

 Provide a systematic way to answer many of these questions…

 Aim is to allow easy management of high volumes of data

◦ Storing , Updating, Querying, Analyzing ….

 What is a Database ?

◦ A large, integrated collection of (mostly structured) data

◦ Typically models and captures information about a real-world enterprise

 Entities (e.g. courses, students)

 Relationships (e.g. John is taking CMSC 424)

 Usually also contains:

 Knowledge of constraints on the data (e.g. course capacities)

 Business logic (e.g. pre-requisite rules)

 Encoded as part of the data model (preferable) or through external programs

 Data modeling
◦ Data model: A collection of concepts that describes how data is represented and

accessed

◦ Schema: A description of a specific collection of data, using a given data model

◦ Some examples of data models that we will see

 Relational, Entity-relationship model, XML…

 Object-oriented, object-relational, semantic data model, RDF…

◦ Why so many models ?

 Tension between descriptive power and ease of use/efficiency

 More powerful models → more data can be represented

 More powerful models → harder to use, to query, and less efficient

 Also called “Data Independence”

 Probably the most important purpose of a DBMS

 Goal: Hiding low-level details from the users of the
system
◦ Alternatively: the principle that

 applications and users should be insulated from how data is
structured and stored

 Through use of logical abstractions

Logical

Level

Physical

Level

View Level

View 1 View 2 View n…

How data is actually stored ?

 e.g. are we using disks ? Which

 file system ?

What data is stored ?

 describe data properties such as

 data semantics, data relationships

What data users and

application programs

see ?

Logical

Level

Physical

Level

View Level

View 1 View 2 View n…
Logical Data Independence

Protection from logical changes

to the schema

Physical Data Independence

Protection from changes to the

physical structure of the data

 A DBMS is a software system designed to store, manage,
facilitate access to databases

 Provides:
◦ Data Definition Language (DDL)

 For defining and modifying the schemas

◦ Data Manipulation Language (DML)

 For retrieving, modifying, analyzing the data itself

◦ Guarantees about correctness in presence of failures and concurrency, data
semantics etc.

 Common use patterns
◦ Handling transactions (e.g. ATM Transactions, flight reservations)

◦ Archival (storing historical data)

◦ Analytics (e.g. identifying trends, Data Mining)

 representing information

◦ data modeling

◦ semantic constraints

 languages and systems for querying data

◦ complex queries & query semantics

◦ over massive data sets

 concurrency control for data manipulation

◦ ensuring transactional semantics

 reliable data storage

◦ maintain data semantics even if you pull the plug

◦ fault tolerance

 representing information

◦ data modeling: relational models, E/R models

◦ semantic constraints: integrity constraints, triggers

 languages and systems for querying data

◦ complex queries & query semantics: SQL, MongoDB, Spark

◦ over massive data sets: indexes, query processing, optimization

 concurrency control for data manipulation

◦ ensuring transactional semantics: ACID properties

 reliable data storage

◦ maintain data semantics even if you pull the plug: durability

◦ fault tolerance: RAID

 Most widely used model today

 Main concepts:

◦ relation: basically a table with rows and columns

◦ schema (of the relation): description of the columns

 Example:

courses(dept char(4), courseID integer, name varchar(80), instructor varchar(80))

students(sid char(9), name varchar(80), …)

enrolled(sid char(9), courseID integer, …)

 This is pretty much the only construct

Dept CourseID Name Instructo

r

CMSC 424 … …

CMSC 427 … …

An instance of the courses relation

 More powerful model, commonly used during conceptual design
◦ Easier and more intuitive for users to work with in the beginning

 Has two main constructs:
◦ Entities: e.g. courses, students

◦ Relationships: e.g. enrolled

 Diagrammatic representation

course enrolled

dept

name

courseID

instructor

student

name

sid

semester

 Example schema: R(A, B)

 Practical languages
◦ SQL

 select A from R where B = 5;

◦ Datalog (sort of practical) – Has seen a resurgence in recent years

 q(A) :- R(A, 5)

 Formal languages
◦ Relational algebra

 πA (B=5 (R)) -- You will encounter this in many papers

◦ Tuple relational calculus

 { t : {A} | ∃ s : {A, B} (R(A, B) ∧ s.B = 5) }

◦ Domain relational calculus

 Similar to tuple relational calculus

 Important thing to keep in mind:
◦ SQL is not SET semantics, it is BAG semantics

◦ i.e., duplicates are not eliminated by default

 With the exception of UNION, INTERSECTION, MINUS

◦ Relational model is SET semantics

 Duplicates cannot exist by definition

 Relational algebra: Six basic operators
◦ Select (σ), Project (π), Carterisan Product (×)

◦ Set union (U), Set difference (-)

◦ Rename ()

 Tables: r(A, B), s(B, C)

name Symbol SQL Equivalent RA expression

cross product × select * from r, s; r × s

natural join ⋈ natural join πr.A, r.B, s.Cr.B = s.B(r x s)

theta join ⋈θ from .. where θ; θ(r x s)

equi-join ⋈θ (theta must be equality)

left outer join r ⟕ s left outer join (with “on”) (see previous slide)

full outer join r ⟗ s full outer join (with “on”) -

(left) semijoin r ⋉ s none πr.A, r.B(r ⋈ s)

(left) antijoin r ⊲ s none
r - πr.A, r.B(r ⋈ s)

 Goal: What is a “good” schema for a database? How to
define and achieve that

 Problems to avoid:
◦ Repetition of information

 For example, a table:

 accounts(owner_SSN, account_no, owner_name, owner_address, balance)

 Inherently repeats information if a customer is allowed to have more
than one account

◦ Avoid set-valued attributes

1. Encode and list all our knowledge about the schema

◦ Functional dependencies (FDs)

 SSN → name (means: SSN “implies” name)

◦ If two tuples have the same “SSN”, they must have the same “name”

 movietitle → length ???? Not true.

◦ But, (movietitle, movieYear) → length --- True.

2. Define a set of rules that the schema must follow to be considered good

◦ “Normal forms”: 1NF, 2NF, 3NF, BCNF, 4NF, …

◦ A normal form specifies constraints on the schemas and FDs

3. If not in a “normal form”, we modify the schema

See 424 class notes for more

 SQL supports defining integrity constraints over the data
◦ Basically a property that must always be valid

◦ E.g., a customer must have an SSN, a customer with a loan must
have a sufficiently high balance in checking account, etc.

 Triggers
◦ If something happens, then execute something

 E.g., if a tuple inserted in table R, then update table S as well

◦ Quite frequently used in practice, and surprising not as well
optimized for large numbers

 Storage:
◦ Need to be cognizant of the memory hierarchy

 Many of traditional DBMS decisions are based on:

 Disks are cheap, memory is expensive

 Disks much faster to access sequentially than randomly

 Much work in recent years on revisiting the design decisions…

◦ RAID: Surviving failures through redundancy

 Indexes
◦ One of the biggest keys to efficiency, and heavily used

◦ B+-trees most popular and pretty much the only ones used in
most systems

◦ Others: R-trees, kD-trees, …

1. Parsing and translation

2. Optimization

3. Evaluation

 Parallel and Distributed Environments

◦ Shared-nothing vs Shared-memory vs Shared-disk

◦ Speedup vs Scaleup

 How to ”parallelize” different relational operations

 Motivation for emergence of NoSQL Systems

 Map-reduce Framework for Large-scale Data Analysis

 Apache Spark: Resilient Distributed Dataset (RDD) Abstraction

 MongoDB
◦ JSON Data Model

◦ MongoDB Query Language

 Transaction: A sequence of database actions enclosed

within special tags

 Properties:

◦ Atomicity: Entire transaction or nothing

◦ Consistency: Transaction, executed completely, takes database from

one consistent state to another

◦ Isolation: Concurrent transactions appear to run in isolation

◦ Durability: Effects of committed transactions are not lost

 Consistency: programmer needs to guarantee that

 DBMS can do a few things, e.g., enforce constraints on the data

 Rest: DBMS guarantees

 Atomicity: Through “logging” of all operations to “stable

storage”, and reversing if the transaction did not finish

 Isolation:

◦ Locking-based mechanisms

◦ Multi-version concurrency control

 Durability: Through “logging” of all operations to “stable

storage”, and repeating if needed

 Some key concepts:

◦ Serializability, Recoverability, Snapshot Isolation, Two-phase

locking, Write-ahead logging, …

 We will cover some of the key topics from the
“Architecture” paper, and discuss some of the broader
data management issues

 First 3 programming assignments will be posted right
away (will be due over the next 4-6 weeks)

◦ Generally we are quite flexible about these assignments

 First written assignment will be out soon as well

◦ Focusing on first 2-3 readings

 Motivation: Why study databases ?

 Course Logistics

 History of Databases

 Background: 424 Summary

 Abstractions, Models, and Implementations

 Architecture of a Traditional Database System

 No laptop use allowed in the class !!

 User-facing

◦ Data Model

◦ Query Language and/or Programming Framework

◦ Transactions

◦ Performance Guarantees/Focus

◦ Consistency Guarantees

 Implementation

◦ In-memory and at-rest storage representations

◦ Target Computational Environment

◦ Query processing and optimization

◦ Transactions’ implementation

◦ Support for streaming, versioning, approximations, etc.

These ”define” the

“type” of the database

 A collection of concepts that describes how data is represented and
accessed
◦ Schema: A description of a specific collection of data, using a given data model

 Goal is to capture the properties of the data at the “right level”

◦ Too strict → may not be able to store the data we want

◦ Too loose → may not be able to build a query language on top, or efficiently
optimize

 Examples:
◦ Relational, Entity-relationship model, XML, JSON…

◦ Object-oriented, object-relational, semantic data model, RDF…

◦ Sets of ”objects”, ML models

 Define how to go from input data, to some desired output
◦ Depends to some extent on the data model, but still a lot of flexibility

 Want this to be as ”high-level” or “declarative” as possible
◦ Too high-level → fewer use cases will be covered

◦ Too low-level → harder to use, support or optimize

◦ Lot of work on trying to find the “right” level of abstraction

◦ Interest in formally defining the power of a language, etc.

 Examples:
◦ SQL: Input relations → output relations

◦ Apache Spark RDD or Map-Reduce: Input “set of objects” → output ”set of objects”

◦ BlinkDB: Input relations + approximation guarantees → output relations

◦ Visualization Tools: Input datasets → Plots

 If supporting “streaming” or “versioning” or “approximations”, need to
define what that means

 Support for updating the data in the DMS
◦ Some of the same issues as query language w.r.t. the expressiveness of the language

 Some considerations:
◦ Consistency guarantees around updates (ACID or not)

 Becomes more complicated in the distributed setting, with replication and sharding/partitioning

◦ Batch updates vs one-at-a-time (impact on staleness)

◦ Immutability: guarantees around no-tampering (e.g., blockchains)

◦ Versioning: ability to support multiple branches, and ”time-travel”

 If the language is not expressive enough, have to do more work in the applications → impact on
guarantees

◦ e.g., MongoDB (and many other NoSQL stores) didn’t support multi-collection updates for a
long time

 How is data laid out on disks (at rest) and in-memory, and across machines
◦ Significant impact on performance

◦ Depends somewhat on data model, but not fully (“Data Independence”)

◦ May use different representations when loading in memory (serialization/deserialization cost)

◦ Usually we also build “indexes” for efficient search

◦ Transmission over network also a concern

 Some options:
◦ Row-oriented storage for relational model

 Traditional approach: good for updates but bad for queries

◦ Column-oriented storage for relational model

 Really good performance for queries, but updates not easy to handle

◦ Object storage (e.g., with pointers) for object-oriented databases or Graph databases

 Pointers don’t translate from disk to memory easily

◦ Hierarchical storage for JSON/XML

◦ Structured file formats like CSV (row), Parquet (columnar) for Data Lakes

 Less up-front cost of “ingesting” the data, but more complex and less efficient to support

 Harder to put any “structure” or “data model” on top of it

 Thoughts:

◦ Cost of “ingest” must be amortized over many uses – for one-time use of data, prefer to leave in its native format

“Data Independence” → not

”required” to, e.g., use pointers
for graph databases – easy to

convert to row-oriented storage

 Many, many combinations here
◦ Single machine vs parallel (locally) vs geographically distributed

◦ Hardware

 e.g., multi-core vs many-core, large-memory, disks or SSDs, RDMA, cache assumptions, and so on

◦ Use of cloud/virtualization
 Can have a significant impact on performance guarantees

 Also, may put limits on what can be done (e.g., if using “serverless functions”)

 Hard to build a different system for each combination

 Increasing interest in “auto-tuning” through use of ML
◦ Try to ”learn” how to do things for a new environment

 Depends significantly on how “declarative” is the query language/framework

 Most systems support a collection of low-level “operators”
◦ Relational: joins, aggregates, etc.

◦ Apache Spark: map, reduce, joins, group-by, …

 Should choose a good set of operators
◦ Restricts the optimization abilities

◦ e.g., if only support “binary” joins then lose the ability to optimize multi-way joins

◦ In general, a sequence of operations will perform worse than a single equivalent operation

 Need to map from the overall “task” or “query” into those low-level operators
◦ Usually called a “query execution/evaluation plan”

◦ There may potentially be many many ways to do this (depending on how declarative)

◦ Try to choose in a “cost-based” manner

 Need the ability to estimate costs of different plans

 ”Heuristics” often preferred in less mature systems

 Cost measure
◦ Important to decide what resource you are optimizing

◦ Need to focus on the bottlenecks of the environment

◦ Traditionally: CPU, Memory, Disks

◦ Today, network costs play a very important role

◦ Also: optimizing for “total resources” or “wall-clock time” ?

 Especially important in parallel/distributed environments

 May wish to “pre-compute” certain queries to reduce the query execution times
◦ Especially for ”real-time” queries over “streaming” data

◦ Often called “materialized views” in the context of relational databases

◦ Any pre-computed data must be kept up-to-date

 Adaptive query processing
◦ May wish to “change” the query plan during execution based on what we are seeing

SQL ”Query Plan”

Apache Hive ”Query Plan”
(Hive is an SQL layer on top of Hadoop)

Machine Learning Pipeline

Data Preparation and Visualization Pipeline

Dataset 1

Dataset 2

Dataset 3

Dataset 4

Dataset 5

Binary
Operation 1

Unary
Operation 1

Binary
Operation 2

Ternary
Operation 1

Unary
Operation 1

Output
Dataset 1

Maybe Tables in an RDBMS, Files in HDFS,
or Images in a key-value store

Maybe Joins, or Aggregates, or Machine
Learning Tasks, or Data Cleaning Tasks,

or…

Maybe Another RDBMS Table, a New File,
or a Machine Learning Model

 Streaming
◦ Usually need to keep a lot of pre-built state to handle high-rate data streams

◦ Each new update → modify the pre-built state, and output results

◦ Hard to do this in a generic way

 A specialized system will likely have much lower response times (e.g., in financial settings)

 Versioning
◦ So far, the focus has primarily been on storage (i.e., how to compactly store the version history over time)

◦ The “retrieval” of old versions considered less important to date

 Immutability
◦ More interest in recent years on this, but still pretty open from a database perspective

 Approximate Query Processing
◦ Usually need additional constructs like “random samples”

 Not intended to cover all data management research, but as a helpful guide to
think about data management systems
◦ Data cleaning, visualizations, security, privacy, …

 Finding the right abstractions is often the key to wide usage

 More complex abstractions may provide short-term wins, but often become
difficult to manage and use over time

 Implementations have become very complex and involved today
◦ Easy to obtain significant benefits focusing on a specific workload and hardware

◦ But hard to get, and/or reason about performance in general settings

◦ Experimental evaluations can’t cover all different scenarios

 Motivation: Why study databases ?

 Course Logistics

 History of Databases

 Background: 424 Summary

 Abstractions, Models, and Implementations

 Architecture of a Traditional Database System

 No laptop use allowed in the class !!

 Paper by: Hellerstein, Stonebraker, Hamilton

 Covers the main components of a typical relational DBMS

 Goals for today:

◦ Discuss an end-to-end system and issues like admission control,
process models, etc.

◦ Won’t go deep into query processing, transactions, etc. – that will
be later

Clients connect using
standard or proprietary
protocols to submit
“queries”/”transactions”

Web Server

App Server

ODBC/JDBC

Admission Control

Assign a “thread of
computation”

Parse, compile, optimize
the query

Start fetching or
updating the data
- get locks
- create log records if

needed
- etc…

Return data batch-at-a-
time

 Question: How do we handle multiple user requests/queries “concurrently”?

 Lot of variations across Operating Systems

◦ OS Process: Private address space – scheduled by kernel

◦ OS (Kernel) Thread: Multiple threads per process – shared memory

 Support for this relatively recent (late 90’s, early 00’s)

 OS can “see” these threads and does the scheduling

◦ Lightweight threads in user space

 Scheduled by the application

 Need to be very very careful, because OS can’t pre-empt

 e.g., can’t do Synchronous I/O

◦ DBMS Threads

 Similar to general lightweight threads, but special-purpose

 Each query gets its own “process” (e.g., PostgreSQL, IBM D2, Oracle)*

◦ Heavy-weight, but easy to port to other systems

◦ Need support for “shared memory” (for lock tables, etc)

* All circa 2007 – may have changed since then.

 A single-multithreaded server

◦ Need support for “asynchronous” I/O (so threads don’t block)

◦ Easy to share state, but also makes it easy for queries to interfere

 Typically DBMS allots a pool of processes or threads, and multiplexes
clients/requests across those

 Buffer Pool

◦ Manages the disk blocks that are currently being used by the different workers

◦ Use some replacement strategy like Least-recently-used

 Log Tail

◦ All updates generate “log” records that need to properly numbered and flushed to disk

 Lock Table

◦ For synchronization across workers in case of conflicts

 Client Communication Buffers

◦ To keep track of what data has already been sent back to clients, and to buffer more
outputs

 Buffer Pool

◦ Manages the disk blocks that are currently being used by the different workers

◦ Use some replacement strategy like Least-recently-used

 Log Tail

◦ All updates generate “log” records that need to properly numbered and flushed to disk

 Lock Table

◦ For synchronization across workers in case of conflicts

 Client Communication Buffers

◦ To keep track of what data has already been sent back to clients, and to buffer more
outputs

 Shared-memory and shared-nothing architectures prevalent today

 Shared-memory: easy to evolve to because of shared data structures

 Shared-nothing: require more coordination

◦ Data must be partitioned across disks, and query processing needs to be aware of that

◦ Single-machine failures need to be handled gracefully

 Shared-disk (e.g., through use of Storage Area Networks)

◦ Somewhat easier to administer, but requires specialized hardware

◦ Main difference between this and shared-nothing is primarily the retrieval costs

 Non-uniform Memory Access (NUMA)

◦ Seen increasingly today with many-core systems

◦ Any processor can access any other processor’s memory, but the costs vary

Query Parsing and Authorization

Query Rewrite

Query Optimizer

Query Executor

Access Methods

View expansion, subquery

flattening, logical rewrites of
expressions, etc.

Search plan space, selectivity

estimation, top-down vs
bottom-up, parallelism, query

compilation

Iterator model, pipelining vs

materialization, Batch-at-a-
time

 Widely used today for large-scale analytics

 Use specialized index structures (like bitmap indexes)

 Bulk uploads of batches of data

 Materialized Views

 OLAP and Data Cubes

 Specialized optimization techniques
◦ Snowflake schemas are very common

◦ Often use techniques like Bloom Filters or bitmap based operations

◦ Use Columnar Storage today

 Databases need to be able to control:
◦ Where data is physically stored on the storage devices, especially what is sequentially stored (i.e.,

spatial locality)

 To reduce/estimate costs of operations

◦ What is in memory vs not in memory (temporal locality)

 To optimize query execution

◦ How is memory managed

 To avoid double copying of data

◦ In which order data is written out of volatile storage (memory) into non-volatile storage
(disks/SSDs)

 For guaranteeing correctness in presence of failures

 Operating systems often get in the way
◦ Databases often allocate a large file on disk and manage spatial locality themselves (no guarantees

that the file is sequential though)

◦ Use memory mapping to reduce double copying within memory

◦ And many other tricks to get around OS restrictions…

 ACID properties
◦ Atomicity, Isolation, and Durability are database guarantees – Consistency is typically a

programmer guarantee

 Serializability: A notion of “correctness” of concurrent transactions
◦ Standard approaches: Strict 2-phase Locking, Multi-version Concurrency Control, Optimistic

Concurrency Control

◦ A lot of work in the last 15 years – MVCC probably considered the best option today

 Difference between “locking” and “latching”
◦ Latches are more low-level, basically synchronization primitives

◦ Locks are logical and taken on, e.g., relations/tuples/objects, etc.

 Isolation Levels
◦ From the early days, databases supported looser definitions of consistency

◦ Not easy to formalize

 Recovery
◦ Traditionally done through “logging”, i.e., keep a record of all updates and use it for undoing bad

changes, and redoing good changes

 Catalog Manager (more appropriately today: “Metadata” Manager)
◦ Usually stored as special system tables

◦ Pulled into memory at the start for efficiency, into special data structures

 Memory Allocator
◦ Need to be very careful with allocating new chunks of memory

◦ PostgreSQL query processor basically pre-allocates everything and reuses all the memory

 Disk Management Subsystems
◦ Many different storage devices widely used (e.g., RAID)

◦ Need to support a uniform interface on top (through abstractions)

◦ Makes optimization harder

 Replication Services

 Administration, Monitoring, Utilities

 Read the “Architecture” paper, and raise any questions/clarification issues

 Although outdated, this will form the basis on which the rest of the semester
builds up
◦ First written assignment will cover some of these topics as well

 Next two weeks:
◦ Different data models/query languages/programming frameworks

◦ Will ignore the implementation issues in the papers

	Slide 1: CMSC 724: Database Management Systems Introduction/Background
	Slide 2: Outline
	Slide 3: Overview
	Slide 4: Databases: A Brief History
	Slide 5: Databases: A Brief History
	Slide 6: Data Management Today
	Slide 7: What we will cover
	Slide 8: Databases: Thoughts
	Slide 9: Course Overview
	Slide 10: Course Structure
	Slide 11: Learning Goals
	Slide 12: Course Overview: Grading
	Slide 13: Course Overview: Grading
	Slide 14: Course Overview: More Logistics
	Slide 15: Outline
	Slide 16: Why not use file systems to store data?
	Slide 17: Why not use file systems to store data?
	Slide 18: DBMSs to the Rescue
	Slide 19: DBMSs to the Rescue: Data Modeling
	Slide 20: DBMSs to the Rescue: Data Abstraction
	Slide 21: Data Abstraction
	Slide 22: Data Abstraction
	Slide 23: What about a Database System ?
	Slide 24: Basic topics covered in 424
	Slide 25: Basic topics covered in 424
	Slide 26: Relational Data Model
	Slide 27: Entity-Relationship (E/R) Data Model
	Slide 28: Relational Query Languages
	Slide 29: Relational Query Languages
	Slide 30: Join Variations (SQL and Relational Alg.)
	Slide 31: Relational Model: Normalization
	Slide 32: Relational Model: Normalization
	Slide 33: Semantic Constraints
	Slide 34: Storage
	Slide 35: Query Processing
	Slide 36: Parallel and NoSQL
	Slide 37: Transactions
	Slide 38: Transactions: How?
	Slide 39: Next class…
	Slide 40: Outline
	Slide 41: Design Dimensions for a DMS
	Slide 42: Data Models
	Slide 43: Query Languages/Frameworks
	Slide 44: Transactions/Updates (User-facing)
	Slide 45: In-memory and at-rest storage representations
	Slide 46: Target Computational Environment
	Slide 47: Query Processing and Optimization
	Slide 48: Query Processing and Optimization
	Slide 49: Query Plans vs…
	Slide 50: vs … Data Transformation Pipelines
	Slide 51: Many similarities across systems…
	Slide 52: Support for Streaming, Versioning, Approximations, etc…
	Slide 53: Recap
	Slide 54: Outline
	Slide 55: Architecture of a Traditional DBMS
	Slide 56: Main Components
	Slide 57: Life of a Query
	Slide 58: Process Models
	Slide 59: Process per DBMS Worker
	Slide 60: Thread per DBMS Worker
	Slide 61: Process (or Thread) Pools
	Slide 62: Shared Data Structures
	Slide 63: Shared Data Structures
	Slide 64: Parallel Architectures
	Slide 65: Parallel Architectures
	Slide 66: Relational Query Processor
	Slide 67: Data Warehouses
	Slide 68: Storage Management
	Slide 69: Transactions
	Slide 70: Shared Components
	Slide 71: Recap, and Next Steps

