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 3 programming assignments and 2 writing assignments released

 Only the 2nd Writing Assignment has a hard deadline

◦ Ideally finish the SQL assignment and 1st Writing Assignment by end of September

 See “Assignments” tab for the schedule

 ”Student-led Discussions”

◦ Prepare 4-5 slides, but plan is to run this as a discussion session rather than presentations

◦ 8 slots still unclaimed – I will do random assignments tomorrow

◦ First set of papers to be discussed next Thursday



 Data Models: Then, and now

◦ History of Data Models (“what comes around…”)

 Languages

◦ Overview

◦ Datalog (“a survey of research…” and “declarative networking…”)

 Map-reduce and Spark

◦ Original MR Abstraction (”mapreduce:” …”)

◦ Spark (“resilient distributed datasets…”)

 SystemML: An abstraction for ML

 GraphX: An abstraction for Graphs



 Goal is to choose a good data model for the data

◦ Needs to be sufficient expressive – should capture real-world data

◦ Easy to use for users – support physical and logical data independence

◦ Lends to good performance

 Many similarities across models

◦ Much convergence in the last two decades

 Keep in mind orthogonal issues of schema maintenance and evolution, and 
data integration/reconciliation 

◦ Possibly a much bigger headache in practice

 No doubt relational is the best low-level model, but should it continue to be 
the high-level model as well?



 Examples of Physical Data Dependence (from Ted Codd, 1970)

◦ Ordering dependence: How records are sorted hard-coded into the apps

◦ Indexing dependence: What indexes are present on the data hard-coded in the apps

◦ Access Path dependence: Dependence on the hierarchy or the network model chosen

 Logical data independence

◦ Ability to make changes to the schema, e.g., add a new attribute, combine two tables, etc., 
without affecting external applications or APIs

◦ Can be achieved through use of “views” in RDBMSs

 In general: we want the application programs to not hard-code any of those 
decisions so those can be changed easily





 Main constructs: “record type” (schema), “instance” (must obey schema), “keys” (to 
uniquely identify records)

 Record types must be arranged in a hierarchy

◦ Record instances stored using the same hierarchy

◦ Records with the same parent stored as a linked list
Repeated information

for the first hierarchy

Can’t store a part not supplied by anybody



 ”Record-at-a-time” query language

◦ Programmer had to keep track of the “currency” indicators in their program – leads to complex edge cases

 Multiple storage options (e.g., sequential, using a B+-Tree, using Hashing)

 Supported some “physical data independence”

◦ DL/1 language was written against the logical hierarchy to some extent

◦ But use of hashing vs indexing still important (e.g., can’t use “get-next” on hashing storage)

 Several hacks added later to support non-tree structured data

◦ Adds much more complexity



 Some Lessons
◦ Physical and logical data independence are highly desired

◦ Tree-structured data models restrictive – not general enough, and hard to modify

◦ Manual query optimization unlikely to work over long term

 We see the same issues with JSON and XML databases of today
◦ No logical data independence – the hierarchies get hard-coded into queries

◦ Significant physical data independence today though

{“id”: “16”, 

 “Name”: “General Supply”,

“Location”: “Boston, MA”,

“supplies”: [

         {“id”: “27”, “Name”: “Power Saw”, “Qty”: 7, “Color”: “gray”},

         {………}

]},

{“id”: “24”, 

 “Name”: “Special Supply”,

“Location”: “Detroit, MI”,

“supplies”: [

         {“id”: “27”, “Name”: “Power Saw”, “Qty”: 10, “Color”: “gray”},

         {………}

]}

Collection “Suppliers”:

{“id”: “16”, 

 “Name”: “General Supply”,

“Location”: “Boston, MA”,

“supplies”: [

         {“id”: “27”, “Qty”: 7},

         {………}

]},

Collection “Parts”:

{“id”: “27”,

  “Name”: “Power Saw”,

  “Color”: “silver”

}

VS



 Directed Graph Data Model, with a “record-at-a-time” data manipulation language

 Fewer restrictions than the IMS model

 But much more complex for the programmer (“programmer as a navigator”)

 Limited physical or logical data independence

 Harder to do bulk-loading of data





 Very similar to today’s graph data model proposals (e.g., “property graph”)

 But those show significantly more physical and logical data independence

◦ Depending on the actual implementation

◦ Need to enforce schemas (many graph databases today don’t)

 Many of the identified limitations of CODASYL really about the language and 
some implementation choices

 Also bears much similarity with Entity-Relational Model (at the conceptual 
level)

◦ E/R Model never really had an implementation or a language



 Proposed by Ted Codd in 1969/1970

◦ “IMS programmers were spending large amount of time doing maintenance on IMS applications when logical or physical 
changes occurred”

 Proposal:

◦ Store data in a simple data structure (tables)

◦ Access it through a high-level set-at-a-time DML (relational algebra → SQL)

◦ No need to mandate any physical storage design (each system can do its own, and change easily as needed)

 Can easily represent 3-entity relationships (difficult for network model)

 No existence dependencies that plagued hierarchical model

 Cons: 

◦ Transitive closure

◦ (initially) performance

◦ (initially) too complex and mathematical languages



 Many debates in 1970’s 

 Relational Model Advocates

◦ Nothing as complex as CODASYL can possibly be a good idea

◦ CODASYL does not provide acceptable data independence 

◦ Record-at-a-time programming is too hard to optimize 

◦ CODASYL and IMS are not flexible enough to easily represent common situations (such as marriage 
ceremonies)

 CODASYL Advocates 

◦ COBOL programmers cannot possibly understand the new-fangled relational languages

◦ It is impossible to implement the relational model efficiently 

◦ CODASYL can represent tables, so what’s the big deal?

 Both camps changed positions to move towards each other 

◦ Relational systems got user-friendly languages (SQL, QUEL), and efficient implementation 

 (According to Authors) Effectively settled by mini-computer revolution, and by IBM 
who announced new relational products

◦ And by non-portability of CODASYL engines



 Don Chamberlin of IBM was an early CODASYL advocate (later co-invented 
SQL) 

“He (Codd) gave a seminar and a lot of us went to listen to him. This was as I say a 
revelation for me because Codd had a bunch of queries that were fairly complicated 
queries and since I’d been studying CODASYL, I could imagine how those queries would 
have been represented in CODASYL by programs that were five pages long that would 
navigate through this labyrinth of pointers and stuff. Codd would sort of write them 
down as one-liners. These would be queries like, "Find the employees who earn more 
than their managers." [laughter] He just whacked them out and you could sort of read 
them, and they weren’t complicated at all, and I said, "Wow." This was kind of a 
conversion experience for me, that I understood what the relational thing was about 
after that.” 



 Explicitly represent entities and relationships, and connections between them

◦ Much easier for conceptual development of a schema 

 No real uptake as the physical data model used by a database back then

◦ Lot of similarities to CODASYL

◦ Easy to map to relational

 Widely used today for initial schema design

◦ Normal forms are too difficult to work with

◦ Don’t address the question of how to get started



 Many similarities to Object-relational Mapping Frameworks (like ruby-on-rails, python Django, 
etc).

◦ Those frameworks explicitly model ”object types” and “relationships” between them

◦ Very widely used by application programmers today

◦ Typically mapped to a RDBMS at the backend (not always a faithful mapping)

◦ Also similar to “property graphs” (assuming schemas are enforced)

 In my opinion: E/R model should be resurrected as the primary model for RDBMS

◦ Maintenance of relational model is too hard

◦ Changes made over time lead to un-normalized schemas with many issues

◦ See “Database Decay” by Stonebraker et al.



 Many new proposals focusing on specific applications that were not a good fit for relational

◦ CAD, Text Management, Time, Graphics, etc.

 GEM [Zaniolo 83]

◦ Set-valued attributes (e.g., available colors in “parts”)

◦ Cascaded dot notation (e.g., how you do in ORMs)

◦ Inheritance hierarchies

 Main cons:

◦ No real improvements over the relational model, either functionality or performance

◦ Some of the key constructs could be easily added to relational model (e.g., new data types, arrays)



 Designed to handle the “impedance mismatch”

◦ How data is represented in memory (typically as objects) vs how it is stored (in a normalized relational schema)

 Essentially became “persistent” programming languages

◦ Interesting technical challenge: “pointer swizzling”

 Weak support for transactions, queries, etc.

◦ Largely single-user systems

◦ DBMS must run in the same address space as the application

 Several reasons didn’t succeed

◦ No major additional functionality for most applications (i.e., a niche market)

◦ No standards

◦ Too tied to a single programming language 

 Bear many similarities to Graph Databases

◦ OrientDB, one of the major graph databases, basically an Object Store



 Motivated by need to represent more complex data types

◦ e.g., locations, rectangles, complex numbers etc.

 Possible to do in relational to some extent, but very painful and error-prone

 Instead, have:

◦ User-defined types

◦ User-defined operators (that change the meaning of “+”)

◦ User-defined functions to work on those types (e.g., to find if a Point lies in a Rectangle)

◦ User-defined “indexes” (for efficient searching): B+-trees don’t work well on spatial data

 Postgres (research project at Berkeley, led by Stonebraker) the first real implementation 

 UDFs a major benefit 

◦ By putting code in the databases, avoided many round-trips to the database from the client

VS



 Context: XML very popular in the industry and academia circa 2000

◦ When this article was first written

 Flexible schemas (“schema later” or “schema-on-read”)

◦ Don’t require a schema in advance – instead impose it when reading, or make it part of the data itself (self-describing)

◦ Relational databases will reject any data that doesn’t conform to the schema

◦ Easy to state, but hard to use due to semantic heterogeneity and other issues

◦ Need a well-defined understanding of what the fields mean to use it properly (i.e., need a schema)

 These databases also support easy schema evolution, which is a major benefit especially in 
early application development



 Context: XML very popular in the industry and academia circa 2000

◦ When this article was first written

 Main constructs in XML (and JSON today, mostly)

◦ ”Self-describing” (the attribute names part of the data)

◦ Hierarchical format

◦ Can have links to other records (like CODASYL)

◦ Set-valued attributes (leads to more complex language)

 XML popular early on as a “on-the-wire format” (as is JSON today)

◦ Text-based, so can go through firewalls

◦ Not proprietary

◦ JSON widely used for APIs today

◦ Other formats like Parquet are more common for large volumes of data



 From redbook.io: http://www.redbook.io/ch1-background.html

 XML didn’t really take over

◦ Too complex, especially query languages (XQuery)

◦ Inefficient implementations (e.g., for indexes)

◦ No compelling use cases

 JSON more popular and very similar

◦ Good for sparse data – can be handled by adding a JSON data type to the database

◦ Schema on read – basically just a ”project” on fewer attributes of interest

◦ Doesn’t really solve semantic heterogeneity problems

http://www.redbook.io/ch1-background.html


 Quite a few different data models, but map closely to one of the standard ones

 Document Data Model: JSON, XML, etc.

 Key-Value: Simple interface

◦ put(key, value), get(key)

◦ Lot of logic in what “value” is and how it is manipulated

◦ e.g., value may be JSON, time-series, etc.

 Graph Data Models:

◦ A few different ones: Property Graph, RDF, …

 Column families (e.g., Cassandra)

◦ Puts a little more structure on key-value

◦ “values” themselves are stored as columns of information

 Array Data Models

◦ Proposed for scientific data management

◦ Key abstraction: an array or a matrix

◦ Key operations: Slicing, Subsetting, Filtering, etc.

Databases: A Brief History What goes around comes around

Data Models

RDF: Resource Description Framework

Amol Deshpande CMSC724: Data Models



 Data Models: Then, and now

◦ History of Data Models (“what comes around…”)

 Languages

◦ Overview

◦ Datalog (“a survey of research…” and “declarative networking…”)

 Map-reduce and Spark

◦ Original MR Abstraction (”mapreduce:” …”)

◦ Spark (“resilient distributed datasets…”)

 SystemML: An abstraction for ML

 GraphX: An abstraction for Graphs



 Procedural/imperative query languages

◦ Support a set of data-oriented operations

◦ Usually need to specify the sequence of steps to be taken to get to the output

◦ Often map one-to-one with the physical operators that are implemented

 Large gap between those two ➔ more opportunities to optimize

 Declarative query languages

◦ Specify the desired outcome, typically as a function over the inputs

 A different issue than how ”high-level” or abstract the language is

 Most languages today are somewhere in-between

◦ SQL is more declarative than procedural



DBTG: CODASYL Language

 DL/1 or DBTG were procedural in nature

 Not easy to write complex data processing operations



 Original set of operators (select, project, join, union/intersection) proposed 
by Ted Codd in 1970

◦ His “join” operation was somewhat different, but “natural join” same as today

◦ Also procedural, but high-level and easy to use

 Six Basic Operations operating on Relations (see 424 slides for more)

◦ Select (σ): Unary – select a subset of rows

◦ Project (π): Unary – select a subset of columns

◦ Set Union and Set Difference: Binary

◦ Cartesian Product (×): Binary

◦ Rename (): Need to be able to do self-joins



 Sets or “multi-sets” of .. 
◦ Objects → key-value pairs → tuples

o1

o2

o3

o4

o1

o1

o1

o4

Set of objects (e.g., images, 

JSON documents)

Multi-set of objects

Set of key-value pairs (e.g., 

pairs of (userid, profile))

k1 o1

k1 o2

k2 o3

k3 o4

A B C D

⍺

⍺

β

β

⍺

β

β

β

1

5

12

23

7

7

3

10

Set of tuples

aka Relation/Table



 Input: Table, Output: Table

 Select only those rows that match the condition

 SQL: “where”

 May be called “match” or “find” or ”filter”

Relation r A B C D

⍺

⍺

β

β

⍺

β

β

β

1

5

12

23

7

7

3

10

σ
A=B ∧ D > 5 

(r) A B C D

⍺ 

β

⍺ 

β

1

23

7

10



 Input: Table, Output: Table

 Select only those columns that match the condition

 SQL: “select”

Relation r π
A,D 

(r) A D

⍺

⍺

β

β

7

7

3

10

A D

⍺

β

β

7

3

10

A B C D

⍺

⍺

β

β

⍺

β

β

β

1

5

12

23

7

7

3

10



 Input: Rows of Objects, Output: Rows of Objects
◦ i.e., don’t care about what’s in a row

 For each row, apply a function

 SQL: “select” can handle this (with UDFs)

Table t
o1

o2

o3

o4

t.map(f)
f(o1)

f(o2)

f(o3)

f(o4)



 Has other names (e.g., unwind)

 Input: Rows of Objects, Output: Rows of Objects

 For each row, apply a function that may generate >= 0 rows

 SQL: No easy way to do this

Table t
o1

o2

o3

o4

t.map(f)

f(o1) = [o1’, o2’, o3’]

f(o2) = []

f(o3) = [o4’]

f(o4) = [o5’

o1’

o2’

o3’

o4’

o5’



 Input: Collection of (k, v) pairs, Output: Collection of (k, [v]) pairs

◦ k = key, v = value

 Group the input rows by the “key”

 Relational Algebra: No support (can’t have sets as values)

 SQL: Most implementations support it

◦ e.g., postgresql has array aggregates or string aggregates

 Other Names: “nest”

Table t
k1 o1

k1 o2

k2 o3

k3 o4

t.groupByKey()
k1 [o1, o2]

k2 [o3]

k3 [o4]



 Input: Collection of (k, v) pairs, Output: Collection of (k, v’) pairs, where v’ 
may be different data type

 Also called “reduceByKey” or “aggregateByKey” 

 Group values by key, and apply a provided “function” to get a single value

 SQL has a predefined set of functions (SUM, COUNT, MAX, …)

Table t
k1 o1

k1 o2

k2 o3

k3 o4

t.reduceByKey(f)
k1 f(o1, o2)

k2 f(o3)

k3 f(o4)



 PostgreSQL (and other systems) support user-defined aggregate functions
◦ init(): what’s the initial state (e.g., for AVG: (count = 0, sum = 0)) 

◦ update(): modify state given a new value (e.g., for AVG: (count + 1, sum + newval))

◦ final(): generate the final aggregate (e.g., for AVG: sum/count)

◦ The update operation must be insensitive to the order in which the values are processed

◦ i.e., output should be the same if it sees: v1, v2, v3, versus if it sees: v3, v2, v1 in that order

◦ Must process tuples sequentially

 Another way to do it
◦ Provide a binary function that is commutative and distributive

◦ Shouldn’t matter in which order the objects are processed

◦ More ”parallelizable”

◦ Can generate a (sum, count) pair, but for “average” need another “map”

s = init()

s = update(s, v1) 
s = update(s, v2)
…

result = final(s)

Any of these are fine

result = f(f(f(v1, v2), f(v3, v4)), v5)
result = f(f(f(v1, f(v2, v3)), v4)), v5)
result = f(f(f(f(f(v1, v2), v3), v4), v5)

result = f(f(v1, f(v2, v3)), f(v4, v5))



 Opposite of “nest” (group by)

 Similar to “flatMap” and “unwind” (in MongoDB)
◦ But defined for relational algebra (extended to handle sets as values)

 Useful abstraction to deal with non-1NF data (e.g., JSON which supports 
arrays)

Table t

k1 o1

k1 o2

k2 o3

k3 o4

k1 [o1, o2]

k2 [o3]

k3 [o4]

unnest
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Figure 5. UNNEST(SUBJECT(SUJBECT')EXAMS) 

 

The above definitions express necessary and sufficient conditions for the discrimination between Decomposable and 

Non-Decomposable attributes. 

 

3  UNNESTING AND NESTING IN NESTED RELATIONS 
 

Fischer and Thomas (1983), Jaeschke and Schek (1982), Schek and Scholl (1986), and Thomas and Fischer (1986) 

mention that unnesting a nested relation R and then nesting it on the same attribute does not always give the original 

relation R. In Fischer and Thomas (1983) the following example (Figure 6) is given as a counterexample to show that 

the equality NESTB=(B′)(UNNESTB(R)) = R does not necessarily hold at all times. Jaeschke and Schek (1982) prove that 

this equality does not hold when a nested relation is not “nested completely” along the nested attribute. In other words, 

when a nested attribute is also a key attribute, the nest operation is not the inverse of the unnest operation. In Figure 6, 

relation R is not “nested completely” along attribute B because the two nested tuples of relation R, having the same data 

value in the atomic attribute A, should form one nested tuple. To overcome this problem, several researchers (Abiteboul 

& Bidoit, 1983; Deshpande & Larson, 1991; Roth, Korth & Silberschatz, 1988) have suggested that nested relations 

should be in Partitioned Normal Form (PNF) that means that all or a subset of the flat attributes of the relation should 

form a key for the relation, and recursively, each nested attribute of a relation is also in Partitioned Normal Form. 

However, this is an undesirable restriction that is difficult to apply universally because occasionally it might be 

preferable to have nested attributes as key attributes in a relation (Garani, 2003). 
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From: Nest and Unnest operations in nested relations

Georgia Garani

Data Science Journal, May 2008



 Input: Two collections, Output: One collection

 SQL support: union/except/intersection
◦ Requires collections (tables) to have the same schema

◦ Removes duplicates by default (most SQL operations don’t remove duplicates)

◦ Can use “union all” etc., to preserve duplicates

Relation r, s A B

⍺

⍺

β

1

2

1

A B

⍺

β

2

3

r

s

r ⋃ s: A B

⍺

⍺

β

β

1

2

1

3

A B

⍺

β

1

1

r  – s:



 Input: Two tables, Output: One table

 Note: a “set” product will result in nested output
◦ First row would be: ((alpha, 1), (alpha, 10, a))

◦ Relation algebra flattens it

Relation r, s r × s:A B

⍺

β

1

2

C D

⍺

β

β 

γ

10

10

20

10

E

a

a

b

b

r

s

A B

⍺
⍺
⍺
⍺
β
β

β

β

1

1

1

1

2
2

2

2

C D

⍺
β

β

γ

⍺
β

β

γ

10

10

20

10

10
10

20

10

E

a

a

b

b

a
a

b

b



 Input: Two tables, Output: One table

 Cartesian product followed by a “select”/“map”

 Many variations of joins used in database literature
◦ Note: semi-join and anti-join are technically “select” operations on “r”, not a ”join” operation



 Another way to look at a left outer join

 Input: Table, Output: Table

 Augment the input table with data from another table

 Supported by “Excel”, MongoDB, etc.

Table R A B C

a1 b1 c1

a2 b2 c2

a3 b1 c1

C D E

c1 d1 e1

c2 d2 e1

c3 d2 e3

Lookup in S using “C”

Table S

A B C D E

a1 b1 c1 d1 e1

a2 b2 c2 d2 e1

a3 b1 c1 d1 e1

C must be a “key” for S, 

o/w not well-defined



 Flip rows and columns

 No SQL equivalent, although supported by many systems (e.g., CROSSTAB in 
PostgreSQL)

 Usually used in conjunction with aggregates (so that the number of rows is 
small)

Table R A B C

a1 b1 c1

a2 b2 c2

a3 b1 c1

a1 a2 a3

b1 b2 b1

c1 c2 c1

pivot



 Sorting and ordering

 Ranking (sparse vs dense rank)

 Distinct (duplicate elimination)

 Sample: generate a random sample

 Data Cubes
◦ Allows aggregating on multiple attributes simultaneously



 Many data management systems view data as collection/multiset of tuples 
or objects or (key, value) pairs

 A common set of operations supported by most

◦ Some Unary, Some Binary (or more generally, n-ary)

 Language constructs often map one-to-one to physical operators, but not 
always

◦ e.g., SQL JOIN is a n-ary operator, that maps to a sequence of binary JOINs

◦ Recent work on trying to do n-ary joins directly (asymptotically better in some cases)

 More declarative a language ➔ More opportunities to optimize

◦ e.g., Pandas (Python Library), MongoDB, Apache Spark RDD interface, etc, not declarative 
even though pretty high-level

◦ However, physical operators themselves can be heavily optimized, especially in parallel 
settings



 Originally SEQUEL: A Structured English Query Language (1974), developed 
at IBM for System R

 Commercial implementations in Oracle and DB2 in late 70’s, early 80’s

 Standardization by ANSI and ISO started in 1996

 Very similar to Relational Algebra in the basic operators it supports

◦ Except for GROUP BYs and AGGREGATEs (among basic constructs), and some Set Operations 
(e.g., NOT IN, ALL)

 Modern implementations support many additional constructs

◦ Window and Partitioning Functions 

◦ Recursion 

◦ Triggers

 Skim through 424 Slides 



 From: “ A critique of SQL”, Date, 1984

 e.g., can’t use a table name as a table expression

 In general, a lot of inconsistencies in what can be used where

 Aggregates don’t have a natural formalism

 Some of those criticisms fixed since then, but many are fundamental to the 
language

vs



 Recognized fairly early on: ”Some High Level Language Constructs for Data 
of Type Relation”; Schmidt, 1976

 Proposed an extension to Pascal/R to include a Relation as a basic data type



 Also led to the work on Object-oriented Databases, and (later) Object-
Relational Mapping (ORM) frameworks

 Language INtegrated Query (LINQ) Framework

◦ A declarative component of the .NET OOPLs (C#, Visual Basic, F#)

◦ Allows querying and manipulating collections of objects using SQL-style syntax



From the DryadLINQ Paper, a 

distributed implementation of LINQ

Very similar to Apache Spark



 Also led to the work on Object-oriented Databases, and (later) Object-
Relational Mapping (ORM) frameworks

 Language INtegrated Query (LINQ) Framework

◦ A declarative component of the .NET OOPLs (C#, Visual Basic, F#)

◦ Allows querying and manipulating collections of objects using SQL-style syntax

 Today, many programming languages have support for list comprehensions, 
dictionaries, and features like that 

◦ With libraries to make it easy to load and store data 

◦ For example, Pandas for Python, Libraries to read/write Parquet/Avro files, etc.



 Input = collections, output = collections
◦ Very similar to Spark

 Three main types of queries in the query language
◦ Retrieval: Restricted SELECT-WHERE-ORDER BY-LIMIT type queries
◦ Aggregation: A bit of a misnomer; a general pipeline of operators
 Can capture Retrieval as a special case
 But worth understanding Retrieval queries first…

◦ Updates

 All queries are invoked as
◦ db.collection.operation1(…).operation2(…)…
 collection: name of collection

◦ Unlike SQL which lists many tables in a FROM clause, MQL is centered 
around manipulating a single collection (like Spark)

Syntax somewhat different when called 

from within Python3 (using pymongo)



 Composed of a linear pipeline 
of stages

 Each stage corresponds to one 
of:
◦ match 
◦ project
◦ sort/limit
◦ group
◦ unwind
◦ lookup
◦ … lots more!!

 Each stage manipulates the 
existing collection in some way

• Syntax:

db.collection.aggregate ( [

 { $stage1Op: { } },

 { $stage2Op: { } },

  …

 { $stageNOp: { } }

] )



Find states with population > 15M, sort by decending order
db.zips.aggregate( [   
{ $group: { _id: "$state", totalPop: { $sum: "$pop" } } },   
{ $match: { totalPop: { $gte: 15000000 } } }, 
{ $sort : { totalPop : -1 } }
 ] )

{ "_id" : "CA", "totalPop" : 29754890 }
{ "_id" : "NY", "totalPop" : 17990402 }
{ "_id" : "TX", "totalPop" : 16984601 }
…

Q: what would the SQL query for this be?

SELECT state AS id, SUM(pop) AS totalPop 

FROM zips 

GROUP BY state 

HAVING totalPop >= 15000000

ORDER BY totalPop DESCENDING

GROUP BY AGGS.

match after 

group = 
HAVING

Syntax somewhat different when called 

from within Python3 (using pymongo)



Find, for every state, the biggest city and its population

aggregate( [ 

{ $group: { _id: { state: "$state", city: "$city" }, pop: { $sum: "$pop" } } }, 

{ $sort: { pop: -1 } }, 

{ $group: { _id : "$_id.state", bigCity: { $first: "$_id.city" }, bigPop: { $first: "$pop" } } }, 

{ $sort : {bigPop : -1} }

] )

Approach: 

 Group by pair of city and state, and compute population per city

 Order by population descending

 Group by state, and find first city and population per group (i.e., the highest population city)

 Order by population descending

{ ”_id" : "IL", "bigCity" : "CHICAGO", "bigPop" : 2452177 }

{ "_id" : "NY", "bigCity" : "BROOKLYN", "bigPop" : 2300504 }

{ "_id" : "CA", "bigCity" : "LOS ANGELES", "bigPop" : 2102295 }

{ "_id" : "TX", "bigCity" : "HOUSTON", "bigPop" : 2095918 }

{ "_id" : "PA", "bigCity" : "PHILADELPHIA", "bigPop" : 1610956 }

{ "_id" : "MI", "bigCity" : "DETROIT", "bigPop" : 963243 }

…

Can list multiple 

aggregations 
after grouping id

Syntax somewhat different when called 

from within Python3 (using pymongo)



If we only want to keep the state and city …

aggregate( [ 

{ $group: { _id: { state: "$state", city: "$city" }, pop: { $sum: "$pop" } } }, 

{ $sort: { pop: -1 } }, 

{ $group: { _id : "$_id.state", bigCity: { $first: "$_id.city" }, bigPop: { $first: "$pop" } } }, 

{ $sort : {bigPop : -1} }

{ $project : {bigPop : 0} }

] )

{ "_id" : "IL", "bigCity" : "CHICAGO" }

{ "_id" : "NY", "bigCity" : "BROOKLYN" }

{ "_id" : "CA", "bigCity" : "LOS ANGELES" }

{ "_id" : "TX", "bigCity" : "HOUSTON" }

{ "_id" : "PA", "bigCity" : "PHILADELPHIA" }

…

Syntax somewhat different when called 

from within Python3 (using pymongo)



If we wanted to nest the name of the city and population into a nested doc

aggregate( [ 

{ $group: { _id: { state: "$state", city: "$city" }, pop: { $sum: "$pop" } } }, 

{ $sort: { pop: -1 } }, 

{ $group: { _id : "$_id.state", bigCity: { $first: "$_id.city" }, bigPop: { $first: "$pop" } } }, 

{ $sort : {bigPop : -1} },

{ $project : { _id : 0, state : "$_id", bigCityDeets: { name: "$bigCity", pop: "$bigPop" } } }

] )

{ "state" : "IL", "bigCityDeets" : { "name" : "CHICAGO", "pop" : 2452177 } }

{ "state" : "NY", "bigCityDeets" : { "name" : "BROOKLYN", "pop" : 2300504 } }

{ "state" : "CA", "bigCityDeets" : { "name" : "LOS ANGELES", "pop" : 2102295 } }

{ "state" : "TX", "bigCityDeets" : { "name" : "HOUSTON", "pop" : 2095918 } }

{ "state" : "PA", "bigCityDeets" : { "name" : "PHILADELPHIA", "pop" : 1610956 } }

…

Can construct new 

nested documents 
in output, unlike 
vanilla projection

Syntax somewhat different when called 

from within Python3 (using pymongo)



Q: Imagine if we want to find sum of qtys across items. How would we do this?

A common recipe in MQL queries is to unwind and then group by

aggregate( [ 
 { $unwind : "$instock" },  
 { $group : {_id : "$item", totalqty : {$sum : "$instock.qty"}}} 
] )

{ "_id" : "notebook", "totalqty" : 5 }
{ "_id" : "postcard", "totalqty" : 50 }

{ "_id" : "journal", "totalqty" : 20 }
{ "_id" : "planner", "totalqty" : 45 }

{ "_id" : "paper", "totalqty" : 75 }

Syntax somewhat different when called 

from within Python3 (using pymongo)



{ $lookup: { 

from: <collection to join>, 

localField: <referencing field>, 

foreignField: <referenced field>, 

as: <output array field> 

} }

Conceptually, for each document

 find documents in other coll that join (equijoin)
◦ local field must match foreign field

 place each of them in an array

Thus, a left outer equi-join, with the join results stored in an 
array

Straightforward, but kinda gross. Let’s see…

Say, for each item, I want to find other items located in the 
same location = self-join

db.inventory.aggregate( [ 

{ $lookup : {from : "inventory", localField: "instock.loc", foreignField: 

"instock.loc", as:"otheritems"}},  

{ $project : {_id : 0, tags : 0, dim : 0}} 

] )

{ "item" : "journal", "instock" : [ { "loc" : "A", "qty" : 5 }, { "loc" : "C", "qty" : 

15 } ], "otheritems" : [ 

{ "_id" : ObjectId("5fb6f9605f0594e0227d3c24"), "item" : "journal", 

"instock" : [ { "loc" : "A", "qty" : 5 }, { "loc" : "C", "qty" : 15 } ], "tags" : 
[ "blank", "red" ], "dim" : [ 14, 21 ] }, 

{ "_id" : ObjectId("5fb6f9605f0594e0227d3c25"), "item" : 
"notebook", "instock" : [ { "loc" : "C", "qty" : 5 } ], "tags" : [ "red", 

"blank" ], "dim" : [ 14, 21 ] }, 

{ "_id" : ObjectId("5fb6f9605f0594e0227d3c26"), "item" : "paper", 
"instock" : [ { "loc" : "A", "qty" : 60 }, { "loc" : "B", "qty" : 15 } ], "tags" 

: [ "red", "blank", "plain" ], "dim" : [ 14, 21 ] }, 

…

] }

And many other records!

Syntax somewhat different when called 

from within Python3 (using pymongo)



 Data Models: Then, and now

◦ History of Data Models (“what comes around…”)

◦ A data model for Key-value Stores (“a co-relational model..”)

 Languages

◦ Overview

◦ Datalog (“a survey of research…” and “declarative networking…”)

 Map-reduce and Spark

◦ Original MR Abstraction (”mapreduce:” …”)

◦ Spark (“resilient distributed datasets…”)

 SystemML: An abstraction for ML

 GraphX: An abstraction for Graphs



 Non-procedural Language (unlike RA)

 Basic Query: all tuples such that P(t) is true

 Example: Find instructors with department in the Watson Building

 Find students who have taken all courses offered by Biology

C HA PT ER 27

Formal-Relat ional Query
Languages

In Chapter 2 we introduced the relational model and presented the relational algebra

(RA), which formsthebasisof thewidely used SQL query language. In thischapter we

continuewith our coverageof “pure” query languages. In particular, wecover thetuple

relational calculusand thedomain relational calculus, which aredeclarativequery lan-

guagesbased on mathematical logic. Wealso cover Datalog, which has asyntax mod-

eledafter theProloglanguage.Although not usedcommerciallyat present, Dataloghas

been used in several research databasesystems. For Datalog, wepresent fundamental

constructsand conceptsrather than acompleteusers’ guidefor these languages. Keep

in mind that individual implementations of a language may differ in details or may

support only asubset of thefull language.

27.1 The Tuple Relational Calculus

When we write a relational-algebra expression, we provide a sequence of procedures

that generates the answer to our query. The tuple relational calculus, by contrast, is a

nonprocedural query language. It describes the desired information without giving a

specific procedurefor obtaining that information.

A query in thetuplerelational calculusisexpressed as:

{ t P(t)}

That is, it istheset of all tuplest such that predicateP istruefor t. Followingour earlier

notation, weuse t[A] to denote thevalueof tuple t on attributeA, and weuse t r to

denote that tuple t is in relation r.

Before we give a formal definition of the tuple relational calculus, we return to

someof thequeriesfor which wewroterelational-algebraexpressions in Section 2.6.

1
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27.1.1 Example Queries

Find the ID, name, dept name, salary for instructors whose salary is greater than

$80,000:

{ t t instructor t[salary] > 80000}

Supposethat wewant only the ID attribute, rather than all attributesof the instruc-

tor relation. To write this query in the tuple relational calculus, we need to write an

expression for a relation on the schema (ID). We need those tuples on (ID) such that

there isa tuple in instructor with thesalary attribute> 80000. To express this request,

weneed theconstruct “thereexists” from mathematical logic. Thenotation:

t r (Q(t))

means “thereexistsa tuple t in relation r such that predicateQ(t) is true.”

Using this notation, we can write the query “Find the instructor ID for each in-

structor with asalary greater than $80,000” as:

{ t s instructor (t[ ID] = s[ ID]

s[salary] > 80000)}

In English, weread theprecedingexpression as “Theset of all tuples t such that there

existsa tuples in relation instructor for which thevaluesof t and s for the ID attribute

areequal, and thevalueof s for thesalary attribute isgreater than $80,000.”

Tuplevariable t isdefined on only the ID attribute, since that is theonly attribute

havingacondition specified for t. Thus, theresult isa relation on (ID).

Consider the query “Find the names of all instructors whose department is in

the Watson building.” This query is slightly more complex than the previous queries,

since it involves two relations: instructor and department. Asweshall see, however, all

it requires is that we have two “there exists” clauses in our tuple-relational-calculus

expression, connected by and ( ). Wewrite thequery asfollows:

{ t s instructor (t[name] = s[name]

u department (u[dept name] = s[dept name]

u[building] = “Watson”))}

Tuple variable u is restricted to departments that are located in the Watson building,

whiletuplevariablesisrestricted to instructorswhosedept namematchesthat of tuple

variableu. Figure27.1 showstheresult of thisquery.

To find the set of all courses taught in the Fall 2017 semester, the Spring 2018

semester, or both, we used the union operation in the relational algebra. In the tuple

relational calculus, weshall need two “thereexists” clauses, connected by or ( ):
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course id

CS-101

Figure 27.3 Courses offered in both the Fall 2017 and Spring 2018 semesters.

{ t s section (t[course id] = s[course id])

s[semester] = “Fall” s[year] = 2017)

u section (u[course id] = t[course id])

u[semester] = “Spring” u[year] = 2018)}

The result of thisquery appears in Figure27.3.

Now consider thequery “Find all thecoursestaught in theFall 2017 semester but

not in Spring 2018 semester.” The tuple-relational-calculus expression for this query

is similar to the expressions that we have just seen, except for the use of the not (¬)

symbol:

{ t s section (t[course id] = s[course id])

s[semester] = “Fall” s[year] = 2017)

¬ u section (u[course id] = t[course id])

u[semester] = “Spring” u[year] = 2018)}

This tuple-relational-calculus expression uses the s section (…) clause to re-

quire that a particular course id is taught in the Fall 2017 semester, and it uses the

¬ u section (…) clause to eliminate those course id values that appear in some

tupleof thesection relation ashavingbeen taught in theSpring2018 semester.

Thequery that weshall consider next usesimplication, denoted by . Theformula

P Q means “P implies Q”; that is, “if P is true, then Q must be true.” Note that

P Q is logically equivalent to ¬P Q. Theuseof implication rather than not and

or often suggestsamore intuitive interpretation of aquery in English.

Consider thequery that “Findall studentswhohavetaken all coursesoffered in the

Biology department.” To write thisquery in thetuple relational calculus, weintroduce

the “for all” construct, denoted by . Thenotation:

t r (Q(t))

means “Q is true for all tuples t in relation r.”

Wewrite theexpression for our query as follows:

{ t r student (r[ ID] = t[ ID])

( u course (u[dept name] = “ Biology”

s takes(t[ ID] = s[ ID]

s[course id] = u[course id]))}
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 Extensional ”Facts”

◦ Map to tuples in relations

 “Rules”

◦ Allow inferring additional ‘intentional’ facts 

◦ Can be thought of as defining “views”

 Example: account is extensional, and v1 allows inferring additional facts
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account number branch name balance

A-101 Downtown 500

A-215 Minus 700

A-102 Perryridge 400

A-305 Round Hill 350

A-201 Perryridge 900

A-222 Redwood 700

A-217 Perryridge 750

Figure 27.4 The account relation.

27.4 Datalog

Datalog isanonprocedural query languagebased on the logic-programming language

Prolog. As in the relational calculus, a user describes the information desired with-

out giving aspecific procedure for obtaining that information. Thesyntax of Datalog

resembles that of Prolog. However, the meaning of Datalog programs is defined in a

purelydeclarativemanner, unlikethemoreprocedural semanticsof Prolog, soDatalog

simplifieswritingsimplequeriesand makesquery optimization easier.

27.4.1 Basic Structure

A Datalog program consists of a set of rules. Before presenting a formal defini-

tion of Datalog rules and their formal meaning, we consider examples. Consider a

Datalogruleto defineaviewrelation v1containingaccount numbersand balancesfor

accountsat thePerryridgebranch with abalanceof over $700:

v1(A, B) :– account(A, “Perryridge”, B), B > 700

Datalogrulesdefineviews; theprecedingruleusestherelationaccount, anddefines

the view relation v1. The symbol :– is read as “if,” and the comma separating the

“account(A, “Perryridge”, B)” from “B > 700” is read as “and.” Intuitively, therule is

understood asfollows:

for all A,B

if (A, “Perryridge”, B) account andB > 700

then (A,B) v1

Supposethat therelationaccount isasshowninFigure27.4.Then, theviewrelation

v1 containsthetuples in Figure27.5.

To retrieve the balance of account number A-217 in the view relation v1, we can

writethefollowingquery:
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27.4 Datalog

Datalog isa nonprocedural query languagebased on the logic-programming language

Prolog. As in the relational calculus, a user describes the information desired with-

out giving a specific procedure for obtaining that information. The syntax of Datalog

resembles that of Prolog. However, the meaning of Datalog programs is defined in a

purely declarativemanner, unlikethemoreprocedural semanticsof Prolog, so Datalog

simplifieswritingsimplequeriesand makesquery optimization easier.

27.4.1 Basic Structure

A Datalog program consists of a set of rules. Before presenting a formal defini-

tion of Datalog rules and their formal meaning, we consider examples. Consider a

Datalogruleto defineaview relation v1 containingaccount numbersand balances for

accounts at thePerryridgebranch with abalance of over $700:

v1(A, B) :– account(A, “Perryridge”, B), B > 700

Datalogrulesdefineviews; theprecedingruleusestherelation account, anddefines

the view relation v1. The symbol :– is read as “if,” and the comma separating the

“account(A, “Perryridge”, B)” from “B > 700” is read as “and.” Intuitively, the rule is

understood asfollows:

for all A,B

if (A, “Perryridge”, B) account and B > 700

then (A,B) v1

Supposethat therelationaccount isasshown inFigure27.4.Then, theviewrelation

v1 contains the tuples in Figure27.5.

To retrieve the balance of account number A-217 in the view relation v1, we can

write thefollowingquery:

means:



 From Online Chapter at: https://db-book.io

 Example: account is extensional, and v1 allows inferring additional facts

 Writing queries?

 Multiple rules typically used for the same view

 Can use Negation
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Datalogruleto defineaviewrelation v1containingaccount numbersand balancesfor

accountsat thePerryridgebranch with abalanceof over $700:
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account number balance

A-201 900

A-217 750

Figure 27.5 The v1 relat ion.

?v1(“A-217”, B)

Theanswer to thequery is

(A-217, 750)

Toget theaccount number andbalanceof all accountsin relationv1,wherethebalance

isgreater than 800, wecan write

?v1(A, B), B > 800

Theanswer to thisquery is

(A-201, 900)

In general, weneed morethan oneruleto defineaviewrelation. Each ruledefines

aset of tuplesthat theviewrelation must contain. Theset of tuplesin theviewrelation

is then defined astheunion of all thesesetsof tuples. ThefollowingDatalogprogram

specifiesthe interest rates for accounts:

interest rate(A, 5) :– account(A, N, B), B < 10000

interest rate(A, 6) :– account(A, N, B), B >= 10000

The program has two rules defining a view relation interest rate, whose attributes are

theaccount number and theinterest rate. Therulessay that, if thebalanceislessthan

$10,000, then the interest rate is5 percent, and if thebalance isgreater than or equal

to $10,000, theinterest rate is6 percent.

Datalog rules can also use negation. The following rules define a view relation c

that contains thenamesof all customerswho haveadeposit, but haveno loan, at the

bank:

c(N) :– depositor(N,A), not isborrower(N)

isborrower(N) :– borrower(N, L)

Prologand most Datalogimplementationsrecognizeattributesof arelation by po-

sition and omit attribute names. Thus, Datalog rules are compact, compared to SQL
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?v1(“A-217”, B)

Theanswer to thequery is
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bank:
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isborrower(N) :– borrower(N, L)

Prologand most Datalog implementationsrecognizeattributesof arelation by po-

sition and omit attribute names. Thus, Datalog rules are compact, compared to SQL



 For non-recursive queries, the semantics are pretty straightforward

 More complex for recursive queries

◦ Assume we have a single relation: parent(child_id, parent_id)

◦ The following program gets ancestors 
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interest(A, I ) :– account(A, “Perryridge”, B),

interest rate(A, R), I = B R 100

interest rate(A, 5) :– account(A, N, B), B < 10000

interest rate(A, 6) :– account(A, N, B), B >= 10000

Figure 27.6 Datalog program that defines interest on Perryridge accounts.

A fact iswritten in the form

p(v1,v2,… ,vn)

and denotes that the tuple (v1,v2,… ,vn) is in relation p. A set of facts for a relation

can also be written in the usual tabular notation. A set of facts for the relations in a

database schema is equivalent to an instance of the database schema. Rules are built

out of literalsand have theform

p(t1, t2,… , tn) :– L1,L2,… ,Ln

whereeach Li isa (positiveor negative) literal. The literal p(t1, t2,… , tn) is referred to

asthehead of therule, and therest of the literals in theruleconstitute thebody of the

rule.

A Datalogprogramconsistsof aset of rules; theorder inwhich therulesarewritten

hasnosignificance. Asmentioned earlier, theremaybeseveral rulesdefiningarelation.

Figure27.6 showsaDatalog program that defines the interest on each account in

the Perryridge branch. The first rule of the program defines a view relation interest,

whose attributes are the account number and the interest earned on the account. It

uses the relation account and the view relation interest rate. The last two rules of the

program arerules that wesaw earlier.

A view relation v1 issaid to depend directly on aview relation v2 if v2 isused in the

expression definingv1. In theprecedingprogram,viewrelation interest dependsdirectly

on relations interest rateand account. Relation interest rate in turn dependsdirectly on

account.

A viewrelationv1 issaid todependindirectlyonviewrelation v2 if thereisasequence

of intermediaterelations i1, i2,… , in, for somen, such that v1 dependsdirectly on i1, i1
dependsdirectly on i2, and so on until in−1 dependson in.

In theexample in Figure27.6, sincewehaveachain of dependencies from interest

to interest rate to account, relation interest also depends indirectly on account.

Finally, a view relation v1 issaid to depend on view relation v2 if v1 depends either

directly or indirectly on v2.

A view relation v issaid to be recursiveif it dependson itself. A view relation that

isnot recursive issaid to benonrecursive.
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Figure 27.9 Layering of view relat ions.

• A relation is in layer 1 if all relations used in the bodies of rules defining it are

stored in thedatabase.

• A relation is in layer 2 if all relationsused in thebodiesof rules defining it either

arestored in thedatabase or are in layer 1.

• In general, a relation p is in layer i + 1 if (1) it isnot in layers1,2,… , i and (2) all

relationsused in thebodiesof rulesdefiningpeither arestored in thedatabaseor

are in layers1,2,… , i.

Consider theprogram in Figure27.6 with theadditional rule:

perryridgeaccount(X, Y) :– account(X, “Perryridge”, Y)

The layering of view relations in the program appears in Figure 27.9. The relation

account is in the database. Relation interest rate is in layer 1, since all the relations

used in the two rules defining it are in the database. Relation perryridgeaccount

is similarly in layer 1. Finally, relation interest is in layer 2, since it is not in layer 1

and all the relations used in the rule defining it are in the database or in layers lower

than 2.

Wecan now definethesemanticsof aDatalogprogram in termsof thelayeringof

view relations. Let thelayers in agiven program be1,2,… ,n. Let i denotetheset of

all rulesdefiningview relations in layer i.

• Wedefine I0 to betheset of factsstored in thedatabase, and wedefine I1 as

I1 = I0 infer( 1, I0)

• Weproceed in asimilar fashion, defining I2 in termsof I1 and 2, and so on, using

the following definition:

I i+1 = I i infer( i+1, I i)
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ancestor(A, B) :- parent(B, A)

ancestor(A, B) :- ancestor(A, C), parent(B, C)



 Possible to write rules that generate infinite answers

 Datalog programs must satisfy safety conditions:

◦ Every variable in the head, must appear in a non-arithmetic positive literal in the body

◦ Every variable in a negative literal in the body must appear in some positive literal in the 
body

 For non-recursive program, this guarantees finite results as long as the 
database relations are finite

 Can relax the rules somewhat:
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• Finally, the set of facts in the view relations defined by the program (also called

the semantics of the program) isgiven by theset of facts In corresponding to the

highest layer n.

For theprograminFigure27.6, I0 istheset of factsin thedatabase, and I1 istheset

of factsin thedatabasealongwith all factsthat wecan infer from I0 using therulesfor

relations interest rate and perryridgeaccount. Finally, I2 contains the facts in I1 along

with the facts for relation interest that we can infer from the facts in I1 by the rule

defining interest. Thesemanticsof theprogram—that is, theset of those facts that are

in each of theview relations—isdefined astheset of facts I2.

27.4.4 Safety

It ispossible to write rules that generate an infinitenumber of answers. Consider the

rule

gt(X, Y) :– X > Y

Since the relation defining > is infinite, this rule would generate an infinite number

of facts for the relation gt, which calculation would, correspondingly, take an infinite

amount of timeand space.

Theuseof negation can also causesimilar problems. Consider therule:

not in loan(L, B, A) :– not loan(L, B, A)

The idea is that a tuple (loan number, branch name, amount) is in view relation not in

loan if the tuple is not present in the loan relation. However, if the set of possible

loan numbers, branch names, and balances is infinite, the relation not in loan would

be infiniteaswell.

Finally, if wehaveavariable in thehead that doesnot appear in thebody, wemay

get an infinitenumber of factswherethevariable is instantiated to different values.

So that these possibilities are avoided, Datalog rules are required to satisfy the

followingsafety conditions:

1. Everyvariablethat appearsin theheadof therulealsoappearsinanonarithmetic

positive literal in thebody of therule.

2. Every variableappearing in anegativeliteral in thebody of therulealso appears

in somepositive literal in thebody of therule.

If all therulesin anonrecursiveDatalogprogram satisfy theprecedingsafety con-

ditions, then all theview relationsdefined in theprogram can beshown to befinite, as

longasall thedatabaserelationsarefinite. Theconditionscan beweakened somewhat
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toallowvariablesin theheadtoappear only inan arithmetic literal in thebodyinsome

cases. For example, in therule

p(A) :– q(B), A= B+ 1

wecanseethat if relationq isfinite, thensoisp,accordingto thepropertiesof addition,

even though variableAappearsin only an arithmetic literal.

27.4.5 Relational Operations in Datalog

NonrecursiveDatalogexpressionswithout arithmetic operations areequivalent in ex-

pressivepower to expressionsusingthebasic operations in relational algebra( , −, ×,

, , and ). We shall not formally prove this assertion here. Rather, we shall show

through examples how the various relational-algebra operations can be expressed in

Datalog. In all cases, wedefineaviewrelation called query to illustratetheoperations.

We have already seen how to do selection by using Datalog rules. We perform

projections simply by using only the required attributes in the head of the rule. To

project attributeaccount namefrom account, weuse

query(A) :– account(A, N, B)

Wecan obtain theCartesian product of two relations r1 and r2 in Datalog as fol-

lows:

query(X1,X2,… ,Xn,Y1,Y2,… ,Ym) :– r1(X1,X2,… ,Xn), r2(Y1,Y2,… ,Ym)

where r1 isof arity n, and r2 isof arity m, and theX1,X2,… ,Xn,Y1,Y2,… ,Ym areall

distinct variablenames.

Weform theunion of two relations r1 and r2 (both of arity n) in thisway:

query(X1,X2,… ,Xn) :– r1(X1,X2,… ,Xn)

query(X1,X2,… ,Xn) :– r2(X1,X2,… ,Xn)

Weform theset differenceof two relations r1 and r2 in thisway:

query(X1,X2,… ,Xn) :– r1(X1,X2,… ,Xn), not r2(X1,X2,… ,Xn)

Finally, wenote that with thepositional notation used in Datalog, therenamingoper-

ator isnot needed. A relation can occur morethan oncein therulebody, but instead

of renaming to give distinct names to the relation occurrences, we can use different

variablenamesin thedifferent occurrences.

It ispossible to show that wecan expressany nonrecursiveDatalogquery without

arithmetic by using the relational-algebra operations. We leave this demonstration as



 Select

 Project

 Cartesian Product

 Union

 Set Difference

 Extensions exist for aggregates as well
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account number branch name balance

A-101 Downtown 500

A-215 Minus 700

A-102 Perryridge 400

A-305 Round Hill 350

A-201 Perryridge 900

A-222 Redwood 700

A-217 Perryridge 750

Figure 27.4 The account relation.

27.4 Datalog

Datalog isanonprocedural query languagebased on the logic-programming language

Prolog. As in the relational calculus, a user describes the information desired with-

out giving aspecific procedure for obtaining that information. Thesyntax of Datalog

resembles that of Prolog. However, the meaning of Datalog programs is defined in a

purelydeclarativemanner, unlikethemoreprocedural semanticsof Prolog, soDatalog

simplifieswritingsimplequeriesand makesquery optimization easier.

27.4.1 Basic Structure

A Datalog program consists of a set of rules. Before presenting a formal defini-

tion of Datalog rules and their formal meaning, we consider examples. Consider a

Datalogruleto defineaviewrelation v1containingaccount numbersand balancesfor

accountsat thePerryridgebranch with abalanceof over $700:

v1(A, B) :– account(A, “Perryridge”, B), B > 700

Datalogrulesdefineviews; theprecedingruleusestherelationaccount, anddefines

the view relation v1. The symbol :– is read as “if,” and the comma separating the

“account(A, “Perryridge”, B)” from “B > 700” is read as “and.” Intuitively, therule is

understood asfollows:

for all A,B

if (A, “Perryridge”, B) account andB > 700

then (A,B) v1

Supposethat therelationaccount isasshowninFigure27.4.Then, theviewrelation

v1 containsthetuples in Figure27.5.

To retrieve the balance of account number A-217 in the view relation v1, we can

writethefollowingquery:



 Prolog uses a top-down evaluation approach (by default)

◦ Start with query as goal and use the rules to create more goals until you get to facts

◦ If we are asked to compute fibo_td(10, F) – we would expand the last rule, and 
compute fibo_td(9, ?) and fibo_td(8, ?) first

◦ Need to use memo-ization in order to avoid exponential runtime

 Not a good approach for Datalog

◦ Efficient evaluation requires use of set-at-a-time processing, i.e., start with base facts 
and generate more facts using the rules

◦ Drawback: may generate facts that are not needed



 Standard Fixpoint algorithm

◦ Start with all the facts (initially the base relations)

◦ Infer new facts using those and the provided rules

◦ Repeat until no more facts are inferred

 Sometimes called “naïve” evaluation

 Semi-Naïve Evaluation

◦ Keep track of which new “facts” were inferred in iteration N - 1

◦ In iteration N: only consider those rules as firing that include at least one of those facts

 Works for both recursive and non-recursive programs

◦ Bounded depth for non-recursive programs based on the query



 For “safe” Datalog programs, this will stop at some point assuming no 
“negative” literals

 With negative literals, previous inferences may be invalidated

◦ e.g., q(X, Y) :- not R(Y, X), Y = 10, X = 5

◦ If R(10, 5) doesn’t exist, we can infer q(5, 10)

◦ However in a later iteration, we may get: R(10, 5)

 Note: SQL originally did not support recursion – so no way to do “transitive 
closure” – SQL 99 added support

 We will discuss some other optimization techniques (e.g., magic sets) later



 Challenging to design new network protocols to handle rapidly 
evolving landscape

◦ Correctness particularly an issue

◦ Hard to optimize when the bottlenecks change

 Proposed solution
◦ Model the distributed state across the routers/machines as ”tables”

◦ Use a recursive query language to define derived data, constraints, etc.

 Long line of work starting with this early paper in SIGMOD 2006

 More recent work on distributed programming in general by 
Hellerstein et al.



 Base “extensional” relation: link(Src, Dest, Cost)

◦ Stored in a distributed manner across all nodes

 Four rules:

◦ sp1 and sp2 define a ”path” in the network recursively

◦ sp3 and sp4: an aggregate function to compute minimum-cost path

 @ used to specify where the derived fact should be stored



 In each iteration, nodes do their local computations and pass their state to 
their neighbors



 Need to handle limitations of the underlying network

 Link-restricted rules:

◦ Not all nodes can talk directly to all nodes for execution of the program

◦ Only allow rules where there is a direct link between the two nodes that contain the data 
required for any predicate

 Soft state storage:

◦ Network protocols data typically has a TTL (time-to-live)

◦ Introduce a new keyword: materialized

◦ Adds some complications in formal semantics
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 For parallel, fault-tolerant computation over large volumes of 
data

 Just two operators: “map” and “reduce”

◦ Map more like “flatMap” – can produce multiple outputs per input

◦ “reduce” == “reduceByKey” – operated on key-value pairs
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files

reducers output

files
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Called “mapper-side” combiner

Partial aggregation in DBMS terms



 For parallel, fault-tolerant computation over large volumes of 
data

 Just two operators: “map” and “reduce”

◦ Map more like “flatMap” – can produce multiple outputs per input

◦ “reduce” == “reduceByKey” – operated on key-value pairs

 Each operator is ”embarrassingly” (“infinitely”) parallelizable

◦ Map can be done in parallel on each input

 Data written out to disk after each map or reduce

◦ For fault-tolerance

◦ If a machine fails, restart the computation on another machine with the 
same input files

 Many optimizations to handle skew, etc.



 Was used in Google (at that time) for:
◦ Large-scale machine learning problems

◦ Clustering problems for Google News etc

◦ Generating summary reports

◦ Large-scale Graph Computations

◦ Extract-Transform-Load (ETL) tasks

 Also replaced original tools for large-scale indexing

◦ i.e., for generating the inverted indexes

◦ runs as a sequence of 5 to 10 MapReduce opeartions



 Limited functionality, but no RDMBS/data warehouse could 
have handled those kinds of tasks

◦ Not fault-tolerant at the scale

◦ Most of the data not tabular or relation – SQL not a good fit

 Need flexible or no schemas

 User-defined functions can help but hard to use back then

◦ Loading the data into databases not feasible

 Much of the analysis is one-time

◦ Cost prohibitive (Distributed File Systems much cheaper)

 Mapreduce: A Major Step Backwards; DeWitt and Stonebraker; 
2007

 See the later CACM papers by both camps



 Yahoo! open-sourced the Hadoop MapReduce; 2006

◦ Including other tools like Zookeeper, HDFS, etc.

◦ Many inter-operable modules built around this sinc then

 Soon afterwards: Dryad (MSFT), Hive (FB), Pig (Yahoo)

◦ Most supported higher-lever interfaces: Hive and Pig more like SQL, 
whereas Dryad supported something like LINQ

 Latest generation of systems: Spark, F1, Impala, Tez, Naiad, 
Flink, AsterixDB, Drill, etc…

◦ Higher-level query languages like SQL

◦ More advanced execution strategies

◦ Indexes, query optimization, etc.

◦ Support for streaming, ML, graphs, etc.
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Spark

n Open-source, distributed cluster computing framework

n Much better performance than Hadoop MapReduce through in-

memory caching and pipelining

n Originally provided a low-level RDD-centric API, but today, most of 

the use is through the “Dataframes” (i.e., relations) API

 Dataframes support relational operations like Joins, Aggregates, etc.



Resilient Distributed Dataset (RDD)
n RDD = Collection of records stored across multiple machines in-memory

Worker Nodes
- Always running

Drivers
- Come and go
- Not fault-tolerant

In-memory partitions of RDD 2

In-memory partitions of RDD 3

In-memory partitions of RDD 1 RDD Manipulation 

Commands

Results – typically at 

the end



Spark

n Why “Resilient”?

 Can survive the failure of a worker node

 Spark maintains a “lineage graph” of how each RDD partition was created

 If a worker node fails, the partitions are recreated from its inputs

 Only a small set of well-defined operations are permitted on the RDDs

➢ But the operations usually take in arbitrary ”map” and “reduce” functions

n Fault tolerance for the “driver” is trickier

 Drivers have arbitrary logic (cf., the programs you are writing)

 In some cases (e.g., Spark Streaming), you can do fault tolerance

 But in general, driver failure requires a restart



Driver

Example Spark Program
from pyspark import SparkContext

sc = SparkContext("local", "Simple App")

textFile = sc.textFile("README.md")

counts = textFile
            .flatMap(lambda line: line.split(" "))
            .map(lambda word: (word, 1))
            .reduceByKey(lambda a, b: a + b)

print(counts.take(100))

Initialize RDD by reading the textFile and 

partitioning

If textFile stored on HDFS, it is already 

partitioned – just read each partition as a 

separate RDD partition

Split each line into words, creating an RDD 

of words

For each word, output (word, 1), creating a 

new RDD

Do a group-by SUM aggregate to count the 

number of times each word appears Retrieve 100 of the values in the final RDD



RDD Operations



Dataframes Example

def basic_df_example(spark):
  # $example on:create_df$
  # spark is an existing SparkSession
  df = spark.read.json("examples/src/main/resources/people.json")

  # Displays the content of the DataFrame to stdout
  df.show()
  # +----+-------+
  # | age|  name|
  # +----+-------+

  # |null|Michael|
  # |  30|  Andy|
  # |  19| Just in|
  # +----+-------+
  # $example off:create_df$

  # $example on:untyped_ops$
  # spark, df are from the previous example
  # Print the schema in a t ree format

  df.printSchema()
  # root
  # |-- age: long (nullable = true)
  # |-- name: string (nul lable = true)

  # Select only the "name" column
  df.select("name").show()
  # +-------+
  # |  name|

  # +-------+
  # |Michael|
  # |  Andy|
  # | Justin|
  # +-------+

  # Select everybody, but increment  the age by 1
  df.select(df['name'], df['age'] + 1).show()
  # +-------+---------+

  # |  name|(age + 1)|
  # +-------+---------+
  # |Michael|   null|
  # |  Andy|    31|
  # | Justin|    20|

  # +-------+---------+

  # Select people older than 21
  df.filter(df['age'] > 21).show()
  # +---+----+
  # |age|name|

  # +---+----+
  # | 30|Andy|
  # +---+----+

  # Count people by age
  df.groupBy("age").count().show()
  # +----+-----+
  # | age|count|
  # +----+-----+

  # |  19|   1|
  # |null|   1|
  # |  30|   1|
  # +----+-----+
  # $example off:untyped_ops$

  sqlDF = spark.sql("SELECT * FROM people")
  sqlDF.show()
  # +----+-------+
  # | age|  name|
  # +----+-------+
  # |null|Michael|
  # |  30|  Andy|
  # |  19| Justin|
  # +----+-------+
  # $example off:run_sql$

  # $example on:global_temp_view$
  # Register the DataFrame as a global temporary view
  df.createGlobalTempView("people")

  # Global temporary view is tied to a system preserved database `global_temp`
  spark.sql("SELECT * FROM global_temp.people").show()
  # +----+-------+
  # | age|  name|
  # +----+-------+
  # |null|Michael|
  # |  30|  Andy|
  # |  19| Justin|
  # +----+-------+
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Summary

n Spark is a popular and widely used framework for large-scale 

computing

n Simple programming interface 

 You don’t need to typically worry about the parallelization

 That’s handled by Spark transparently

 In practice, may need to fiddle with number of partitions etc.

n Managed services supported by several vendors including 

Databricks (started by the authors of Spark), Cloudera, etc.

n Many other concepts that we did not discuss

 Shared accumulator and broadcast variables

 Support for Machine Learning, Graph Analytics, Streaming, and other use 

cases

n Alternatives include: Apache Tez, Flink, and several others
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 MapReduce becoming a popular platform for distributed 
processing, but not at the right level of abstraction for ML

 ML programs need to be written at the level of matrices, 
vectors, and tensors 

◦ Think R, or Python Libraries like Scikit (and PyTorch today)

 Many core ML operations on matrices are “summations” and 
can be done as “group by aggregates”

 Need a high-level abstraction that allows arbitrary ML programs

◦ Then we can optimize how it maps to Hadoop MapReduce (or Spark)



 From: MapReduce for Machine Learning on Multicore; 2005

 Linear Regression

◦ Given training data (x1, y1), (x2, y2), …, fit a model: y = θTx that minimizes 
loss, where x1, x2, .., are vectors

◦ Least square estimate: θ* = A-1b, where:

 A is a m-by-m matrix = XTX, and b is a m-by-1 matrix = XTY

x11 x12 … … … … x1m

x21 x22 … … … … x2m

… … … … … … …

… … … … … … …

xN1 xN2 … … … … xNm

X

y1

y2

…

…

yN

Y

N >>> m



Exploits the fact that: XTX = SIGMA (xi
Txi)

Each mapper computes: xi
Txi for a group of rows in X

The output of each mapper is: m-by-m matrix

A single reducer sums up all of those matrixes to get the final m-by-m 
matrix

Similarly we can compute: b = SIGMA (xi
T yi)

x11 x12 … … … … x1m

x21 x22 … … … … x2m

… … … … … … …

… … … … … … …

xN1 xN2 … … … … xNm

X



Exploits the fact that: XTX = SIGMA (xi
Txi)

Each mapper computes: xi
Txi for a group of rows in X

The output of each mapper is: m-by-m matrix

A single reducer sums up all of those matrixes to get the final m-by-m 
matrix

Similarly we can compute: b = SIGMA (xi
T yi)

Only works if m <<< N

- So the communication is m-by-m matrices or m-by-1 vectors

- Each mapper deals with much more data









 Based on R

◦ Somewhat restricted to be able to optimize

 Two Data Types: Matrices and Scalars



 Much followup work on linear algebra-based frameworks

 SciDB also has an array data model

◦ But different types of operations

 Apache Spark has MLIB

◦ More of a ”library” flavor

◦ Many implementations of popular algorithms – some not easy to map to 
MR

 Development of deep learning frameworks like TensorFlow and 
PyTorch

 Also much other work on custom ML platforms (e.g., parameter 
server)
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 Lot of graph structure in real-world datasets

A protein-protein interaction

network

Social networks

Financial transaction

networks 

Stock Trading Networks

Federal funds networks

Communication networks

Disease transmission 

networks

Knowledge Graph

Citation networks

526 The European Physical Journal B
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Pajek

(b)

Fig. 2. (Color online) Directed, weighted transaction-volumenetwork of thefull data set (a) and theinter-bank network (b) at

a yearly scale, A v
y . The12 account types in thetotal set aregrouped into units. Nodes in thesameblob (samecolor) belong to

thesame account type. Thecentral unit in (a) is the inter-bank network. For the inter-bank network in (b), nodesare grouped

into banking sectors.
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Fig. 3. (Color online) (a) Cumulativedegreedistributionsof theundirected, unweighted yearly, monthly, and daily full networks.

Linesarepower fits. (b) Clusteringcoefficient asfunction of degree, and (c) averagenearest neighbor degreefor thesamenetwork.

the sum for l. In comparison, the average shortest path
length for a BA network with the samenumber of nodes
is lBA = 3, while for an ER random graph with the
samenumber of nodes and links (yearly network) weget
(lER = 0.94). A measure that takes the effect of uncon-
nected nodesintoconsideration istheso-called global net-
work efficiency, defined as E = 1

N (N− 1) i= j d− 1
i j , [22].

The empirical yearly efficiency is again compatible with
the result for an ER random graph, EER = 0.28, but
much larger than for the BA case, EBA = 0.10. The di-
ameter, d = {maxdi j ,di j < ∞ } , is close to a value of 5
for all three time scales indicating a small-world prop-
erty [23]. The total clustering coefficient is defined as
C = 1

N i
ei

ki (ki − 1)
, where ei is the number of links be-

tween nearest neighborsof node i , and ki = j Ai j is the

nodedegree. Wecomparetheempirical values to thoseof

an ER (CER) graph with the same number of links and
nodes. The clustering of an ER graph, herecomputed as
CER = 2L

N (N− 1)
, isclearly lower than C for thetransaction

networks. Notethat herewealwaystakethetotal number
of nodesN = 423. To measuredegreecorrelationsweuse
thePearson coefficient [24],

r =

1
L j > i ki kj Ai j −

1
2L j > i (ki + kj )Ai j

2

1
2L j > i (k

2
i + k2

j )Ai j −
1

2L j > i (ki + kj )Ai j

2
,

(1)
which, beingpositivefor all timescales, indicatesthat the
networksareassortative, i.e. nodesof high degreetend to
link with other high degreenodes.

In Figure3a weshow the cumulativedegreedistribu-
tion of undirected, unweighted yearly, monthly, and daily



 Lot of graph structure in real-world datasets

 Types of analytics of interest

◦ Centrality analysis (find most central nodes), Community detection, 
Vulnerability analysis, …

 Different from “graph queries”

◦ e.g., find shortest path between nodes, or find specific patterns in graph

 GraphX and most other systems like it (e.g., Google Pregel, 
Apache Giraph) fairly limited in what they can support (e.g., can 
only do basic centrality or community detection)

 More powerful frameworks in HPC community



 Pregel uses a “vertex-centric programming model”

 In each iteration, receive messages from neighbors, do some computations, 
send messages to neighbors



 A graph represented by:

◦ Vertex collection (RDD): a collection of vertices, with their IDs and 
properties

◦ Edge collection (RDD): keyed by the pair of vertex IDs, and stores the 
properties

 Can manipulate the above two collections using Spark 
operations

◦ e.g., add new properties by joining with another collection, etc.

 Triplets View: Join the two collections to append the 
source/target properties with each edge
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cl ass Gr aph[ V, E] {

/ / Const r uct or

def Gr aph( v: Col l ect i on[ ( I d, V) ] ,

e: Col l ect i on[ ( I d, I d, E) ] )

/ / Col l ect i on vi ews

def ver t i ces: Col l ect i on[ ( I d, V) ]

def edges: Col l ect i on[ ( I d, I d, E) ]

def t r i pl et s: Col l ect i on[ Tr i pl et ]

/ / Gr aph- par al l el comput at i on

def mr Tr i pl et s( f : ( Tr i pl et ) => M,

sum: ( M, M) => M) : Col l ect i on[ ( I d, M) ]

/ / Conveni ence f unct i ons

def mapV( f : ( I d, V) => V) : Gr aph[ V, E]

def mapE( f : ( I d, I d, E) => E) : Gr aph[ V, E]

def l ef t Joi nV( v: Col l ect i on[ ( I d, V) ] ,

f : ( I d, V, V) => V) : Gr aph[ V, E]

def l ef t Joi nE( e: Col l ect i on[ ( I d, I d, E) ] ,

f : ( I d, I d, E, E) => E) : Gr aph[ V, E]

def subgr aph( vPr ed: ( I d, V) => Bool ean,

ePr ed: ( Tr i pl et ) => Bool ean)

: Gr aph[ V, E]

def r ever se: Gr aph[ V, E]

}

Listing 4: Graph Operators: transform vertex and edge

collections.

The Gr aph constructor logically binds together a pair

of vertex and edge property collections into a property

graph. It also verifies the integrity constraints: that every

vertex occursonly onceand that edgesdo not link missing

vertices. Conversely, the ver t i ces and edges opera-

tors expose the graph’s vertex and edge property collec-

tions. The t r i pl et s operator returns the triplets view

(Listing 3) of the graph as described in Section 3.2. If a

triplets view already exists, the previous triplets are incre-

mentally maintained to avoid a full join (see Section 4.2).

The mr Tr i pl et s (Map Reduce Triplets) opera-

tor encodes the essential two-stage process of graph-

parallel computation defined in Section 3.2. Logically, the

mr Tr i pl et s operator is the composition of the map

and group-by dataflow operators on the triplets view. The

user-defined map function is applied to each triplet, yield-

ing a value (i.e., a message of type M) which is then ag-

gregated at the destination vertex using the user-defined

binary aggregation function as illustrated in the following:

SELECT t . dst I d, r educeF( mapF( t ) ) AS msgSum

FROM t r i pl et s AS t GROUP BY t . dst I d

The mr Tr i pl et s operator produces a collection con-

taining the sum of the inbound messages keyed by the

destination vertex identifier. For example, in Figure 2 we

use the mr Tr i pl et s operator to compute a collection

containing the number of older followers for each user

in asocial network. Because the resulting collection con-

tains a subset of the vertices in the graph it can reuse the

same indices as the original vertex collection.

Finally, Listing 4 contains several functions that sim-

F 

E D 
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B 42 23 
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to vertex B 

val gr aph: Gr aph[ User , Doubl e]

def mapUDF( t : Tr i pl et [ User , Doubl e] ) =

i f ( t . sr c. age > t . dst . age) 1 el se 0

def r educeUDF( a: I nt , b: I nt ) : I nt = a + b

val seni or s: Col l ect i on[ ( I d, I nt ) ] =

gr aph. mr Tr i pl et s( mapUDF, r educeUDF)

Figure2: Exampleuseof mrTr iplets: Computethenum-

ber of older followers of each vertex.

def Pr egel ( g: Gr aph[ V, E] ,

vpr og: ( I d, V, M) => V,

sendMsg: ( Tr i pl et ) => M,

gat her : ( M, M) => M) : Col l ect i on[ V] = {

/ / Set al l ver t i ces as act i ve

g = g. mapV( ( i d, v) => ( v, hal t =f al se) )

/ / Loop unt i l conver gence

whi l e ( g. ver t i ces. exi st s( v => ! v. hal t ) ) {

/ / Comput e t he messages

val msgs: Col l ect i on[ ( I d, M) ] =

/ / Rest r i ct t o edges wi t h act i ve sour ce

g. subgr aph( ePr ed=( s, d, sP, eP, dP) =>! sP. hal t )

/ / Comput e messages

. mr Tr i pl et s( sendMsg, gat her )

/ / Recei ve messages and r un ver t ex pr ogr am

g = g. l ef t Joi nV( msgs) . mapV( vpr og)

}

r et ur n g. ver t i ces

}

Listing 5: GraphX Enhanced Pregel: An implementa-

tion of the Pregel abstraction using the GraphX API.

ply perform a dataflow operation on the vertex or edge

collections. We define these functions only for caller con-

venience; they are not essential to the abstraction and can

easily be defined using standard dataflow operators. For

example, mapV is defined as follows:

g. mapV( f ) ≡ Gr aph( g. ver t i ces. map( f ) , g. edges)

In Listing 5 we use the GraphX API to implement a

GAS decomposition of thePregel abstraction. Webegin

by initializing the vertex properties with an additional

field to track active vertices (those that have not voted

to halt). Then, while there are active vertices, messages

are computed using the mr Tr i pl et s operator and the

vertex program is applied to the resulting message sums.

By expressing message computation as an edge-

parallel map operation followed by a commutative asso-

ciative aggregation, we leverage the GAS decomposition

Key operation: 

- does a local computation for each 

edge, 

- followed by a group by aggregate 

on Vertex ID
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cl ass Gr aph[ V, E] {

/ / Const r uct or

def Gr aph( v: Col l ect i on[ ( I d, V) ] ,

e: Col l ect i on[ ( I d, I d, E) ] )

/ / Col l ect i on vi ews

def ver t i ces: Col l ect i on[ ( I d, V) ]

def edges: Col l ect i on[ ( I d, I d, E) ]

def t r i pl et s: Col l ect i on[ Tr i pl et ]

/ / Gr aph- par al l el comput at i on

def mr Tr i pl et s( f : ( Tr i pl et ) => M,

sum: ( M, M) => M) : Col l ect i on[ ( I d, M) ]

/ / Conveni ence f unct i ons

def mapV( f : ( I d, V) => V) : Gr aph[ V, E]

def mapE( f : ( I d, I d, E) => E) : Gr aph[ V, E]

def l ef t Joi nV( v: Col l ect i on[ ( I d, V) ] ,

f : ( I d, V, V) => V) : Gr aph[ V, E]

def l ef t Joi nE( e: Col l ect i on[ ( I d, I d, E) ] ,

f : ( I d, I d, E, E) => E) : Gr aph[ V, E]

def subgr aph( vPr ed: ( I d, V) => Bool ean,

ePr ed: ( Tr i pl et ) => Bool ean)

: Gr aph[ V, E]

def r ever se: Gr aph[ V, E]

}

Listing 4: Graph Operators: transform vertex and edge

collections.

The Gr aph constructor logically binds together apair

of vertex and edge property collections into a property

graph. It also verifies the integrity constraints: that every

vertex occursonly onceand that edgesdo not link missing

vertices. Conversely, the ver t i ces and edges opera-

tors expose the graph’svertex and edge property collec-

tions. The t r i pl et s operator returns the triplets view

(Listing 3) of the graph as described in Section 3.2. If a

triplets view already exists, the previous triplets are incre-

mentally maintained to avoid a full join (see Section 4.2).

The mr Tr i pl et s (Map Reduce Triplets) opera-

tor encodes the essential two-stage process of graph-

parallel computation defined in Section 3.2. Logically, the

mr Tr i pl et s operator is the composition of the map

and group-by dataflow operators on the triplets view. The

user-defined map function is applied to each triplet, yield-

ing a value (i.e., a message of type M) which is then ag-

gregated at the destination vertex using the user-defined

binary aggregation function as illustrated in the following:

SELECT t . dst I d, r educeF( mapF( t ) ) AS msgSum

FROM t r i pl et s AS t GROUP BY t . dst I d

The mr Tr i pl et s operator produces a collection con-

taining the sum of the inbound messages keyed by the

destination vertex identifier. For example, in Figure 2 we

use the mr Tr i pl et s operator to compute a collection

containing the number of older followers for each user

in asocial network. Because the resulting collection con-

tains a subset of the vertices in the graph it can reuse the

same indices as the original vertex collection.

Finally, Listing 4 contains several functions that sim-
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val gr aph: Gr aph[ User , Doubl e]

def mapUDF( t : Tr i pl et [ User , Doubl e] ) =

i f ( t . sr c. age > t . dst . age) 1 el se 0

def r educeUDF( a: I nt , b: I nt ) : I nt = a + b

val seni or s: Col l ect i on[ ( I d, I nt ) ] =

gr aph. mr Tr i pl et s( mapUDF, r educeUDF)

Figure2: Exampleuseof mrTr iplets: Computethenum-

ber of older followers of each vertex.

def Pr egel ( g: Gr aph[ V, E] ,

vpr og: ( I d, V, M) => V,

sendMsg: ( Tr i pl et ) => M,

gat her : ( M, M) => M) : Col l ect i on[ V] = {

/ / Set al l ver t i ces as act i ve

g = g. mapV( ( i d, v) => ( v, hal t =f al se) )

/ / Loop unt i l conver gence

whi l e ( g. ver t i ces. exi st s( v => ! v. hal t ) ) {

/ / Comput e t he messages

val msgs: Col l ect i on[ ( I d, M) ] =

/ / Rest r i ct t o edges wi t h act i ve sour ce

g. subgr aph( ePr ed=( s, d, sP, eP, dP) =>! sP. hal t )

/ / Comput e messages

. mr Tr i pl et s( sendMsg, gat her )

/ / Recei ve messages and r un ver t ex pr ogr am

g = g. l ef t Joi nV( msgs) . mapV( vpr og)

}

r et ur n g. ver t i ces

}

Listing 5: GraphX Enhanced Pregel: An implementa-

tion of the Pregel abstraction using the GraphX API.

ply perform a dataflow operation on the vertex or edge

collections. We define these functions only for caller con-

venience; they are not essential to the abstraction and can

easily bedefined using standard dataflow operators. For

example, mapV is defined as follows:

g. mapV( f ) ≡ Gr aph( g. ver t i ces. map( f ) , g. edges)

In Listing 5 we use the GraphX API to implement a

GAS decomposition of thePregel abstraction. Webegin

by initializing the vertex properties with an additional

field to track active vertices (those that have not voted

to halt). Then, while there are active vertices, messages

arecomputed using the mr Tr i pl et s operator and the

vertex program is applied to the resulting message sums.

By expressing message computation as an edge-

parallel map operation followed by a commutative asso-

ciativeaggregation, we leverage the GAS decomposition
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cl ass Gr aph[ V, E] {

/ / Const r uct or

def Gr aph( v: Col l ect i on[ ( I d, V) ] ,

e: Col l ect i on[ ( I d, I d, E) ] )

/ / Col l ect i on vi ews

def ver t i ces: Col l ect i on[ ( I d, V) ]

def edges: Col l ect i on[ ( I d, I d, E) ]

def t r i pl et s: Col l ect i on[ Tr i pl et ]

/ / Gr aph- par al l el comput at i on

def mr Tr i pl et s( f : ( Tr i pl et ) => M,

sum: ( M, M) => M) : Col l ect i on[ ( I d, M) ]

/ / Conveni ence f unct i ons

def mapV( f : ( I d, V) => V) : Gr aph[ V, E]

def mapE( f : ( I d, I d, E) => E) : Gr aph[ V, E]

def l ef t Joi nV( v: Col l ect i on[ ( I d, V) ] ,

f : ( I d, V, V) => V) : Gr aph[ V, E]

def l ef t Joi nE( e: Col l ect i on[ ( I d, I d, E) ] ,

f : ( I d, I d, E, E) => E) : Gr aph[ V, E]

def subgr aph( vPr ed: ( I d, V) => Bool ean,

ePr ed: ( Tr i pl et ) => Bool ean)

: Gr aph[ V, E]

def r ever se: Gr aph[ V, E]

}

Listing 4: Graph Operators: transform vertex and edge

collections.

The Gr aph constructor logically binds together a pair

of vertex and edge property collections into a property

graph. It also verifies the integrity constraints: that every

vertex occursonly onceand that edgesdo not link missing

vertices. Conversely, the ver t i ces and edges opera-

tors expose the graph’svertex and edge property collec-

tions. The t r i pl et s operator returns the triplets view

(Listing 3) of the graph as described in Section 3.2. If a

triplets view already exists, the previous triplets are incre-

mentally maintained to avoid a full join (see Section 4.2).

The mr Tr i pl et s (Map Reduce Triplets) opera-

tor encodes the essential two-stage process of graph-

parallel computation defined in Section 3.2. Logically, the

mr Tr i pl et s operator is the composition of the map

and group-by dataflow operators on the triplets view. The

user-defined map function is applied to each triplet, yield-

ing a value (i.e., a message of type M) which is then ag-

gregated at the destination vertex using the user-defined

binary aggregation function as illustrated in the following:

SELECT t . dst I d, r educeF( mapF( t ) ) AS msgSum

FROM t r i pl et s AS t GROUP BY t . dst I d

The mr Tr i pl et s operator produces a collection con-

taining the sum of the inbound messages keyed by the

destination vertex identifier. For example, in Figure 2 we

use the mr Tr i pl et s operator to compute a collection

containing the number of older followers for each user

in a social network. Because the resulting collection con-

tains a subset of the vertices in the graph it can reuse the

same indices as the original vertex collection.

Finally, Listing 4 contains several functions that sim-
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val gr aph: Gr aph[ User , Doubl e]

def mapUDF( t : Tr i pl et [ User , Doubl e] ) =

i f ( t . sr c. age > t . dst . age) 1 el se 0

def r educeUDF( a: I nt , b: I nt ) : I nt = a + b

val seni or s: Col l ect i on[ ( I d, I nt ) ] =

gr aph. mr Tr i pl et s( mapUDF, r educeUDF)

Figure2: Exampleuseof mrTr iplets: Computethenum-

ber of older followers of each vertex.

def Pr egel ( g: Gr aph[ V, E] ,

vpr og: ( I d, V, M) => V,

sendMsg: ( Tr i pl et ) => M,

gat her : ( M, M) => M) : Col l ect i on[ V] = {

/ / Set al l ver t i ces as act i ve

g = g. mapV( ( i d, v) => ( v, hal t =f al se) )

/ / Loop unt i l conver gence

whi l e ( g. ver t i ces. exi st s( v => ! v. hal t ) ) {

/ / Comput e t he messages

val msgs: Col l ect i on[ ( I d, M) ] =

/ / Rest r i ct t o edges wi t h act i ve sour ce

g. subgr aph( ePr ed=( s, d, sP, eP, dP) =>! sP. hal t )

/ / Comput e messages

. mr Tr i pl et s( sendMsg, gat her )

/ / Recei ve messages and r un ver t ex pr ogr am

g = g. l ef t Joi nV( msgs) . mapV( vpr og)

}

r et ur n g. ver t i ces

}

Listing 5: GraphX Enhanced Pregel: An implementa-

tion of the Pregel abstraction using the GraphX API.

ply perform a dataflow operation on the vertex or edge

collections. We define these functions only for caller con-

venience; they are not essential to the abstraction and can

easily be defined using standard dataflow operators. For

example, mapV is defined as follows:

g. mapV( f ) ≡ Gr aph( g. ver t i ces. map( f ) , g. edges)

In Listing 5 we use the GraphX API to implement a

GAS decomposition of thePregel abstraction. Webegin

by initializing the vertex properties with an additional

field to track active vertices (those that have not voted

to halt). Then, while there are active vertices, messages

are computed using the mr Tr i pl et s operator and the

vertex program is applied to the resulting message sums.

By expressing message computation as an edge-

parallel map operation followed by a commutative asso-

ciative aggregation, we leverage the GAS decomposition



 Lot of work on more efficient implementation of Pregel-like 
systems

 Other more expressive programming frameworks

◦ Arabesque: for graph mining

◦ NScale (by us here): generalization to allow computations on multi-hops

◦ Green-marl, Ligra and successors: lower-level programming frameworks 
designed for HPC environments

 Unclear how widely any of these are used in practice
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