CMSC 724: Database Management Systems
Models, Languages, and Abstractions

Instructor: Amol Deshpande
amol@cs.umd.edu

Notes

v

3 programming assignments and 2 writing assignments released

v

Only the 2" Writing Assignment has a hard deadline

o Ideally finish the SQL assignment and 15t Writing Assignment by end of September

v

See “Assignments” tab for the schedule

v

”Student-led Discussions”
> Prepare 4-5 slides, but plan is to run this as a discussion session rather than presentations
> 8 slots still unclaimed — | will do random assignments tomorrow

o First set of papers to be discussed next Thursday

Outline

Data Models: Then, and now

v

o History of Data Models (“what comes around...”)

v

Languages
° Qverview

o Datalog (“a survey of research...” and “declarative networking...”)

v

Map-reduce and Spark
o QOriginal MR Abstraction ("mapreduce:” ...”)

o Spark (“resilient distributed datasets...”)
SystemML: An abstraction for ML

v

v

GraphX: An abstraction for Graphs

Things to Think About

» Goal is to choose a good data model for the data
> Needs to be sufficient expressive — should capture real-world data

o Easy to use for users — support physical and logical data independence

° Lends to good performance

» Many similarities across models

o Much convergence in the last two decades

» Keep in mind orthogonal issues of schema maintenance and evolution, and
data integration/reconciliation

> Possibly a much bigger headache in practice

» No doubt relational is the best low-level model, but should it continue to be
the high-level model as well?

Physical & Logical Data Independence

» Examples of Physical Data Dependence (from Ted Codd, 1970)
° Ordering dependence: How records are sorted hard-coded into the apps
> Indexing dependence: What indexes are present on the data hard-coded in the apps

> Access Path dependence: Dependence on the hierarchy or the network model chosen

» Logical data independence

> Ability to make changes to the schema, e.g., add a new attribute, combine two tables, etc.,
without affecting external applications or APIs

> Can be achieved through use of “views” in RDBMSs

» In general: we want the application programs to not hard-code any of those
decisions so those can be changed easily

Running Example

Supplier (sno, sname, scity, sstate)
Part (pno, pname, psize, pcolor)

Supply (sno, pno, qty, price)

A Relational Schema
Figure 1

Suppplier

16 General Supply Boston Ma
24 Special Supply Detroit Mi

Supply

1627 100 $20.00
1642 1000 §$.10
2442 5000 $.08

Part

27 Powersaw 7 silver

42 bolts

Some Sample Data

Figure 2

12 gray

IMS Era (60’s)

» Main constructs: “record type” (schema), “instance” (must obey schema), “keys” (to
uniquely identify records)

» Record types must be arranged in a hierarchy

> Record instances stored using the same hierarchy

° Records with the same parent stored as a linked list
Repeated information

Supplier (sno, Part (pno, 16 24
sname, scity, pname, psize, General Supply Special
sstate) pcolor) Boston, Ma Detrg
42, Bolts
- 12, gray
Part (pno, pname, Supplier (sno, 1000. $.10
psize, pcolor, qty, sname, scity,
rice sstate, qty, price
P) 4. p) 27, Power saw 42, Bolts
7, silver, 12, gray
100. $20.00 5000, $.08
Two Hierarchical Organizations S E ie Dat
Fl re 3 ome eExample Data
gt Figure 4

for the first hierarchy

Can’t store a part not supplied by anybody

IMS Era (60’s)

» ”Record-at-a-time” query language

o Programmer had to keep track of the “currency” indicators in their program — leads to complex edge cases

Get unique Supplier (sno = 16) Until no-more {

Until no-more { Get next Part (color = red)
Get next within parent (color = red) }

}

» Multiple storage options (e.g., sequential, using a B+-Tree, using Hashing)

» Supported some “physical data independence”
> DL/1 language was written against the logical hierarchy to some extent

o But use of hashing vs indexing still important (e.g., can’t use “get-next” on hashing storage)

» Several hacks added later to support non-tree structured data

o Adds much more complexity

IMS Era (60’s)

» Some Lessons
o Physical and logical data independence are highly desired
o Tree-structured data models restrictive — not general enough, and hard to modify
° Manual query optimization unlikely to work over long term

» We see the same issues with JSON and XML databases of today
> No logical data independence — the hierarchies get hard-coded into queries
o Significant physical data independence today though

Collection “Suppliers”:

{!id™ "6, {“id”: “16”,

“‘Name”: “General Supply”, “‘Name”: “General Supply”,

“Location”: “Boston, MA”, “Location”: “Boston, MA”,

“supplies” [“supplies”: [
{fid”: “27", “Name™: “Power Saw”, “Qty™: 7, “Color”: “gray’}, {“id”: “27”, “Qty”: 73,
{oooil. } {oo.... }

I VS Ih

{“id”: “24”,

“Name”: “Special Supply”, Collection “Parts”:

“Location”: “Detroit, MI”, {“id”: “27,

“supplies™ [“‘Name”: “Power Saw”,
{fid™ “277, “Name”: “Power Saw”, “Qty”: 10, “Color”: “gray’}, “Color’: “silver”

}

CODASYL Era (70’s)

» Directed Graph Data Model, with a “record-at-a-time” data manipulation language
» Fewer restrictions than the IMS model

» But much more complex for the programmer (“programmer as a navigator”)

» Limited physical or logical data independence

» Harder to do bulk-loading of data

- Part (pno, 27, Power saw
Supplier (sno, pname, psize, 16,General Supply 7, silver

sname, scity, peolor) Boston, Ma
sstate)
100 /'
$20.00 I
Supplie Supplied_by

. 24, Special Supply 42, Bolts
Supply(qty, price) <
Detroit, Mi éOIOOO | Iyt 12 gray
. L—
5000 NS
$.08

A CODASYL Directed Graph
Figure 7

Some Example Data
Figure 8

| Turner | Putnam |Stamford|

customer template

account template | Johnson | Alma |Palo Alto

| Hayes | Main |Harrison

customer.customer_city := “Harrison”;
find any customer using customer city;
while DB-status = 0 do
begin
get customer;
print (customer.customer_name);
find duplicate customer using customerc

’| Turner | Putnam |Stamford
>

| Round Hill | Horseneck| 8000000 | f

branch template

|Perryridge [Horseneck| 1700000

~ end;
|Downtown| Brooklyn | 9000000
customer
,——>|Round Hill| Horseneck | 8000000
account
e 3| A305 | 350 | [A-102 | 400
pointer}; /
|A-402 |1000| |A-10l | 500
depositor
| Ad08 | 1123 | [A201 | 900
account_branch
L run unit

Figure A.20 Program work area.

CODASYL Era (70’s)

» Very similar to today’s graph data model proposals (e.g., “property graph”)

» But those show significantly more physical and logical data independence
° Depending on the actual implementation

> Need to enforce schemas (many graph databases today don’t)

» Many of the identified limitations of CODASYL really about the language and
some implementation choices

» Also bears much similarity with Entity-Relational Model (at the conceptual
level)

> E/R Model never really had an implementation or a language

Relational Era

» Proposed by Ted Codd in 1969/1970
o “IMS programmers were spending large amount of time doing maintenance on IMS applications when logical or physical
changes occurred”
» Proposal:

o Store datain a simple data structure (tables)
o Access it through a high-level set-at-a-time DML (relational algebra = SQL)

> No need to mandate any physical storage design (each system can do its own, and change easily as needed)

» Can easily represent 3-entity relationships (difficult for network model)
» No existence dependencies that plagued hierarchical model

» Cons:
o Transitive closure

o (initially) performance

o (initially) too complex and mathematical languages

Relational Era

» Many debates in 1970’s

» Relational Model Advocates
> Nothing as complex as CODASYL can possibly be a good idea
° CODASYL does not provide acceptable data independence
° Record-at-a-time programming is too hard to optimize

o CODASYL and IMS are not flexible enough to easily represent common situations (such as marriage
ceremonies)

» CODASYL Advocates
o COBOL programmers cannot possibly understand the new-fangled relational languages
> Itisimpossible to implement the relational model efficiently
> CODASYL can represent tables, so what’s the big deal?
» Both camps changed positions to move towards each other
o Relational systems got user-friendly languages (SQL, QUEL), and efficient implementation

» (According to Authors) Effectively settled by mini-computer revolution, and by IBM
who announced new relational products

> And by non-portability of CODASYL engines

Relational Era

» Don Chamberlin of IBM was an early CODASYL advocate (later co-invented
sQL)

“He (Codd) gave a seminar and a lot of us went to listen to him. This was as | say a
revelation for me because Codd had a bunch of queries that were fairly complicated
gueries and since I'd been studying CODASYL, | could imagine how those queries would
have been represented in CODASYL by programs that were five pages long that would
navigate through this labyrinth of pointers and stuff. Codd would sort of write them
down as one-liners. These would be queries like, "Find the employees who earn more
than their managers." [laughter] He just whacked them out and you could sort of read
them, and they weren’t complicated at all, and | said, "Wow." This was kind of a
conversion experience for me, that | understood what the relational thing was about
after that.”

Entity-Relational Model

» Explicitly represent entities and relationships, and connections between them

° Much easier for conceptual development of a schema

» No real uptake as the physical data model used by a database back then
o Lot of similarities to CODASYL

o Easy to map to relational

» Widely used today for initial schema design
° Normal forms are too difficult to work with

° Don’t address the question of how to get started

_ <
Part i Supplier @ @
Pno, pname, psize, tllp lr)ic)e’ Sno, sname, scity,
pcolor. .p sstate @

M N
STUDENT COURSE
! AGE >

1 = 1

& W&
Cumesr o>

M
LECTURER SUBJECTS —.

An E-R Diagram
Figure 11

Entity-Relational Model

» Many similarities to Object-relational Mapping Frameworks (like ruby-on-rails, python Django,
etc).
o Those frameworks explicitly model “object types” and “relationships” between them
° Very widely used by application programmers today
o Typically mapped to a RDBMS at the backend (not always a faithful mapping)

° Also similar to “property graphs” (assuming schemas are enforced)

» In my opinion: E/R model should be resurrected as the primary model for RDBMS
° Maintenance of relational model is too hard
° Changes made over time lead to un-normalized schemas with many issues

o See “Database Decay” by Stonebraker et al.

Question(models.Model):
question = models.CharField(max_length = 128, blank =
asker = models.ForeignKey(CustomUser, on_delete = models.CASCADE, related_name="asked_questions")
requested = models.ManyToManyField(CustomUser, related_name="answer_requests")
genres = models.ManyT yField(Genre, related_name = "questions")
followers = models.ManyToManyField(CustomUser, related_name="followed_questions")
topics = models.ManyToManyField(Topic, related_name="questions")
url = models.CharField(max_length = 0
created_at = models.DateTimeField(auto_now_add = , blank =

)

_str__(self):
self.question

Answer(models.M
answer = models.T:
author = models.ForeignKey(CustomUser, on_delete = models.CASCADE, related_na "written_answers")
question = models.ForeignKey(Question, on_delete = models.CASCADE, related_name="answers")
upvoters = models.ManyToManyField(CustomUser, related_name="upvoted_answers")
created_at = models.DateTimeField(auto_now_add = , blank =)

R++ Era

» Many new proposals focusing on specific applications that were not a good fit for relational

o CAD, Text Management, Time, Graphics, etc.

» GEM [Zaniolo 83]

o

Select Supply.SR.sno
From Supply
Set-valued attributes (e.g., available colors in “parts”) Where Supply.PT.pcolor = “red”

[e]

Cascaded dot notation (e.g., how you do in ORMs)

o |Inheritance hierarchies

» Main cons:

[e]

No real improvements over the relational model, either functionality or performance

o

Some of the key constructs could be easily added to relational model (e.g., new data types, arrays)

Object-oriented Models

» Designed to handle the “impedance mismatch”
° How data is represented in memory (typically as objects) vs how it is stored (in a normalized relational schema)
» Essentially became “persistent” programming languages

° Interesting technical challenge: “pointer swizzling”

» Weak support for transactions, queries, etc.

o Largelysingle-user systems

o DBMS must run in the same address space as the application
» Several reasons didn’t succeed

> No major additional functionality for most applications (i.e., a niche market)

> No standards
o Too tied to a single programming language
» Bear many similarities to Graph Databases

° OrientDB, one of the major graph databases, basically an Object Store

Relational database (such as PostgreSQL or MySQL) Python objects
ID[FIRST_NAME |LAST_NAME |[PHONE _ > c'f‘i’: Pne‘:;"e":_ N

1 |John Conngr +16105551234 | |astinamer "G onnon

2 |Matt Makai +12025555689 phone_number = "+16105551234"
3 [Sarah Smith +19735554512

class Person:

first_name = "Matt"
last_name = "Makai"
phone_number = "+12025555689"

class Person:
first_name = "Sarah"
last_name = "Smith"
phone_number = "+19735554512"

Object-relational Models

» Motivated by need to represent more complex data types

° e.g., locations, rectangles, complex numbers etc.
» Possible to do in relational to some extent, but very painful and error-prone

» Instead, have:
> User-defined types
o User-defined operators (that change the meaning of “+”)
o User-defined functions to work on those types (e.g., to find if a Point lies in a Rectangle)

o User-defined “indexes” (for efficient searching): B+-trees don’t work well on spatial data

Select P-id Select P-id
From Parcel From Parcel

Where Xmax > X0 and Ymax > Y0 and Xmin < X1 and Ymax <Y1 Where P-box ## “X0, X1, YO, Y1~

» Postgres (research project at Berkeley, led by Stonebraker) the first real implementation
» UDFs a major benefit

° By putting code in the databases, avoided many round-trips to the database from the client

Semi-structured Data

» Context: XML very popular in the industry and academia circa 2000

o When this article was first written

» Flexible schemas (“schema later” or “schema-on-read”)
o Don’t require a schema in advance — instead impose it when reading, or make it part of the data itself (self-describing)
o Relational databases will reject any data that doesn’t conform to the schema
o Easy to state, but hard to use due to semantic heterogeneity and other issues

> Need a well-defined understanding of what the fields mean to use it properly (i.e., need a schema)

» These databases also support easy schema evolution, which is a major benefit especially in
early application development

Person:
Name: Joe Jones
Wages: 14.75
Employer: My accounting
Hobbies: skiing, bicycling
Works for: ref (Fred Smith)
Favorite joke: Why did the chicken cross the road?
Office number: 247
Major skill: accountant
End Person

Name: Smith, Vanessa
Wages: 2000
Favorite coffee: Arabian

Pastimes: sewing, swimming
Works for: Between jobs
Favorite restaurant: Panera
Number of children: 3

End Person:

Semi-structured Data

» Context: XML very popular in the industry and academia circa 2000

o When this article was first written

» Main constructs in XML (and JSON today, mostly)

o

”Self-describing” (the attribute names part of the data)
o Hierarchical format
o Can have links to other records (like CODASYL)

o

Set-valued attributes (leads to more complex language)

» XML popular early on as a “on-the-wire format” (as is JSON today)
o Text-based, so can go through firewalls
° Not proprietary
° JSON widely used for APIs today

Other formats like Parquet are more common for large volumes of data

Developments since 2005

» From redbook.io: http://www.redbook.io/chl-background.html

» XML didn’t really take over
° Too complex, especially query languages (XQuery)
o Inefficient implementations (e.g., for indexes)

° No compelling use cases

» JSON more popular and very similar
° Good for sparse data — can be handled by adding a JSON data type to the database

° Schema on read — basically just a “project” on fewer attributes of interest

o Doesn’t really solve semantic heterogeneity problems

http://www.redbook.io/ch1-background.html

NoSQL Data Models

» Quite a few different data models, but map closely to one of the standard ones

» Document Data Model: JSON, XML, etc.

http:iwww example. org/staffid/85740

} Key_Va I u e : Si m pI e i nte rfa Ce mlpﬁ\»ww example orgherms/address
© p Ut(key, Va I u e), get(key) http:/iwww.example. orgﬂlermstc ty hltleww example orgfterms/
. 01730
> Lot of logic in what “value” is and how it is manipulated / \
hitp:fAwww.example. orgfterms/street http:fiwww example. orgiermsistate

° e.g., value may be JSON, time-series, etc.

1501 Grant Avenue Massachusetts

» Graph Data Models:
o A few different ones: Property Graph, RDF, ...

» Column families (e.g., Cassandra)
o Puts a little more structure on key-value

o “values” themselves are stored as columns of information

» Array Data Models

° Proposed for scientific data management

> Key abstraction: an array or a matrix N oo 2r 3 (4
. L. . . . [0] (2,07) | (505) | (409) 1 (2,08) | (1,02)

o Key operations: Slicing, Subsetting, Filtering, etc. 1 Gom T0m T w) [Eem | Gos)
(21] (4,03) | (6,0.0) [(6,05) | (2,00) | (7,04)

131 (4,025)] (6,045) [(6,03) | (1,0.1) | (0,03)

[41] (6,05) | (1,06) | (505) [(2,015) (2,04)

Figure 1: Simple Two Dimensional SciDB Array.

Outline

Data Models: Then, and now

v

> History of Data Models (“what comes around...”)

v

Languages
o Qverview

o Datalog (“a survey of research...” and “declarative networking...”)

v

Map-reduce and Spark
o QOriginal MR Abstraction ("mapreduce:” ...”)

o Spark (“resilient distributed datasets...”)
SystemML: An abstraction for ML

v

>

GraphX: An abstraction for Graphs

Procedural vs Declarative Languages

» Procedural/imperative query languages

o Support a set of data-oriented operations

o

Usually need to specify the sequence of steps to be taken to get to the output

(¢]

Often map one-to-one with the physical operators that are implemented

Large gap between those two =» more opportunities to optimize

» Declarative query languages

o

Specify the desired outcome, typically as a function over the inputs
» A different issue than how ”high-level” or abstract the language is

» Most languages today are somewhere in-between

° SQL is more declarative than procedural

Early Languages

» DL/1 or DBTG were procedural in nature

» Not easy to write complex data processing operations

| Turner [Putnam {Stamﬁ)rd I

customer template

account template

| Round l(ill| Horseneck I 8000000 |
branch template

CHS;OWE)‘

accoun

o e
R

IHayos I Main | Harrison|

|]0hnson I Alma I Palo Altnl

Turner ‘ Putnam ‘ Stamford|

/'l
/l Perryridge lHurseneck I 1700000 |

IDowntown‘ Brooklyn | 9OUOUUO|

‘*'[Round Hill‘ Horseneck ‘ 8000000 |

currency | pranch
pointers

P

lepositor /|
account branch /

run unit

ffi A-305 | 350 | [A-102 [400 |

[A-402 | 1000 | [A-101 | 500 |

[A08 [1123] [a201 [900 |

p’/

Figure D.20 Program work area.

branch.branch-name := "Perryridge";
find any branch using branch_name;
find first account within account_branch;
while DB-status = 0 do
begin
find owner within depositor;
get customer;
print (customer.customer_name);
find next account within account_branch;
end

DBTG: CODASYL Language

Relational Algebra

» Original set of operators (select, project, join, union/intersection) proposed
by Ted Codd in 1970

> His “join” operation was somewhat different, but “natural join” same as today

o Also procedural, but high-level and easy to use

» Six Basic Operations operating on Relations (see 424 slides for more)

[e]

o

o

Select (0): Unary — select a subset of rows
Project (mt): Unary — select a subset of columns

Set Union and Set Difference: Binary

o Cartesian Product (X): Binary clple rxs: [alBlec|ple
> Rename (p): Need to be able to do self-joins «|10] a “ . 10| @
a a

B|10] a al|1|p|20|b

Bl2|a|10] a

v |10 b Bl2|p|10]a

s Bl2|pl20]|b

Bl|2|v|10]| Db

[N

Inputs and Outputs

» Sets or “multi-sets” of ..

> Objects = key-value pairs =2 tuples

ol
02
03
o4

Set of objects (e.qg., images,
JSON documents)

ol
ol
ol
o4

Multi-set of objects

m

ki
k1
k2
k3

ol
02
03
o4

A|/B|C|D
a|a |17
a | B|5]|7
BB |12] 3
B | B |23]10

Set of key-value pairs (e.qg.,
pairs of (userid, profile))

Set of tuples
aka Relation/Table

Operations on Datasets: Select

» Input: Table, Output: Table

» Select only those rows that match the condition
» SQL: “where”

» May be called “match” or “find” or "filter”

Relation r AlB|C|D GA:B/\D>5(r) A[B[C]|D
a | o |1 |7 a la l 117
a | B 5|7 B| B |23|10
B|B|12] 3
B| B |23]10

Operations on Datasets: Project

» Input: Table, Output: Table
» Select only those columns that match the condition

» SQL: “select”

Relation r AlBlcCcl|D TrA,D (N |A|D A
a | a |17 o | 7/ 0!
a | B|5]|7 o | 7
B|B|12] 3 3 B
B | B |23]|10 B |10

Operations on Datasets: Map

» Input: Rows of Objects, Output: Rows of Objects
° j.e., don’t care about what’s in a row

» For each row, apply a function
» SQL: “select” can handle this (with UDFs)

Table t t.ma
ol P(") f(ol)
02 f(02)
o3 f(o3)

04 f(o4)

Operations on Datasets: flatMap

» Has other names (e.g., unwind)

» Input: Rows of Objects, Output: Rows of Objects

» For each row, apply a function that may generate >= 0 rows
» SQL: No easy way to do this

Table t t.map(f)
ol ol’
02 f(o1) = [01’, 02, 03] 02’
03 f(02) =[] 03’
04 f(03) = [04'] 04’

- f(04) = [05’ 05’

Operations on Datasets: Group(By)

v

Input: Collection of (k, v) pairs, Output: Collection of (k, [v]) pairs
o k =key, v=value

» Group the input rows by the “key”

» Relational Algebra: No support (can’t have sets as values)

» SQL: Most implementations support it

° e.g., postgresql has array aggregates or string aggregates

» Other Names: “nest”

fablet k1 ol t.groupByKey() k1 [01, 02]
k1 02 k2 [03]
k2 03 k3 [04]
k3 04

m

Operations on Datasets: Group(By) Aggregates

Vi

» Input: Collection of (k, v) pairs, Output: Collection of (k, v’) pairs, where v
may be different data type

» Also called “reduceByKey” or “aggregateByKey”
» Group values by key, and apply a provided “function” to get a single value
» SQL has a predefined set of functions (SUM, COUNT, MAX, ...)

Table t t.reduceByKe
k1 ol yKey() k1 f(ol, 02)

'q 02 k2 f(o3)
k2 o3 k3 f(o4)

Operations on Datasets: Group(By) Aggregates

» PostgreSQL (and other systems) support user-defined aggregate functions

o

o

o

[¢]

init(): what’s the initial state (e.g., for AVG: (count =0, sum = 0))

update(): modify state given a new value (e.g., for AVG: (count + 1, sum + newval))
final(): generate the final aggregate (e.g., for AVG: sum/count)

The update operation must be insensitive to the order in which the values are processed

i.e., output should be the same if it sees: v1, v2, v3, versus if it sees: v3, v2, vl in that order

Must process tuples sequentially s = init(
s = update(s, v1)
s = update(s, v2)

result = final(s)

» Another way to do it

o

o

o

o

Provide a binary function that is commutative and distributive

Shouldn’t matter in which order the objects are processed
More "parallelizable”

Can generate a (sum, count) pair, but for “average” need another “map”

Any of these are fine

result = f(f(f(v1, v2), f(v3, v4)), vb)
result = f(f(f(v1, f(v2, v3)), v4)), v5)
result = f(f(f(f(f(v1, v2), v3), v4), v5)
result = f(f(vl, f(v2, v3)), f(v4, v5))

Operations on Datasets: Unnest

» Opposite of “nest” (group by)

» Similar to “flatMap” and “unwind” (in MongoDB)
o But defined for relational algebra (extended to handle sets as values)

» Useful abstraction to deal with non-1NF data (e.g., JSON which supports

arrays)
Table t unnest
k1 [01, 02] kT ol
k2 [03] kT 02
k3 [04] k2 03

m

Operations on Datasets: Unnest

SUBJECT DEGREE UNNEST(SUBJECT(SUJBECT')EXAMS) SUBJECTLO DEGREE
SUBJECTL Composition Science
— Maths Science
Composition _ Physics Science
Maths Science Composition Economics
Physics Statistics Economics
_ Maths Economics
Composition _ Composition Science
Statistics Economics Maths Science
Maths Chemistry Science
— Composition Classics
Composition _ History Classics
Math > Science Latin Classics
Chemistry Ancient Greek Classics
Composition
History Arts
Latin
Ancient Greek

From: Nest and Unnest operations in nested relations
Georgia Garani
Data Science Journal, May 2008

Operations on Datasets: Set Union/Intersection/Difference

» Input: Two collections, Output: One collection

» SQL support: union/except/intersection
> Requires collections (tables) to have the same schema
> Removes duplicates by default (most SQL operations don’t remove duplicates)

III

° Can use “union all” etc., to preserve duplicates

Relationr,s | A | B A | B rUs: | A| B r —s:
a | 1 o | 2 a | 1
a | 2 B |3 a | 2
1 S 1
r B | 3

Operations on Datasets: Cartesian Product
— 1 2 3 B
» Input: Two tables, Output: One table Al {x,lléix,zléi}fﬁ}

» Note: a “set” product will result in nested output
v D) 12 | 1.3)
o First row would be: ((alpha, 1), (alpha, 10,2)) I I

AxB

o Relation algebra flattens it 2 (z.1) (z.2) (2,3)
Relationr,s | o | B clplE rxss | alBlclplE
a |1 o 110! a a | 1| a |10 a
al|1|pB |10 a
bl2]1 1|10/ a «| 1| B|20] b
' B 20| b a| 1]y |10 Db
Bl 2| a|l0]| a
y |10] b Bl 2|B|10] a
S Bl 2 |B|20| b
Bl 2|y |10| Db

Operations on Datasets: Joins

» Input: Two tables, Output: One table
» Cartesian product followed by a “select”/“map”
» Many variations of joins used in database literature

o, n

Note: semi-join and anti-join are technically “select” operations on “r”, not a ”join” operation

Tables: r(A, B), s(B, C)

cross product select * fromr, s;
natural join > natural join TA g, 5.c0r8=sa(r X S)
theta join D<g from .. where 0; oglr x s)
equi-join Mg (theta must be equality)
left outer join r>s left outer join (with “on”) (see previous slide)
full outer join r >t S full outer join (with “on”) -
(left) semijoin rxs none T, A r(r D<'S)

(left) antijoin r> s none F= T, ra(r >'s)

Operations on Datasets: Lookup

v

Another way to look at a left outer join
Input: Table, Output: Table
Augment the input table with data from another table

v

v

v

Supported by “Excel”, MongoDB, etc.

Table R -E-- a—md-ml:l
al

Lookup in S using “C”
23 b1 cl a3 bl c1 dil el

C D [E
cl dl el
c2 d2 el

c3 d?2 e3 C must be a “key” for S,
o/w not well-defined
Table S

Operations on Datasets: Pivot

» Flip rows and columns

» No SQL equivalent, although supported by many systems (e.g., CROSSTAB in
PostgreSQL)

» Usually used in conjunction with aggregates (so that the number of rows is
small)

Table R m pivot m
cl

al bl bl b2 bl
a2 b2 c2 Cl c2 cl
a3 bl cl

&

Operations on Datasets

» Sorting and ordering

v

Ranking (sparse vs dense rank)

» Distinct (duplicate elimination)

» Sample: generate a random sample

Data Cubes

> Allows aggregating on multiple attributes simultaneously

v

m

Recap

» Many data management systems view data as collection/multiset of tuples
or objects or (key, value) pairs

» A common set of operations supported by most

> Some Unary, Some Binary (or more generally, n-ary)

» Language constructs often map one-to-one to physical operators, but not
always

° e.g.,SQL JOIN is a n-ary operator, that maps to a sequence of binary JOINs

> Recent work on trying to do n-ary joins directly (asymptotically better in some cases)

» More declarative a language = More opportunities to optimize

° e.g., Pandas (Python Library), MongoDB, Apache Spark RDD interface, etc, not declarative
even though pretty high-level

> However, physical operators themselves can be heavily optimized, especially in parallel
settings

SQL

» Originally SEQUEL: A Structured English Query Language (1974), developed
at IBM for System R

» Commercial implementations in Oracle and DB2 in late 70’s, early 80’s

» Standardization by ANSI and ISO started in 1996

» Very similar to Relational Algebra in the basic operators it supports

> Except for GROUP BYs and AGGREGATEs (among basic constructs), and some Set Operations
(e.g., NOTIN, ALL)

» Modern implementations support many additional constructs
° Window and Partitioning Functions

o Recursion

o Triggers
» Skim through 424 Slides

Some Criticisms of SQL

» From: “ A critique of SQL”, Date, 1984

» e.g., can’t use a table name as a table expression

M nestedad taple~-expreasslon

for W e el vl d A Tod o Ve B el Ve Wl B - \’-.’ Bd] v! = W low S] R
umn-expression yields a column havi Vs in current GUL as the ai
eover, the nested expression is allowe ugh not as the argument

s point 15 discussed in -

» In general, a lot of inconsistencies in what can be used where

» Aggregates don’t have a natural formalism

» Some of those criticisms fixed since then, but many are fundamental to the
language

Impedance Mismatch

» Recognized fairly early on: “Some High Level Language Constructs for Data
of Type Relation”; Schmidt, 1976

» Proposed an extension to Pascal/R to include a Relation as a basic data type

type ereclype = recoxd enr, estatus:integer; ename:siring end;
ereltype = relation (enr) of erectype;

irectype = record fenr, lenr, tlimetinteger;

tday, troom:string end;
trellype = relation (lenr, tcnr, tday) of irectype;
crectype = record cnr, clevel'inleger; cname:siring end;

creltype = relation {cnr) of crectype;
var employees, resull3, resultd, resultd, resultf:ereltype;
temetable: treltype;

courses:crellype;
begin .
resulld := [each erec in employees:erec.estatus = 2];
resultd :="[each erec in employees:some irec in timetable ((erec.enr = lrec.tenr) and
(trec.tday = ‘friday’))];
results := [each erec in employees: all trec in timelable (erec.enr # lrec.tenr)];
resultb := [each erec in employees:all trec in timetable ((erec.enr = lrec.lenr) or

some crec in courses ((trec.icnr = erec.cnr) and (crec.clevel = 1)))]

end.

Impedance Mismatch

» Also led to the work on Object-oriented Databases, and (later) Object-
Relational Mapping (ORM) frameworks

» Language INtegrated Query (LINQ) Framework
> A declarative component of the .NET OOPLs (C#, Visual Basic, F#)

> Allows querying and manipulating collections of objects using SQL-style syntax

class LINQQueryExpressions
{
static void Main()

{

// Specify the data source.
int[] scores = new int[] { 97, 92, 81, 60 };

// Define the query expression.
IEnumerable<int> scoreQuery =
from score in scores
where score > 80
select score;

// Execute the query.
foreach (int i in scoreQuery)
{
Console.Write(i + " ");
¥
}

' }

// SQL-style syntax to join two input sets:
// scoreTriples and staticRank
var adjustedScoreTriples =
from d in scorelriples
join r in staticRank on d.docID equals r.key
select new QueryScoreDocIDTriple(d, r);
var rankedQueries =
from s in adjustedScoreTlriples
group s by s.query into g
select TakeTopQueryResults(g);

// Object-oriented syntax for the above join
var adjustedScoreTriples =
scoreTriples.Join(staticRank,
d => d.doclID, r => r.key,
(d, r) => new QueryScoreDocIDTriple(d, r));
var groupedQueries =
adjustedScoreTriples.GroupBy(s => s.query);
var rankedQueries =
groupedQueries.Select(
g => TakeTopQueryResults(g));

Figure 3: A program fragment illustrating two ways of expressing the
same operation. The first uses LINQ’s declarative syntax, and the sec-
ond uses object-oriented interfaces. Statements such as r => r.key
use C#’s syntax for anonymous lambda expressions.

From the DryadLINQ Paper, a
distributed implementation of LINQ

Very similar to Apache Spark

Impedance Mismatch

Also led to the work on Object-oriented Databases, and (later) Object-
Relational Mapping (ORM) frameworks

» Language INtegrated Query (LINQ) Framework
> A declarative component of the .NET OOPLs (C#, Visual Basic, F#)

o

Allows querying and manipulating collections of objects using SQL-style syntax

» Today, many programming languages have support for list comprehensions,
dictionaries, and features like that

(e]

With libraries to make it easy to load and store data

(e]

For example, Pandas for Python, Libraries to read/write Parquet/Avro files, etc.

MongoDB Query Language (MQL)

» Input = collections, output = collections
o Very similar to Spark

» Three main types of queries in the query language
> Retrieval: Restricted SELECT-WHERE-ORDER BY-LIMIT type queries
o Aggregation: A bit of a misnomer; a general pipeline of operators
« Can capture Retrieval as a special case
« But worth understanding Retrieval queries first...
o Updates

» All queries are invoked as
o db.collection.operationl(...).operation2(...)...
- collection: name of collection

> Unlike SQL which lists many tables in a FROM clause, MQL is centered
around manipulating a single collection (like Spark)

Syntax somewhat different when called
from within Python3 (using pymongo)

Aggregation Pipelines

» Composed of a linear pipeline

of stages
» Each stage corresponds to one
of:
° match
° project
> sort/limit * Syntax:
° group db.collection.aggregate ([
° unwind :
- ookup { $stage10p: {}},
> ... lots more!! { $stage20p: { } },
» Each stage manipulates the
existing collection in some way { $stageNOp: { } }

1)

Grouping (with match/sort) Simple Example

> db.zips.find()

{ "_id" : "@1e22", "city" : "WESTOVER AFB", "loc" : [-72.558657, 42.196672 1, "pop" : 1764, "state" : "MA" }
{ "_id" : "e@1e11", "city" : "CHESTER", "loc" : [-72.988761, 42.279421 1, "pop" : 1688, "state" : "MA" }

{ "_id" : "@1026", "city" : "CUMMINGTON", "loc" : [-72.905767, 42.435296 1, "pop" : 1484, "state" : "MA" }

Find states with population > 15M, sort by decending order
db.zips.aggregate([
{ Sgroup:{ _id: "Sstate" totalPop: { Ssum: "Spop :

{ Smatch: { totalPop: { Sgte: 15000000 } }},

{ Ssort : { totalPop : -1 } } D ‘_‘4,‘
1)

{" id" :"CA", "totalPop" : 29754890 } _
{" id" : "NY", "totalPop" : 17990402 } SELECT state AS id, SUM(pop) AS totalPop

{" id":"TX", "totalPop" : 16984601 } FROM zips

GROUP BY state

HAVING totalPop >= 15000000
ORDER BY totalPop DESCENDING

Q: what would the SQL query for this be?

Syntax somewhat different when called
from within Python3 (using pymongo)

Multiple Agg. Example

> db.zips.find()

{ "_id" : "e1e22", "city" : "WESTOVER AFB", "loc" : [-72.558657, 42.196672 1, "pop" : 1764, "state" : "MA" }
{ "_id" : "eiei1", "city" : "CHESTER", "loc" : [-72.988761, 42.279421], "pop" : 1688, "state" : "MA" }

{ "_id" : "e1e26", "city" : "CUMMINGTON", "loc" : [-72.905767, 42.435296], "pop" : 1484, "state" : "MA" }

Find, for every state, the biggest city and its population

aggregate([

{ Sgroup: { _id: { state: "Sstate", city: "Scity" }, pop: { Ssum: "Spop" } } },

{$sort: { pop: -1}},

{Sgroup: { __id: "S_id.state", bigCity: { Sfirst: "$_id.city" }, bigPop: { Sfirst: "Spop" } }},

{Ssort : {bigPop : -1} }

1)

Approach:

4

4

4

4

{7_id":
{"_id":
{"_id":
{"_id":

{ II_idII :

Group by pair of city and state, and compute population per city

Order by population descending

Group by state, and find first city and population per group (i.e., the highest population city)

Order by population descending

"IL", "bigCity" : "CHICAGO", "bigPop" : 2452177 }
"NY", "bigCity" :
"CA", "bigCity" :
"TX", "bigCity" :
"PA", "bigCity" :

mRioCity" :

"BROOKLYN", "bigPop" : 2300504 }
"LOS ANGELES", "bigPop" : 2102295 }
"HOUSTON", "bigPop" : 2095918 }
"PHILADELPHIA", "bigPop" : 1610956}
"DETROIT", "bigPop" : 963243 }

Syntax somewhat different when called
from within Python3 (using pymongo)

Multiple Agg. with Vanilla Projection

Example

db.zips.find()

N 4

"_id" : "e1e22", "city" : "WESTOVER AFB", "loc" : [-72.558657, 42.196672], "pop" : 1764, "state" : "MA" }
"_id" : "@lel11", "city" : "CHESTER", "loc" : [-72.988761, 42.279421 1, "pop" : 1688, "state" : "MA" }
"_id" : "@1e26", "city" : "CUMMINGTON", "loc" : [-72.9@5767, 42.435296], "pop" : 1484, "state" : "MA" }

If we only want to keep the state and city ...

aggregate([

{ Sgroup: { _id: { state: "Sstate", city: "Scity" }, pop: { Ssum: "Spop" }} },

{ Ssort: { pop: -1 }},

{ Sgroup:{ _id :"S_id.state", bigCity: { Sfirst: "S_id.city" }, bigPop: { Sfirst: "Spop" } } },

{ Ssort : {bigPop : -1} }

{ Sproject : {bigPop : 0} }

1)

{

{

{ n idll : "CA", Ilbigcityll
{ n idll : “TX"' llbigcityll
{

id" : "IL", "bigCity" : "CHICAGO" }
" id": "NY", "bigCity" :
. "LOS ANGELES" }
: "HOUSTON" }

" id": "PA", "bigCity" :

@OQ S

"BROOKLYN" }

"PHILADELPHIA" }

Syntax somewhat different when called
from within Python3 (using pymongo)

Multiple Agg. with Adv. Projection Example

db.zips.find()

"_id" : "el1e22", "city" : "WESTOVER AFB", "loc" : [-72.558657, 42.196672 1, "pop" : 1764, "state" : "MA" }
"_id" : "ei1ei1", "city" : "CHESTER", "loc" : [-72.988761, 42.279421], "pop" : 1688, "state" : "MA" }
"_did" : "e1e26", "city" : "CUMMINGTON", "loc" : [-72.905767, 42.435296], "pop" : 1484, "state" : "MA" }

B a4

If we wanted to nest the name of the city and population into a nested doc

aggregate([

{ Sgroup: { _id: { state: "Sstate", city: "Scity" }, pop: { Ssum: "Spop" } }},

{ Ssort: { pop:-11}},

{ Sgroup: { _id : "S_id.state", bigCity: { Sfirst: "S_id.city" }, bigPop: { Sfirst: "Spop" }} },

{ Ssort : {bigPop : -1} },

{ Sproject : { _id : 0, state : "S$_id", bigCityDeets: { name: "SbigCity", pop: "SbigPop" } } }
1)

{ "state" : "IL", "bigCityDeets" : { "name" : "CHICAGO", "pop" : 2452177 } }

{ "state" : "NY", "bigCityDeets" : { "name" : "BROOKLYN", "pop" : 2300504 } }

{ "state" : "CA", "bigCityDeets" : { "name" : "LOS ANGELES", "pop" : 2102295 } }
{ "state" : "TX", "bigCityDeets" : { "name" : "HOUSTON", "pop" : 2095918 } }

{ "state" : "PA", "bigCityDeets" : { "name" : "PHILADELPHIA", "pop" : 1610956} }

Syntax somewhat different when called
from within Python3 (using pymongo)

Unwind: A Common Template

> db.inventory.find()

{ "_id" : ObjectId("5fb59ab9f50b800678c8el196"), "item" : "journal", "instock" : [{ "loc" : "A", "qty" : 5}, { "loc" : "C", “"qty" : 15 } 1, “"tags" : ["blank", "red" 1, "dim" : [14, 21] }

{ "_id" : ObjectId("5fb59ab9f50b800678c0el197"), "item" : “"notebook", "instock" : [{ "loc" : "C", "qty" : 6 } 1, "tags" : ["red", "blank" 1, "dim" : [14, 21 1}

{ "_id" : ObjectId("5fb59ab9f50b800678c@el198"), "item" : "paper", "instock" : [{ "loc" : "A", "qty" : 60 }, { "loc" : "B", "gty" : 15 } 1, "tags" : ["red", "blank", "plain" 1, "dim" : [14, 21]}
{ "_id" : ObjectId("5fb59ab9f50b800678c0e199"), "“item" : “"planner", "instock" : [{ "loc" : "A", "gqty" : 40 }, { "loc" : "B", "gty" : 5 } 1, "tags" : ["blank", "red" 1, "dim" : [22.85, 30] }

{ "_id" : ObjectId("5fb59ab9f50b800678c8el9a"), "item" : "postcard", "instock" : [{ "loc" : "B", "qty" : 15 }, { "loc" : "C", "qty" : 35 } 1, "tags" : ["blue" 1, "dim" : [10, 15.25] }

Q: Imagine if we want to find sum of qtys across items. How would we do this?

A common recipe in MQL queries is to unwind and then group by

aggregate([
{ Sunwind : "Sinstock" },
{Sgroup : {_id : "Sitem", totalgty : {Ssum : "Sinstock.qty"}}}

1)

{"id": "notebook", "totalqty" : 5 }
{"id": "postcard", "totalgty" : 50 }
{".id": "journal", "totalqty" : 20 }
{"id": "planner", "totalqty" : 45 }
{"id": "paper", "totalqty" : 75 }

Syntax somewhat different when called
from within Python3 (using pymongo)

Looking Up Other Collections

> db.inventory.find()

{ "_id" : ObjectId("5fb59ab9f50b800678c8el196"), "item" : "journal", "instock" : [{ "loc" : "A", "qty" : 5}, { "loc" : "C", “"qty" : 15 } 1, "tags" : ["blank", "red" 1, "dim" : [14, 21 1}

{ "_id" : ObjectId("5fb59ab9f50b800678c0el197"), "item" : "notebook", "instock" : [{ "loc" : "C", "qty" : 6 }], "tags" : ["red", "blank" 1, "dim" : [14, 21] }

{ "_id" : ObjectId("5fb59ab9f50b800678c@e198"), "item" : "paper", "instock" : [{ "loc" : "A", "qty" : 6@ }, { "loc" : "B", "qty" : 15 } 1, "tags" : ["red", "blank", "plain" 1, "dim" : [24, 21] }

{ "_id" : ObjectId("5fb59ab9f50b800678c0el99"), "item" : "planner", "instock" : [{ "loc" : "A", "qty" : 40 }, { "loc" : "B", "qty" : 5 } 1, “"tags" : ["blank", "red"], "dim" : [22.85, 30] }

{ "_id" : ObjectId("5fb59ab9f50b800678clel9a"), "item" : "postcard", "instock" : [{ "loc" : "B", "qty" : 15 }, { "loc" : "C", "qty" : 35 } 1, "tags" : ["blue" 1, "dim" : [10, 15.25] }
{Slookup:{ db.inventory.aggregate([

from: <collection to join>, . —_ S
rom: <coflection to join> { $lookup : {from : "inventory", localField: "instock.loc", foreignField:

"instock.loc", as:"otheritems"}},
{ $project : {_id : 0, tags : 0, dim : 0}}

localField: <referencing field>,
foreignField: <referenced field>,
as: <output array field>

I3 1)
Conceptually, for each document {"item" : "journal", "instock" : [{ "loc" : "A", "gty" : 5}, { "loc" : "C", "qty" :
» find documents in other coll that join (equijoin) 15}], "otheritems” : |
> local field must match foreign field {"_id" : Objectld("5fb6f9605f0594e0227d3c24"), "item" : "journal”,
» place each of them in an array “instock" : [{ "loc" : "A", "qty" : 5}, { "loc" : "C", "qty" : 15 }], "tags" :

["blank”, "red"], "dim" : [14, 21]},

{"_id" : Objectld("5fb6f9605f0594e0227d3c25"), "item" :

"notebook™”, "instock™ : [{ "loc" : "C", "qty" : 5}], "tags" : ["red",

"plank"], "dim" : [14, 211},

_ _) {"_id": Objectld("5fb6f9605f0594e0227d3c26"), "item" : "paper",

Straightforward, but kinda gross. Let’s see... "instock™ : [{ "loc" : "A", "qty" : 60 }, { "loc" : "B", "qty" : 15}], "tags"
["red", "blank”, "plain”], "dim" : [14, 21},

Thus, a left outer equi-join, with the join results stored in an
array

Say, for each item, | want to find other items located in the
same location = self-join 1}

And many other records!

Syntax somewhat different when called
from within Python3 (using pymongo)

Outline

v

Data Models: Then, and now
> History of Data Models (“what comes around...”)

> A data model for Key-value Stores (“a co-relational model..”)

v

Languages
° Qverview

o Datalog (“a survey of research...” and “declarative networking...”)

v

Map-reduce and Spark
> QOriginal MR Abstraction ("mapreduce:” ...”)

> Spark (“resilient distributed datasets...”)
SystemML: An abstraction for ML

v

4

GraphX: An abstraction for Graphs

Tuple Relational Calculus

» Non-procedural Language (unlike RA)

» Basic Query: all tuples such that P(t) is true

{t] P(D)}

» Example: Find instructors with department in the Watson Building

{t| 3s € indrucor (t{fname] = gname]
A du € department (u[dept.name] = dept.name]
A U[building] =

» Find students who have taken all courses offered by Biology

{t|3r € dudent (r[ID] = t[ID]) A
(Vu € oourse (u[deptname] = “ Biology’ =
ds € takes(t[ID] = dID]
A Joourszid] = ufooursaid]))}

Datalog

» From Online Chapter at: https://db-book.io

IH

» Extensional “Facts”

° Map to tuples in relations

» “Rules”
> Allow inferring additional ‘intentional’ facts

> Can be thought of as defining “views”

» Example: account is extensional, and v1 allows inferring additional facts

V(A B) —acoount(A “Perryridge’, B), B> 700

means:

for all A B

if (A, “Perryridge’, B) € acoount and B > 700
then (AB)ewvl

M

Datalog

From Online Chapter at: https://db-book.io

v

v

Example: account is extensional, and v1 allows inferring additional facts

VI(A B) —acoount(A “Perryridge’, B), B> 700

v

Writing queries?

?V1(A B), B> 800 — (A-201, 900)

Multiple rules typically used for the same view

interes.ratg(A, 5) —account(A, N, B), B < 10000
interest_rate(A, 6) —account(A, N, B), B >= 10000

v

» Can use Negation

c(N) :—depogtor(N,A), not isborroner(N)
isborroner(N) —borroner(N, L)

Datalog

» For non-recursive queries, the semantics are pretty straightforward

layer 2 interest
interest(A, 1) —acoount(A, “Perryridge’, B),
interest rate(A, R), | = B« R/100 P —
interest_rate(A, 5) :—acoount(A, N, B), B < 10000 layer 1 :n; —;oo;mt
interest_rate(A, 6) —aocoount(A, N, B), B >= 10000 EEDIRLE
perryridge.account(X, Y) —acoount(X, “Perryridge’, Y)
database account

» More complex for recursive queries
> Assume we have a single relation: parent(child_id, parent_id)

> The following program gets ancestors

ancestor(A, B) :- parent(B, A)
ancestor(A, B) :- ancestor(A, C), parent(B, C)

Datalog: Safety

v

Possible to write rules that generate infinite answers

aX,Y) =X>Y
notinloan(L, B, A) —not loan(L, B, A

v

Datalog programs must satisfy safety conditions:
o Every variable in the head, must appear in a non-arithmetic positive literal in the body

° Every variable in a negative literal in the body must appear in some positive literal in the
body

v

For non-recursive program, this guarantees finite results as long as the
database relations are finite

Can relax the rules somewhat:

v

o(A) —qB), A= B+ 1

Datalog: Mapping to RA

Select
VI(A B) —acoount(A “Perryridge’, B), B> 700
» Project
query(A) —acocount(A N, B)
» Cartesian Product

query(Xy, Xo, -, Xo0s Y1, You oo, Ye) =1 (X %0, 10, X)), To(Ye, Yo, ooty Yi)
» Union

v

QUENY(Xy, X, .-+ X) =T (Xg, X o, %)
QUErY(Xy, X, -+, X) = Fp(Xg, X ... %)

» Set Difference
queEry(Xy, X5, ..., X)) =1 (X, %, ..., X)), ot ry(X, X%, ..., X))

» Extensions exist for aggregates as well

m

Datalog: Bottom-up vs Top-down Evaluation

» Prolog uses a top-down evaluation approach (by default)

o Start with query as goal and use the rules to create more goals until you get to facts
fibo_td(0,0).
fibo_td(1,1)
fibo_td(N,F):-
N>1, N1 is N-1, N2 is N-2,

fibo_td(N1,F1), fibo_td(N2,F2),
F is F1+F2.

o If we are asked to compute fibo _td(10, F) — we would expand the last rule, and
compute fibo_td(9, ?) and fibo_td(8, ?) first

° Need to use memo-ization in order to avoid exponential runtime

» Not a good approach for Datalog

o Efficient evaluation requires use of set-at-a-time processing, i.e., start with base facts
and generate more facts using the rules

wback: may generate facts that are not needed

Datalog: Bottom-up Evaluation

» Standard Fixpoint algorithm
o Start with all the facts (initially the base relations)
> Infer new facts using those and the provided rules

> Repeat until no more facts are inferred

» Sometimes called “naive” evaluation

Semi-Naive Evaluation

v

> Keep track of which new “facts” were inferred in iteration N - 1

> Initeration N: only consider those rules as firing that include at least one of those facts

» Works for both recursive and non-recursive programs

° Bounded depth for non-recursive programs based on the query

M

Datalog: Bottom-up Evaluation

» For “safe” Datalog programs, this will stop at some point assuming no
“negative” literals

» With negative literals, previous inferences may be invalidated
o e.g., q(X, Y):-notR(Y, X),Y=10,X=5
o If R(10, 5) doesn’t exist, we can infer q(5, 10)

° However in a later iteration, we may get: R(10, 5)

» Note: SQL originally did not support recursion —so no way to do “transitive
closure” —SQL 99 added support

» We will discuss some other optimization techniques (e.g., magic sets) later

Declarative Networking using Datalog

» Challenging to design new network protocols to handle rapidly
evolving landscape

o Correctness particularly an issue

° Hard to optimize when the bottlenecks change

» Proposed solution

> Model the distributed state across the routers/machines as “tables”

o Use a recursive query language to define derived data, constraints, etc.

» Long line of work starting with this early paper in SIGMOD 2006

» More recent work on distributed programming in general by
Hellerstein et al.

Network Datalog: Example

|”

» Base “extensional” relation: link(Src, Dest, Cost)

o Stored in a distributed manner across all nodes
» Four rules:

> spl and sp2 define a "path” in the network recursively

> sp3 and sp4: an aggregate function to compute minimum-cost path

» @ used to specify where the derived fact should be stored

spl path(@Src,Dest,Path,Cost) :- link(@Src,Dest, Cost),
Path=f init (Src,Dest).

sp2 path(@Src,Dest,Path,Cost) :- link(@Src,Nxt,Costl),
path (eNxt,Dest,Path2,Cost2), Cost=Costl+Cost2,
Path=f concatPath(Src,Path2).

sp3 spCost (@Src,Dest,min<Cost>) :- path(@Src,Dest,Path, Cost) .

sp4 shortestPath (@Src,Dest,Path,Cost) :-
spCost (@Src, Dest,Cost), path(@Src,Dest,Path, Cost) .

Query shortestPath (@Src,Dest, Path, Cost) .

Network Datalog: Example Execution

» In each iteration, nodes do their local computations and pass their state to
their neighbors

Initially

Network Datalog: Extensions

» Need to handle limitations of the underlying network

» Link-restricted rules:

> Not all nodes can talk directly to all nodes for execution of the program

> Only allow rules where there is a direct link between the two nodes that contain the data
required for any predicate

p(@Dest,...) :- link(@Src,Dest...),pl(@Src,...),
p2(@Src,...),..., pn(@Src,...).

» Soft state storage:
> Network protocols data typically has a TTL (time-to-live)

° Introduce a new keyword: materialized

° Adds some complications in formal semantics

M

Outline

» Data Models: Then, and now
> History of Data Models (“what comes around...”)

> A data model for Key-value Stores (“a co-relational model..”)

» Languages

> Qverview

> Datalog (“a survey of research...” and “declarative networking...”)
» Map-reduce and Spark

o Qriginal MR Abstraction (“mapreduce:” ...”)

> Spark (“resilient distributed datasets...”)
» SystemML: An abstraction for ML

» GraphX: An abstraction for Graphs

Map Reduce; 2003

» For parallel, fault-tolerant computation over large volumes of
data

» Just two operators: “map” and “reduce”
> Map more like “flatMap” — can produce multiple outputs per input

> “reduce” == “reduceByKey” — operated on key-value pairs

map (String key, String value):
// key: document name
// value: document contents
for each word w in wvalue:
EmitIntermediate(w, "1");

reduce (String key, Iterator wvalues):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:
result += ParselInt (v);
Emit (AsString (result));

MapReduce Framework

input files mappers intermediate reducers output
files files

0
0

111

MapReduce Framework: Word Count

input files mappers E‘;‘ 3 intermediate reducers output

(a, 1) files files
(c,1)
d, 1) @1

®. 1 (a, 1)
(c, 1)

abacdb >

(@, 1)
(a, 1)
(a, 1)

(a, 8)
(c, 5)

bcdaa

(b—1)
My)

(b, 6)
(d, 2)

ababab% d, 1)
(b, 1)
(b, 1)

(d, 1)
(b, 1)

CCCCC

More Efficient Word Count

input files mappers

abacdb >

bcdaa

ababab _=

CCCCC

(a, 2)
(b, 2)
(c. 1)
(d, 1)

intermediate reducers output
files files
(a, 2)
(a, 3)
(c, 1) % (a, 8)
(c, 5) (c, 5)
7
(b, 6)
/ -
7

&

Called “mapper-side” combiner
Partial aggregation in DBMS terms

Map Reduce; 2003

» For parallel, fault-tolerant computation over large volumes of
data

» Just two operators: “map” and “reduce”
> Map more like “flatMap” — can produce multiple outputs per input

> “reduce” == “reduceByKey” — operated on key-value pairs

» Each operator is "embarrassingly” (“infinitely”) parallelizable

> Map can be done in parallel on each input

» Data written out to disk after each map or reduce
° For fault-tolerance

> If a machine fails, restart the computation on another machine with the
same input files

» Many optimizations to handle skew, etc.

Map Reduce; 2003

» Was used in Google (at that time) for:

o Large-scale machine learning problems

(o]

Clustering problems for Google News etc

o

Generating summary reports

o

Large-scale Graph Computations

o

Extract-Transform-Load (ETL) tasks

» Also replaced original tools for large-scale indexing
° i.e., for generating the inverted indexes

° runs as a sequence of 5 to 10 MapReduce opeartions

Map Reduce vs RDBMS

» Limited functionality, but no RDMBS/data warehouse could
have handled those kinds of tasks

> Not fault-tolerant at the scale
> Most of the data not tabular or relation — SQL not a good fit
- Need flexible or no schemas
- User-defined functions can help but hard to use back then
> Loading the data into databases not feasible
* Much of the analysis is one-time

> Cost prohibitive (Distributed File Systems much cheaper)

» Mapreduce: A Major Step Backwards; DeWitt and Stonebraker;
2007

» See the later CACM papers by both camps

Post-MapReduce Systems

» Yahoo! open-sourced the Hadoop MapReduce; 2006
° Including other tools like Zookeeper, HDFS, etc.

> Many inter-operable modules built around this sinc then

» Soon afterwards: Dryad (MSFT), Hive (FB), Pig (Yahoo)

o Most supported higher-lever interfaces: Hive and Pig more like SQL,
whereas Dryad supported something like LINQ

» Latest generation of systems: Spark, F1, Impala, Tez, Naiad,
Flink, AsterixDB, Drill, etc...

> Higher-level query languages like SQL
> More advanced execution strategies
> Indexes, query optimization, etc.

o Support for streaming, ML, graphs, etc.

Outline

» Data Models: Then, and now
> History of Data Models (“what comes around...”)

> A data model for Key-value Stores (“a co-relational model..”)

» Languages

> Qverview

> Datalog (“a survey of research...” and “declarative networking...”)
» Map-reduce and Spark

> QOriginal MR Abstraction ("mapreduce:” ...”)

o Spark (“resilient distributed datasets...”)
» SystemML: An abstraction for ML

» GraphX: An abstraction for Graphs

Spark

n Open-source, distributed cluster computing framework

n Much better performance than Hadoop MapReduce through in-
memory caching and pipelining

n Originally provided a low-level RDD-centric API, but today, most of
the use is through the “Dataframes” (i.e., relations) API

* Dataframes support relational operations like Joins, Aggregates, etc.

$ A

]ava python

MLIib GraphX gPackages

DataFrame API

Spark Core

// Data Source AYN\A\

€databricks

Resilient Distributed Dataset (RDD)

n RDD = Collection of records stored across multiple machines in-memory

Drivers

- Come and go
- Not fault-tolerant

In-memory partitions of RDD 1 RDD Manipulation

Comy
Worker Nodes ﬂesults — typically at

- Always running the end
L
- S
L — -

I\

In-memory patrtitions of RDD 2

In-memory patrtitions of RDD 3

Spark

n Why “Resilient™?

* Can survive the failure of a worker node

* Spark maintains a “lineage graph” of how each RDD partition was created
* If a worker node fails, the partitions are recreated from its inputs

* Only a small set of well-defined operations are permitted on the RDDs

> But the operations usually take in arbitrary "map” and “reduce” functions

- e e e e e e ey

—————————

M e e e e e e

n Fault tolerance for the “driver” is trickier
* Drivers have arbitrary logic (cf., the programs you are writing)
* In some cases (e.g., Spark Streaming), you can do fault tolerance
* But in general, driver failure requires a restart

Example Spark Program

Initialize RDD by reading the textFile and
partitioning

If textFile stored on HDFS, it is already
partitioned — just read each partition as a

Driver
from pyspark import SparkContext

sc = SparkContext("local", "Simple App")

textFile = sc.textFile("README.md")

separate RDD partition

counts = textFile

FfatMaptambda line: line.split(" "))

Split each line into words, creating an RDD

map(lambda word: (word, 1))
reduceByKey(lambda a, b: a + b)

of words
For each word, output (word, 1)), creating a
new RDD

Do a group-by SUM aggregatevto count the
number of times each word appears

o
<

print(counts.take(100))

Retrieve 100 of the values in the final RDD

Transformations

The following table lists some of the common transformations supported by Spark. Refer to the RDD API doc (Scala, Java, Python, R) and pair

RDD functions doc (Scala, Java) for details.

Transformation

map{func)

filter(func)

flatMapifunc)

mapPartitions(func)

mapPartitionsWithindex(func)

sample(withReplacement, fraction, seed)

union(otherDataset)

intersection(otherDatasef)

distinct([numPartitions]))

groupByKey((numPartitions])

reduceByKey(func, [numPartitions])

aggregateByKey(zeroValue)(seqOp, combOp,
[numPartitions])

sortByKey([ascending], [numPartitions])

RDD Operations

Actions

The following table lists some of the common actions supported by Spark. Refer to the RDD AP doc (Scala, Java, Python, R)

and pair RDD functions doc (Scala, Java) for details.

Action
Meaning

reduce(func)
Return a new distributed dataset formed by passing each element of the source through a
function func.

collect()
Return a new dataset formed by selecting those elements of the source on which func
returns true. count()
Similar to map, but each input item can be mapped to 0 or more output items (so func first()
should return a Seq rather than a single item). take(r]

Similar to map, but runs separately on each partition (block) of the RDD. so func must be of
type Iterator<T> => Iterator<U> when running on an ROD of type T.

takeSample(withAeplacement,
num, [seed])

Similar to mapPartitions, but also provides func with an integer value representing the index e e s il
of the partition, so func must be of type (Int, Iterator<T>) => lterator<U> when running on an
RDD of type T.

saveAsTextFile(path)

Sample a fraction fraction of the data, with or without replacement, using a given random

veAsS File(path)
number generator seed. (XS equenceFile(path)

(Java and Scala)

Return a new dataset that contains the union of the elements in the source dataset and the

ument.
g saveAsObjectFile(path)

Return a new RDD that contains the intersection of elements in the source dataset and the (ava and Scala)

argument. countByKey()

Return a new dataset that contains the distinct elements of the source dataset. foreach(func)
When called on a dataset of (K, V) pairs, returns a dataset of (K, lterable<V>) pairs.

Note: If you are grouping in order to perform an aggregation (such as a sum or average)

over each key, using reduceByKey of aggregateBykey will yield much better performance.

Note: By default, the level of parallelism in the output depends on the number of partitions

of the parent RCD. You can pass an opticnal numPartitions argument to set a different

number of tasks.

When called on a dataset of (K, V) pairs, returns a dataset of (K, V) pairs where the values for
each key are aggregated using the given reduce function func, which must be of type (V,V)
==\ Like in groupByKey, the number of reduce tasks is configurable through an optional
second argument.

When called on a dataset of (K, V) pairs, returns a dataset of (K, U) pairs where the values
for each key are aggregated using the given combine functions and a neutral "zero" value.
Allows an aggregated value type that is different than the input value type, while avoiding
unnecessary allocations. Like in groupByKey, the number of reduce tasks is configurable
through an optional second argument.

When called on a dataset of (K, V) pairs where K implements Ordered, returns a dataset of
(K, V) pairs sorted by keys in ascending or descending order, as specified in the boolean

Meaning

Aggregate the elements of the dataset using a function func (which takes two arguments and returns one).
The function should be commutative and associative so that it can be computed correctly in parallel.

Return all the elements of the dataset as an array at the driver program. This is usually useful after a filter
or other operation that returns a sufficiently small subset of the data.

Return the number of elements in the dataset.
Return the first element of the dataset (similar to take(1)).
Return an array with the first n elements of the dataset.

Return an array with a random sample of num elements of the dataset, with or without replacement,
optionally pre-specifying a random number generator seed.

Return the first n elements of the RDD using either their natural order or a custom comparator.

Write the elements of the dataset as a text file (or set of text files) in a given directory in the local
filesystem, HDFS or any other Hadoop-supported file system. Spark will call toString on each element to
convert it to a line of text in the file.

Write the elements of the dataset as a Hadoop SequenceFile in a given path in the local filesystem, HDFS
or any other Hadoop-supported file system. This is available on RDDs of key-value pairs that implement
Hadoop's Writable interface. In Scala, it is also available on types that are implicitly convertible to Writable
(Spark includes conversions for basic types like Int, Double, String, etc).

Write the elements of the dataset in a simple format using Java serialization, which can then be loaded
using SparkContext.objectFile().

Only available on RDDs of type (K, V). Returns a hashmap of (K, Int) pairs with the count of each key.

Run a function func on each element of the dataset. This is usually done for side effects such as updating
an Accumulator or interacting with external storage systems.

Note: modifying variables other than Accumulators outside of the foreach() may result in undefined
behavior. See Understanding closures for more details.

Dataframes Example

def basic_df_example(spark): # Select people older than 21
Sexample on:create_df$ df filter(df['age'] > 21).show()
spark is an existing SparkSession H# 4ot
df = spark.read.json("examples/src/main/resources/people.json") # |age|name|
Displays the content of the DataFrame to stdout H#4-—tot
df.show() # | 30|Andy|
ot + # 4ot
#|age| name|
R +
|null|Michael| # Count people by age
#] 30| Andy]| df.groupBy("age").count().show()
] 19| Justin| T
et + # | age|count|
Sexample off:create_df$ H Aot
#1119 1|
|null] 1]
Sexample on:untyped_ops$ #| 30| 1|
spark, df are from the previous example s B
Print the schema in atreeformat # Sexample off:untyped_ops$
df.printSchema()
root sqIDF = spark.sql("SELECT * FROM people")
|-- age:long (nullable = true) sqIDF.show()
|-- name:string (nullable = true) H bt
| age| name|
Select only the "name" column #o ottt
df.select("name").show() # |null| Michael|
#Aemme + #] 30| Andy|
#] name]| # | 19| Justin|
4o + H# Attt
|Michael | # Sexample off:run_sql$
#| Andy|
| Justin|
#+--—- +
Sexample on:global_temp_view$
Register the DataFrame as a global temporary view
Select everybody, but increment the age by 1 df,createGIobaITempView("peopIe”)
df.select(df['name'], df['age'] + 1).show()
+--—- A-mm e +
z Jlrn_amfl(_agei Ul # Global tf‘em porary view is tied to a system preferved database “global_temp’
|Michael| null| spark.sql("SELECT * FROM global_temp.people").show()
#| Andy| 31 ottt
#|Justin|] 20| # | age| name|
I S— S— + H# -ttt
|null|Michael|
#| 30| Andy|
#] 19| Justin|

4t

Dataframes Example

def basic_df_example(spark): # Select people older than 21
Sexample on:create_df$ df filter(df['age'] > 21).show()
spark is an existing SparkSession H# 4ot
df = spark.read.json("examples/src/main/resources/people.json") # |age|name|
Displays the content of the DataFrame to stdout H#4-—tot
df.show() # | 30|Andy|
ot + # 4ot
#|age| name|
R +
|null|Michael| # Count people by age
#] 30| Andy]| df.groupBy("age").count().show()
] 19| Justin| T
et + # | age|count|
Sexample off:create_df$ H Aot
#1119 1|
|null] 1]
Sexample on:untyped_ops$ #| 30| 1|
spark, df are from the previous example s B
Print the schema in atreeformat # Sexample off:untyped_ops$
df.printSchema()
root sqIDF = spark.sql("SELECT * FROM people")
|-- age:long (nullable = true) sqIDF.show()
|-- name:string (nullable = true) H bt
| age| name|
Select only the "name" column #o ottt
df.select("name").show() # |null| Michael|
#Aemme + #] 30| Andy|
#] name]| # | 19| Justin|
4o + H# Attt
|Michael | # Sexample off:run_sql$
#| Andy|
| Justin|
#+--—- +
Sexample on:global_temp_view$
Register the DataFrame as a global temporary view
Select everybody, but increment the age by 1 df,createGIobaITempView("peopIe”)
df.select(df['name'], df['age'] + 1).show()
+--—- A-mm e +
z Jlrn_amfl(_agei Ul # Global tf‘em porary view is tied to a system preferved database “global_temp’
|Michael| null| spark.sql("SELECT * FROM global_temp.people").show()
#| Andy| 31 ottt
#|Justin|] 20| # | age| name|
I S— S— + H# -ttt
|null|Michael|
#| 30| Andy|
#] 19| Justin|

4t

Summary

Spark is a popular and widely used framework for large-scale
computing
Simple programming interface

* You don’t need to typically worry about the parallelization

* That’s handled by Spark transparently

* In practice, may need to fiddle with number of partitions etc.

Managed services supported by several vendors including
Databricks (started by the authors of Spark), Cloudera, etc.
Many other concepts that we did not discuss

* Shared accumulator and broadcast variables

* Support for Machine Learning, Graph Analytics, Streaming, and other use
cases

Alternatives include: Apache Tez, Flink, and several others

Outline

v

Data Models: Then, and now
> History of Data Models (“what comes around...”)

> A data model for Key-value Stores (“a co-relational model..”)

v

Languages
° Qverview

> Datalog (“a survey of research...” and “declarative networking...”)

v

Map-reduce and Spark
> QOriginal MR Abstraction ("mapreduce:” ...”)

> Spark (“resilient distributed datasets...”)
SystemML: An abstraction for ML

v

4

GraphX: An abstraction for Graphs

Motivation

» MapReduce becoming a popular platform for distributed
processing, but not at the right level of abstraction for ML

» ML programs need to be written at the level of matrices,

vectors, and tensors
> Think R, or Python Libraries like Scikit (and PyTorch today)

» Many core ML operations on matrices are “summations” and
can be done as “group by aggregates”

» Need a high-level abstraction that allows arbitrary ML programs

> Then we can optimize how it maps to Hadoop MapReduce (or Spark)

Simpler Example

» From: MapReduce for Machine Learning on Multicore; 2005

» Linear Regression

> Given training data (x1, y1), (x2, y2), ..., fit a model: y = 8'x that minimizes
loss, where x1, x2, .., are vectors

X'l'l X'|2 Ooo oo Ooo ooo X'lm y‘l
X2'| X22 ooo 000 ooo 0noo X2m y2 N>>>m
XN1 XN2 XNm YN

> Least square estimate: 8* = Alb, where:

* Ais a m-by-m matrix = X™X, and b is a m-by-1 matrix = XTY

Simpler Example: Computing A
Exploits the fact that: XX = SIGMA (x,"x))
Each mapper computes: x.'x. for a group of rows in X

The output of each mapper is: m-by-m matrix

A single reducer sums up all of those matrixes to get the final m-by-m
matrix

Similarly we can compute: b = SIGMA (x;" ;)

Simpler Example: Computing A

Exploits the fact that: XX = SIGMA (x,"x))

Each mapper computes: x.'x. for a group of rows in X
The output of each mapper is: m-by-m matrix

A single reducer sums up all of those matrixes to get the final m-by-m
matrix

Similarly we can compute: b = SIGMA (x;" ;)
Only works if m <<< N

- So the communication is m-by-m matrices or m-by-1 vectors

- Each mapper deals with much more data

Example Program

Algorithm 1 Gaussian Non-Negative Matrix Factorization

V = read(“in/V”); //read input matrix V

W = read(“in/W”); //read initial values of W

H = read(“in/H”); //read initial values of H

max_iteration = 20;

1= 0;

while 1 < max.iteration do
H=Hxx W'V /| WIWH); /lupdate H
W =W (VHT /| WHH?); //Jupdate W
1 =1+ 1;

10: end while

11: write(W,“out/W”); //write result W

12: write(H,“out/H”); //write result H

A AU S

M

Example: Two of the Options

::.oxBo.n
1‘ 0

Coo

each input item
Map <€an besentto
multiple reducers

Shuffle

for eachi,j,
compute
Ci,,- = Ek Ai,k BkJ

Reduce

Fig. 1. RMM: Replication based Matrnix Multiplication

each input
Map jtem is sent
to 1 reducer

Shuffle

for each k,
Reduce compute

PSi= ABy;

each input
Map jtem is sent
to 1 reducer

Shuffle

for eachi,j,
Reduce ... 0gate
Ci=EP;

Fig. 2. CPMM: Cross Product based Matnix Multiphcation

SystemML Architecture

A=B*(C/D)
ﬂ Tmatrix
I Cell-Wise
Binary Multiply
matn matrix
[Language } B Reduce
[HOP Component } Cell-Wise ﬁ
[LOP Component } Binary Divide U MAP
[Runtime] matrix matrix AT
Hadoop (o] D MR Job
‘ <Gl cs <G, d>
Language HOP Component LOP Component Runtime

(b)

DML Language

» Based onR

Somewhat restricted to be able to optimize

» Two Data Types: Matrices and Scalars

Alorlthm 1 § DML Statement # Semantics HOP Notatlon
cell-wise multiplication: z;; = x;; * Y -
cell-wise division: z;; = ;5 /Y, b(/) X Y
matrix multiplication: z;; = >, ik * yx; f ab(>_, *) X,Y
transpose: z;; = Tj; T‘(T) : X
cell-wise logarithm: z;; = log(mw) U : X
row-wise sums: z; = ;

LOP Notation

group —

group — binary(/)

(mmrj) or (mmcj — group — aggregate(D_))
transform(t)

unary(log)
transform(row) — group — aggregate

Developments since then

» Much followup work on linear algebra-based frameworks

» SciDB also has an array data model

o But different types of operations

» Apache Spark has MLIB

° More of a "library” flavor

° Many implementations of popular algorithms — some not easy to map to
MR

» Development of deep learning frameworks like TensorFlow and
PyTorch

» Also much other work on custom ML platforms (e.g., parameter
server)

Outline

v

Data Models: Then, and now
> History of Data Models (“what comes around...”)

> A data model for Key-value Stores (“a co-relational model..”)

v

Languages
° Qverview

> Datalog (“a survey of research...” and “declarative networking...”)

v

Map-reduce and Spark
> QOriginal MR Abstraction ("mapreduce:” ...”)

> Spark (“resilient distributed datasets...”)
SystemML: An abstraction for ML

v

4

GraphX: An abstraction for Graphs

Motivation

» Lot of graph structure in real-world datasets

Linked [}

Social networks

Federal funds networks

Knowledge Graph

A protein-protein interaction
network

Citation networks

Communication networks S S
Financial transaction K
ission networks

Stock Trading Networks

Motivation

v

Lot of graph structure in real-world datasets

v

Types of analytics of interest

o Centrality analysis (find most central nodes), Community detection,
Vulnerability analysis, ...

Different from “graph queries”

v

> e.g., find shortest path between nodes, or find specific patterns in graph

GraphX and most other systems like it (e.g., Google Pregel,
Apache Giraph) fairly limited in what they can support (e.g., can
only do basic centrality or community detection)

v

More powerful frameworks in HPC community

4

Pregel

» Pregel uses a “vertex-centric programming model”

» In each iteration, receive messages from neighbors, do some computations,
send messages to neighbors

def PageRank (v: Id, msgs: List[Double]) {
// Compute the message sum
var msgSum = 0
for (m <- msgs) { msgSum += m }
// Update the PageRank
PR(v) = 0.15 + 0.85 % msgSum
// Broadcast messages with new PR
for (j <— OutNbrs(v)) {
msg = PR(v) / NumLinks (v)
send_msg (to=7j, msqg)
}
// Check for termination
if (converged(PR(v))) voteToHalt (v)
}

Listing 1: PageRank in Pregel: computes the sum of the
inbound messages, updates the PageRank value for the
vertex, and then sends the new weighted PageRank value
to neighboring vertices. Finally, if the PageRank did not
change the vertex program votes to halt.

GraphX

» A graph represented by:

> Vertex collection (RDD): a collection of vertices, with their IDs and
properties

> Edge collection (RDD): keyed by the pair of vertex IDs, and stores the
properties

» Can manipulate the above two collections using Spark
operations

° e.g., add new properties by joining with another collection, etc.

» Triplets View: Join the two collections to append the
source/target properties with each edge

GraphX

class Gaph[V, E {
/'l Constructor
def Graph(v: Collection[(ld, V)],
e: Collection[(Id, Id, E)])

/1 Collection views

def vertices: Collection[(Id, V)]
def edges: Collection[(ld, 1d, E)]
def triplets: Collection[Triplet]

Key Operatlon: /'l Gaph-parallel conputation

- does a local computation for each def mrTriplets(f: (Triplet) => M
edge — sum (M M => M: Collection[(ld, M]
! /'l Conveni ence functions
- followed by a group by aggregate def mapV(f: (1d, V) => V): Graph[V, E]
on Vertex ID def mapE(f: (1d, Id, E) => E): Gaph[V, E

def leftJoinV(v: Collection[(ld, V)],
f: (Id, V, V) == V): Gaph[V, E

def leftJoinE(e: Collection[(ld, Id, E)],
f: (Id, Id, EfE Ef => E): Gaph[V, E

def subgraph(vPred: (1d, V) => Bool ean,
ePred: (Triplet) => Bool ean)

. Graph[V, E
def reverse: Gaph[V, E]
}

Listing 4: Graph Operators: transform vertex and edge
collections.

GraphX: Example

val graph: G aph[User, Doubl e]
def mapUDF(t: Triplet[User, Double]) =
If (t.src.age >t.dst.age) 1 else O
def reduceUDF(a: Int, b: Int): Int =a + b
val seniors: Collection[(ld, Int)] =
graph. mr Tri pl et s(mapUDF, reduceUDF)

Figure 2: Example use of mrTriplets: Compute the num-
ber of older followers of each vertex.

GraphX: Pregel Implementation

def Pregel (g: Gaph[V, E],
vprog: (Id, V, M =>Y,
sendMsg: (Triplet) == M
gather: (M M => M: Collection[V] = {
/1l Set all vertices as active
g = g.mapV((id, v) => (v, halt=fal se))
/1 Loop until convergence
while (g.vertices.exists(v => !v.halt)) {
/| Conpute the nmessages
val nsgs: Collection[(ld, M] =
/'l Restrict to edges wth active source
g. subgraph(ePred=(s, d, sP, eP, dP) =>! sP. hal t)
/| Conpute nessages
.mTriplets(sendMsg, gather)
/'l Receive nmessages and run vertex program
g = g.leftJoinV(nsgs). mapV(vprog)
}

return g.vertices

}

Listing 5: GraphX Enhanced Pregel: An implementa-
tion of the Pregel abstraction using the GraphX API.

Developments since then

» Lot of work on more efficient implementation of Pregel-like
systems

» Other more expressive programming frameworks
o Arabesque: for graph mining
> NScale (by us here): generalization to allow computations on multi-hops

° Green-marl, Ligra and successors: lower-level programming frameworks
designed for HPC environments

» Unclear how widely any of these are used in practice

	Slide 1: CMSC 724: Database Management Systems Models, Languages, and Abstractions
	Slide 2: Notes
	Slide 3: Outline
	Slide 4: Things to Think About
	Slide 5: Physical & Logical Data Independence
	Slide 6: Running Example
	Slide 7: IMS Era (60’s)
	Slide 8: IMS Era (60’s)
	Slide 9: IMS Era (60’s)
	Slide 10: CODASYL Era (70’s)
	Slide 11
	Slide 12: CODASYL Era (70’s)
	Slide 13: Relational Era
	Slide 14: Relational Era
	Slide 15: Relational Era
	Slide 16: Entity-Relational Model
	Slide 17: Entity-Relational Model
	Slide 18: R++ Era
	Slide 19: Object-oriented Models
	Slide 20: Object-relational Models
	Slide 21: Semi-structured Data
	Slide 22: Semi-structured Data
	Slide 23: Developments since 2005
	Slide 24: NoSQL Data Models
	Slide 25: Outline
	Slide 26: Procedural vs Declarative Languages
	Slide 27: Early Languages
	Slide 28: Relational Algebra
	Slide 29: Inputs and Outputs
	Slide 30: Operations on Datasets: Select
	Slide 31: Operations on Datasets: Project
	Slide 32: Operations on Datasets: Map
	Slide 33: Operations on Datasets: flatMap
	Slide 34: Operations on Datasets: Group(By)
	Slide 35: Operations on Datasets: Group(By) Aggregates
	Slide 36: Operations on Datasets: Group(By) Aggregates
	Slide 37: Operations on Datasets: Unnest
	Slide 38: Operations on Datasets: Unnest
	Slide 39: Operations on Datasets: Set Union/Intersection/Difference
	Slide 40: Operations on Datasets: Cartesian Product
	Slide 41: Operations on Datasets: Joins
	Slide 42: Operations on Datasets: Lookup
	Slide 43: Operations on Datasets: Pivot
	Slide 44: Operations on Datasets
	Slide 45: Recap
	Slide 46: SQL
	Slide 47: Some Criticisms of SQL
	Slide 48: Impedance Mismatch
	Slide 49: Impedance Mismatch
	Slide 50
	Slide 51: Impedance Mismatch
	Slide 52: MongoDB Query Language (MQL)
	Slide 53: Aggregation Pipelines
	Slide 54: Grouping (with match/sort) Simple Example
	Slide 55: Multiple Agg. Example
	Slide 56: Multiple Agg. with Vanilla Projection Example
	Slide 57: Multiple Agg. with Adv. Projection Example
	Slide 58: Unwind: A Common Template
	Slide 59: Looking Up Other Collections
	Slide 60: Outline
	Slide 61: Tuple Relational Calculus
	Slide 62: Datalog
	Slide 63: Datalog
	Slide 64: Datalog
	Slide 65: Datalog: Safety
	Slide 66: Datalog: Mapping to RA
	Slide 67: Datalog: Bottom-up vs Top-down Evaluation
	Slide 68: Datalog: Bottom-up Evaluation
	Slide 69: Datalog: Bottom-up Evaluation
	Slide 70: Declarative Networking using Datalog
	Slide 71: Network Datalog: Example
	Slide 72: Network Datalog: Example Execution
	Slide 73: Network Datalog: Extensions
	Slide 74: Outline
	Slide 75: Map Reduce; 2003
	Slide 76: MapReduce Framework
	Slide 77: MapReduce Framework: Word Count
	Slide 78: More Efficient Word Count
	Slide 79: Map Reduce; 2003
	Slide 80: Map Reduce; 2003
	Slide 81: Map Reduce vs RDBMS
	Slide 82: Post-MapReduce Systems
	Slide 83: Outline
	Slide 84: Spark
	Slide 85: Resilient Distributed Dataset (RDD)
	Slide 86: Spark
	Slide 87: Example Spark Program
	Slide 88: RDD Operations
	Slide 89: Dataframes Example
	Slide 90: Dataframes Example
	Slide 91: Summary
	Slide 92: Outline
	Slide 93: Motivation
	Slide 94: Simpler Example
	Slide 95: Simpler Example: Computing A
	Slide 96: Simpler Example: Computing A
	Slide 97: Example Program
	Slide 98: Example: Two of the Options
	Slide 99: SystemML Architecture
	Slide 100: DML Language
	Slide 101: Developments since then
	Slide 102: Outline
	Slide 103: Motivation
	Slide 104: Motivation
	Slide 105: Pregel
	Slide 106: GraphX
	Slide 107: GraphX
	Slide 108: GraphX: Example
	Slide 109: GraphX: Pregel Implementation
	Slide 110: Developments since then

