
Instructor: Amol Deshpande

amol@cs.umd.edu

 Basics

 PAX: Within-page Columnar Storage

 Compression in Column-Stores

 Dremel: Storing Hierarchical Data

 Delta Lake: Storage Issues in Data Lakes

 At various points, data stored in different storage hardware
◦ Memory, Disks, SSDs, Tapes, Cache

◦ Tradeoffs between speed and cost of access

◦ CPU needs the data in memory and cache to operate on it

 Volatile vs nonvolatile
◦ Volatile: Loses contents when power switched off

 Sequential vs random access
◦ Sequential: read the data contiguously

 select * from employee

◦ Random: read the data from anywhere at any time
 select * from employee where name like ‘__a__b’

source: https://cse1.net/recaps/4-

memory.html

Die shot overlaid with functional units

https://www.techpowerup.com/review/amd-ryzen-5-1600/3.html

K8 core in the AMD Athlon 64 CPU

10.2 Magnetic Disk and Flash Storage 433

track t

sector s

spindle

cylinder c

platter

arm

read–write
head

arm assembly

rotation

Figure 10.2 Moving head disk mechanism.

typically 512 bytes; there are about 50,000 to 100,000 tracks per platter, and 1 to
5 platters per disk. The inner tracks (closer to the spindle) are of smaller length,
and in current-generation disks, the outer tracks contain more sectors than the
inner tracks; typical numbers are around 500 to 1000 sectors per track in the inner
tracks, and around 1000 to 2000 sectors per track in the outer tracks. The numbers
vary among different models; higher-capacity models usually have more sectors
per track and more tracks on each platter.

The read–write head stores information on a sector magnetically as reversals
of the direction of magnetization of the magnetic material.

Each side of a platter of a disk has a read–write head that moves across the
platter to access different tracks. A disk typically contains many platters, and the
read–write heads of all the tracks are mounted on a single assembly called a disk
arm, and move together. The disk platters mounted on a spindle and the heads
mounted on a disk arm are together known as head–disk assemblies. Since the
heads on all the platters move together, when the head on one platter is on the i th
track, the heads on all other platters are also on the i th track of their respective
platters. Hence, the ith tracks of all the platters together are called the ith cylinder.

Today, disks with a platter diameter of 3 1
2 inches dominate the market. They

have a lower cost and faster seek times (due to smaller seek distances) than do
the larger-diameter disks (up to 14 inches) that were common earlier, yet they
provide high storage capacity. Disks with even smaller diameters are used in
portable devices such as laptop computers, and some handheld computers and
portable music players.

The read–write heads are kept as close as possible to the disk surface to
increase the recording density. The head typically floats or flies only microns

1956

IBM RAMAC

 Hard disks dominant form of storage for a long time
◦ About 10ms per random access ➔ at most 100 random reads per second

◦ vs up to 500 MB/s sequential I/O

 Many traditional database design decisions driven by:
◦ Huge volumes of data on disks + Low amounts of memory + Low-speed

networks

◦ ➔ Communication between disks and memory the main bottleneck

 Solid state drives much more common today
◦ No seeks → Much better random reads

◦ Writes require erasing an entire block, and rewriting it

◦ SSDs provide a similar interface of “blocks”

 Much faster networks

 Often cheaper to access another computer’s memory than
accessing your own disk (in data centers)

 Cache is playing more and more important role

 Data often fits in memory of a single machine, or a cluster of
machines

 “Disk” considerations less important

◦ Still: Disks are where most of the data lives today

1.6 Database Design 19

ID name salary dept name building budget

22222 Einstein 95000 Physics Watson 70000
12121 Wu 90000 Finance Painter 120000
32343 El Said 60000 History Painter 50000
45565 Katz 75000 Comp. Sci. Taylor 100000
98345 Kim 80000 Elec. Eng. Taylor 85000
76766 Crick 72000 Biology Watson 90000
10101 Srinivasan 65000 Comp. Sci. Taylor 100000
58583 Califieri 62000 History Painter 50000
83821 Brandt 92000 Comp. Sci. Taylor 100000
15151 Mozart 40000 Music Packard 80000
33456 Gold 87000 Physics Watson 70000
76543 Singh 80000 Finance Painter 120000

Figure 1.4 The faculty table.

We shall discuss these problems with the help of a modified database design for
our university example.

Suppose that instead of having the two separate tables instructor and depart-
ment, we have a single table, faculty, that combines the information from the two
tables (as shown in Figure 1.4). Notice that there are two rows in faculty that
contain repeated information about the History department, specifically, that
department’s building and budget. The repetition of information in our alterna-
tive design is undesirable. Repeating information wastes space. Furthermore, it
complicates updating the database. Suppose that we wish to change the budget
amount of the History department from $50,000 to $46,800. This change must
be reflected in the two rows; contrast this with the original design, where this
requires an update to only a single row. Thus, updates are more costly under the
alternative design than under the original design. When we perform the update
in the alternative database, we must ensure that every tuple pertaining to the His-
tory department is updated, or else our database will show two different budget
values for the History department.

Now, let us shift our attention to the issue of “inability to represent certain
information.” Suppose we are creating a new department in the university. In the
alternative design above, we cannot represent directly the information concerning
a department (dept name, building, budget) unless that department has at least one
instructor at the university. This is because rows in the faculty table require
values for ID, name, and salary. This means that we cannot record information
about the newly created department until the first instructor is hired for the new
department.

One solution to this problem is to introduce null values. The null value
indicates that the value does not exist (or is not known). An unknown value
may be either missing (the value does exist, but we do not have that information)
or not known (we do not know whether or not the value actually exists). As we

1.5 Relational Databases 13

ID name dept name salary

22222 Einstein Physics 95000
12121 Wu Finance 90000
32343 El Said History 60000
45565 Katz Comp. Sci. 75000
98345 Kim Elec. Eng. 80000
76766 Crick Biology 72000
10101 Srinivasan Comp. Sci. 65000
58583 Califieri History 62000
83821 Brandt Comp. Sci. 92000
15151 Mozart Music 40000
33456 Gold Physics 87000
76543 Singh Finance 80000

(a) The instructor table

dept name building budget

Comp. Sci. Taylor 100000
Biology Watson 90000
Elec. Eng. Taylor 85000
Music Packard 80000
Finance Painter 120000
History Painter 50000
Physics Watson 70000

(b) The department table

Figure 1.2 A sample relational database.

associated with the Physics department. In Chapter 8, we shall study how to
distinguish good schema designs from bad schema designs.

1.5.2 Data-Manipulation Language

The SQL query language is nonprocedural. A query takes as input several tables
(possibly only one) and always returns a single table. Here is an example of an
SQL query that finds the names of all instructors in the History department:

select instructor.name
from instructor
where instructor.dept name = ’History’;

The query specifies that those rows from the table instructor where the dept name is
History must be retrieved, and the name attribute of these rows must be displayed.
More specifically, the result of executing this query is a table with a single column

1.5 Relational Databases 13

ID name dept name salary

22222 Einstein Physics 95000
12121 Wu Finance 90000
32343 El Said History 60000
45565 Katz Comp. Sci. 75000
98345 Kim Elec. Eng. 80000
76766 Crick Biology 72000
10101 Srinivasan Comp. Sci. 65000
58583 Califieri History 62000
83821 Brandt Comp. Sci. 92000
15151 Mozart Music 40000
33456 Gold Physics 87000
76543 Singh Finance 80000

(a) The instructor table

dept name building budget

Comp. Sci. Taylor 100000
Biology Watson 90000
Elec. Eng. Taylor 85000
Music Packard 80000
Finance Painter 120000
History Painter 50000
Physics Watson 70000

(b) The department table

Figure 1.2 A sample relational database.

associated with the Physics department. In Chapter 8, we shall study how to
distinguish good schema designs from bad schema designs.

1.5.2 Data-Manipulation Language

The SQL query language is nonprocedural. A query takes as input several tables
(possibly only one) and always returns a single table. Here is an example of an
SQL query that finds the names of all instructors in the History department:

select instructor.name
from instructor
where instructor.dept name = ’History’;

The query specifies that those rows from the table instructor where the dept name is
History must be retrieved, and the name attribute of these rows must be displayed.
More specifically, the result of executing this query is a table with a single column

• Very important implications on

performance

• Quite a few different ways to do

this

• Similar issues even if not using

disks as the primary storage

?

 Option 1: Use OS File System
◦ File systems are a standard abstraction provided by Operating Systems

(OS) for managing data

◦ Major Con: Databases don’t have as much control over the physical
placement anymore --- OS controls that
 E.g., Say DBMS maps a relation to a “file”

 No guarantee that the file will be “contiguous” on the disk

 OS may spread it across the disk, and won’t even tell the DBMS

 Option 2: DBMS directly works with the disk or uses a
lightweight/custom OS
◦ Increasingly uncommon – most DBMSs today run on top of OSes (e.g.,

PostgreSQL on your laptop, or on linux VMs in the cloud, or on a
distributed HDFS)

 Option 1: Allocate a single “file” on the disk, and treat it

as a contiguous sequence of blocks
◦ This is what PostgreSQL does

◦ The blocks may not actually be contiguous on disk

 Option 2: A different file per relation
◦ Some of the simpler DBMS use this approach

 Either way: we have a set of relations mapped to a set of

blocks on disk

 Each relation stored separately on a separate set of blocks

◦ Assumed to be contiguous

 Each “index” maintained in a separate set of blocks

◦ Assumed to be contiguous

instructor student B+-tree index for instructor

Disk

block

Some extra space for new tuples

Fixed Length Records

Slotted page/block structure

6

2.2 The Decomposition Storage Model

Vertical partitioning is the process of striping a relation into sub-relations, each containing the values

of a subset of the initial relation’s attributes. Vertical partitioning was initially proposed in order to reduce

I/O-related costs [26]. The fully decomposed form of vertical partitioning (one attribute per stripe) is called

the decomposition storage model (DSM) [12]. DSM partitions an n-attribute relation vertically into n sub-

relations, as shown in Figure 2. Each sub-relation contains two attributes, a logical record id (surrogate)

and an attribute value (essentially, it is a clustered index on the attribute). Sub-relations are stored as regu-

lar relations in slotted pages, enabling each attribute to be scanned independently.

DSM offers a higher degree of spatial locality when sequentially accessing the values of one attribute.

During a single-attribute scan, DSM exhibits high I/O and cache performance. DSM performance is supe-

rior to NSM when queries access fewer than 10% of the attributes in each relation. Warehousing products

such as Sybase-IQ [36] successfully use DSM-style partitioning and further optimize data access using

variant indices [27]. When evaluating a multi-attribute query, however, the database system must join the

participating sub-relations on the surrogate in order to reconstruct the partitioned records. The time spent

joining sub-relations increases with the number of attributes in the result relation. In addition, DSM incurs

a significant space overhead because the record id of each record needs be replicated.

An alternative algorithm [13] partitions each relation based on an attribute affinity graph, which con-

nects pairs of attributes based on how often they appear together in queries. The attributes are grouped in

fragments, and each fragment is stored as a separate relation to maximize I/O performance and minimize

record reconstruction cost. When the set of attributes in a query is a subset of the attributes in the fragment,

FIGURE 2: The Decomposition Storage Model (DSM). The relation is partitioned vertically into one thin relation

per attribute. Each sub-relation is then stored in the traditional fashion.

R2

RID SSN

1 0962

2 7658

3 3859

4 5523

5 9743

6 0618 RID Age

1 30

2 45

3 20

4 52

5 43

6 37

PAGE HEADER 1 0962

2 7658 3 3859

. .
4 5523

. .

PAGE HEADER 1 Jane

2 John 3 Jim

. .
4 Susan

. .

PAGE HEADER 1 30 2

45 3 20

. .
4 52

. .

R3

R1

RID Name

1 Jane

2 John

3 Jim

4 Susan

5 Leon

6 Dan

sub-relation R1

sub-relation R2

sub-relation R3

 Store the data column-wise

 Need to maintain an “index” with each value (to be able to stitch them

together)

 Good for queries that read few columns, but bad for writes or queries that

read all columns

 Basics

 PAX: Within-page Columnar Storage

 Compression in Column-Stores

 Dremel: Storing Hierarchical Data

 Delta Lake: Storage Issues in Data Lakes

 Computer platforms in 1980: main performance bottleneck I/O Latency

 Computer platforms today: hot data migrates to larger and slower main
memory – almost no disk I/Os

 DBMSs on a Modern Processor: Where does time go? VLDB 1999

 Detailed profiling on a few simple queries on different databases

 DBMSs on a Modern Processor: Where does time go? VLDB 1999

 Detailed profiling on a few simple queries on different databases

 Cache misses are a major source of delays in modern systems

 Only a fraction of the data transferred to the cache is useful

◦ Typical cache line sizes: 64-256 bytes

Memory divided into ”blocks” ==

size of the cache line

”Disk blocks” often memory-

mapped (or loaded directly into
memory)

If using n-ary storage,

unnecessary attributes of a tuple

are loaded into the cache

A disk block

 Cache misses are a major source of delays in modern systems

 Only a fraction of the data transferred to the cache is useful

◦ Typical cache line sizes: 64-256 bytes

accesses when executing a main-memory workload, (b)

executes range selection queries and updates in 17-25%

less elapsed time, and (c) executes TPC-H queries involv-

ing I/O 11-42% faster than NSM on the platform we stud-

ied. When compared to DSM, PAX executes queries faster

and its execution time remains stable as more attributes are

involved in the query, while DSM’s execution time

increases due to the high record reconstruction cost.

Finally, PAX has several additional advantages.

Implementing PAX on a DBMS that uses NSM requires

only changes to the page-level data manipulation code.

PAX can be used as an alternative data layout, and the

storage manager can decide to use PAX or not when stor-

ing a relation, based solely on the number of attributes.

Furthermore, research [13] has shown that compression

algorithms work better with vertically partitioned relations

and on a per-page basis, and PAX has both of these charac-

teristics. Finally, PAX can be used orthogonally to other

storage decisions such as affinity graph-based partitioning

[11], because it operates at the page level.

The rest of this paper is organized as follows. Section

2 presents an overview of the related work, and discusses

the strengths and weaknesses of the traditional NSM and

DSM data placement schemes. Section 3 explains the

design of PAX in detail and analyzes its storage require-

ments, while Section 4 describes the implementation of

basic query processing and data manipulation algorithms.

Section 5 analyzes the effects of PAX on cache perfor-

mance on a simple numeric workload. Section 6 demon-

strates PAX’s efficiency on a subset of the TPC-H

decision-support workload. Finally, Section 7 concludes

with a summary of the advantages of PAX and discusses

possibilities for further improvement.

2 Related work

Several recent workload characterization studies report

that database systems suffer from high memory-related

processor delays when running on modern platforms. A

detailed survey of these studies is provided elsewhere

[1][34]. All studies that we are aware of agree that stall

time due to data cache misses accounts for 50-70% (OLTP

[19]) to 90% (DSS [1]) of the total memory-related stall

time, even on architectures where the instruction cache

miss rate (i.e., the number of cache misses divided by the

number of cache references) is typically higher when exe-

cuting OLTP workloads [21].

Research in computer architecture, compilers, and

database systems has focused on optimizing data place-

ment for cache performance. A compiler-directed

approach for cache-conscious data placement profiles a

program and applies heuristic algorithms to find a place-

ment solution that optimizes cache utilization [6]. Cluster-

ing, compression, and coloring are techniques that can be

applied manually by programmers to improve cache per-

formance of pointer-based data structures [8]. For database

management systems, attribute clustering improves both

compression [13] and the performance of relational query

processing [29].

The remainder of this section describes the advan-

tages and disadvantages of the dominant data placement

scheme (NSM) and its alternative (DSM), and briefly out-

lines their variants.

2.1 The N-ary Storage Model

Traditionally, a relation’s records are stored in slotted disk

pages [27] obeying the N-ary Storage Model (NSM).

NSM stores records sequentially on data pages. Figure 1

depicts an NSM page after inserting four records of a rela-

tion R with three attributes: SSN, name, and age. Each

record has a record header (RH) containing a null bitmap,

offsets to the variable-length values, and other implemen-

tation-specific information [20][29][32]. Each new record

is typically inserted into the first available free space start-

ing at the beginning of the page. Records may have vari-

able lengths, and therefore a pointer to the beginning of

the new record is stored in the next available slot from the

end of the page. One can access the nth record in a page by

following the nth pointer from the end of the page.

During predicate evaluation, however, NSM exhibits

poor cache performance. Consider the query:

select name

from R

where age < 40;

To evaluate the predicate, the query processor uses a scan

operator [14] that retrieves the value of the attribute age

from each record in the relation. Assuming that the NSM

page in Figure 1 is already in main memory and that the

cache block size is smaller than the record size, the scan

operator will incur one cache miss per record. If age is a 4-

byte integer, it is smaller than the typical cache block size

FIGURE 1: The cache behavior of NSM.

5523 52Susan

20 RH4Jim

45 RH3 3589

Jane 30 RH

CACHE

PAGE HEADER RH1 0962

Jane 30 RH2 7658 John

45 RH3 3589 20 RH4Jim

5523 52Susan

NSM PAGE

accesses when executing a main-memory workload, (b)

executes range selection queries and updates in 17-25%

less elapsed time, and (c) executes TPC-H queries involv-

ing I/O 11-42% faster than NSM on the platform we stud-

ied. When compared to DSM, PAX executes queries faster

and its execution time remains stable as more attributes are

involved in the query, while DSM’s execution time

increases due to the high record reconstruction cost.

Finally, PAX has several additional advantages.

Implementing PAX on a DBMS that uses NSM requires

only changes to the page-level data manipulation code.

PAX can be used as an alternative data layout, and the

storage manager can decide to use PAX or not when stor-

ing a relation, based solely on the number of attributes.

Furthermore, research [13] has shown that compression

algorithms work better with vertically partitioned relations

and on a per-page basis, and PAX has both of these charac-

teristics. Finally, PAX can be used orthogonally to other

storage decisions such as affinity graph-based partitioning

[11], because it operates at the page level.

The rest of this paper is organized as follows. Section

2 presents an overview of the related work, and discusses

the strengths and weaknesses of the traditional NSM and

DSM data placement schemes. Section 3 explains the

design of PAX in detail and analyzes its storage require-

ments, while Section 4 describes the implementation of

basic query processing and data manipulation algorithms.

Section 5 analyzes the effects of PAX on cache perfor-

mance on a simple numeric workload. Section 6 demon-

strates PAX’s efficiency on a subset of the TPC-H

decision-support workload. Finally, Section 7 concludes

with a summary of the advantages of PAX and discusses

possibilities for further improvement.

2 Related work

Several recent workload characterization studies report

that database systems suffer from high memory-related

processor delays when running on modern platforms. A

detailed survey of these studies is provided elsewhere

[1][34]. All studies that we are aware of agree that stall

time due to data cache misses accounts for 50-70% (OLTP

[19]) to 90% (DSS [1]) of the total memory-related stall

time, even on architectures where the instruction cache

miss rate (i.e., the number of cache misses divided by the

number of cache references) is typically higher when exe-

cuting OLTP workloads [21].

Research in computer architecture, compilers, and

database systems has focused on optimizing data place-

ment for cache performance. A compiler-directed

approach for cache-conscious data placement profiles a

program and applies heuristic algorithms to find a place-

ment solution that optimizes cache utilization [6]. Cluster-

ing, compression, and coloring are techniques that can be

applied manually by programmers to improve cache per-

formance of pointer-based data structures [8]. For database

management systems, attribute clustering improves both

compression [13] and the performance of relational query

processing [29].

The remainder of this section describes the advan-

tages and disadvantages of the dominant data placement

scheme (NSM) and its alternative (DSM), and briefly out-

lines their variants.

2.1 The N-ary Storage Model

Traditionally, a relation’s records are stored in slotted disk

pages [27] obeying the N-ary Storage Model (NSM).

NSM stores records sequentially on data pages. Figure 1

depicts an NSM page after inserting four records of a rela-

tion R with three attributes: SSN, name, and age. Each

record has a record header (RH) containing a null bitmap,

offsets to the variable-length values, and other implemen-

tation-specific information [20][29][32]. Each new record

is typically inserted into the first available free space start-

ing at the beginning of the page. Records may have vari-

able lengths, and therefore a pointer to the beginning of

the new record is stored in the next available slot from the

end of the page. One can access the nth record in a page by

following the nth pointer from the end of the page.

During predicate evaluation, however, NSM exhibits

poor cache performance. Consider the query:

select name

from R

where age < 40;

To evaluate the predicate, the query processor uses a scan

operator [14] that retrieves the value of the attribute age

from each record in the relation. Assuming that the NSM

page in Figure 1 is already in main memory and that the

cache block size is smaller than the record size, the scan

operator will incur one cache miss per record. If age is a 4-

byte integer, it is smaller than the typical cache block size

FIGURE 1: The cache behavior of NSM.

5523 52Susan

20 RH4Jim

45 RH3 3589

Jane 30 RH

CACHE

PAGE HEADER RH1 0962

Jane 30 RH2 7658 John

45 RH3 3589 20 RH4Jim

5523 52Susan

NSM PAGE

 Combine the best properties of the two models

7

there is a significant gain in I/O performance [2]. The performance of affinity-based vertical partitioning

depends heavily on whether queries involve attributes within the same fragment.

3 PAX

In this section, we introduce a new strategy for placing records on a page called PAX (Partition

Attributes Across). PAX (a) maximizes inter-record spatial locality within each column and within each

page, thereby eliminating unnecessary requests to main memory without a space penalty, (b) incurs a min-

imal record reconstruction cost, and (c) is orthogonal to other design decisions, because it only affects the

layout of data stored on a single page (e.g., one may decide to store one relation using NSM and another

using PAX, or first use affinity-based vertical partitioning, and then use PAX for storing the ‘thick’ sub-

relations). This section presents the detailed design of PAX.

3.1 Overview

The motivation behind PAX is to keep the attribute values of each record on the same page as in NSM,

while using a cache-friendly algorithm for placing them inside the page. PAX vertically partitions the

records within each page, storing together the values of each attribute in minipages. Figure 3 depicts an

NSM page and the corresponding PAX page, with the records of the former stored in the latter in a column-

major fashion. When using PAX, each record resides on the same page as it would reside if NSM were

used; however, all SSN values, all name values, and all age values are grouped together on minipages. PAX

increases the inter-record spatial locality (because it groups values of the same attribute that belong to dif-

ferent records) with minimal impact on the intra-record spatial locality. Although PAX employs in-page

vertical partitioning, it incurs minimal record reconstruction costs, because it does not need to perform a

join to correlate the attribute values of a particular record.

FIGURE 3: Partition Attributes Across (PAX), and its cache behavior. PAX partitions records into minipages

within each page. As we scan R to read attribute age,values are much more efficiently mapped onto cache blocks,

and the cache space is now fully utilized.

block 130 52 45 20

CACHE

0962 7658

3859 5523

. .. .

Jane John Jim Susan

30 52 45 20

PAGE HEADER

PAX PAGE

PAGE HEADER RH1 0962

Jane 30 RH2 7658 John

45 RH3 3589 20 RH4Jim

5523 52Susan

0962

NSM PAGE

 Page sub-divided into minipages
(with flexible boundaries)

 Boundaries dynamically adjusted
based on the sizes of the variable-
length fields

 During bulk-loading, use the
boundaries from the previous page
as a starting point

 Updates may cause re-org

 Deletions handled by marking
deleted records and reusing during
inserts

page vertical partitioning, it incurs minimal record recon-

struction costs, because it does not need to perform a join

to construct a result tuple.

3.2 Design

To store a relation with degree n (i.e., with n attributes),

PAX partitions each page into n minipages. It then stores

values of the first attribute in the first minipage, values of

the second attribute in the second minipage, and so on.

The page header at the beginning of each page contains

pointers to the beginning of each minipage. The record

header information is distributed across the minipages.

The structure of each minipage is determined as follows:

• Fixed-length attribute values are stored in F-minipages.

At the end of each F-minipage there is a presence bit

vector with one entry per record that denotes null val-

ues for nullable attributes.

• Variable-length attribute values are stored in V-

minipages. V-minipages are slotted, with pointers to the

end of each value. Null values are denoted by null

pointers.

Each newly allocated page contains a page header and

as many minipages as the degree of the relation. The page

header contains the number of attributes, the attribute sizes

(for fixed length attributes), offsets to the beginning of the

minipages, the current number of records on the page and

the total space available on the page. Figure 4 depicts an

example PAX page in which two records have been

inserted. There are two F-minipages, one for the SSN

attribute and one for the age attribute. Because the name

attribute is a variable-length string, it is stored in a V-

minipage. At the end of each V-minipage there are offsets

to the end of each variable-length value.

Records on a page are accessed either sequentially or

in random order (e.g., through a non-clustered index). To

sequentially access a subset of attributes, the algorithm

accesses the values in the appropriate minipages. For

instance, the sequential scan algorithm reads all values of

a fixed-length attribute f or a variable-length attribute v

from a newly accessed page, and the indexed scan reads a

value of an attribute a, given the record id [34].

To store a relation, PAX requires the same amount of

space as NSM. NSM stores the attributes of each record

contiguously, and therefore it requires one offset (slot) per

record and one additional offset for each variable-length

attribute in each record. In contrast, PAX stores one offset

for each variable-length value, plus one offset for each of

the n minipages. Therefore, regardless of whether a rela-

tion is stored using NSM of PAX, it will occupy the same

number of pages. As explained in Section 4.1, implemen-

tation-specific details may introduce slight differences

which are insignificant to the overall performance.

3.3 Evaluation

The data placement scheme determines two factors that

affect performance. First, the inter-record spatial locality

minimizes data cache-related delays when executing itera-

tors over a subset of fields in the record. DSM provides

inter-record spatial locality, because it stores attributes

contiguously, whereas NSM does not. Second, the record

reconstruction cost minimizes the delays associated with

retrieving multiple fields of the same record.

Table 1 summarizes the characteristics of NSM,

DSM, and PAX, demonstrating the tradeoff between inter-

record spatial locality and record reconstruction cost.

NSM exhibits suboptimal cache behavior. In contrast,

DSM requires costly joins that offset the benefit from the

inter-record spatial locality. PAX offers the best of both

worlds by combining the two critical characteristics: inter-

record spatial locality, and minimal record reconstruction

overhead, by keeping all parts of each record in the same

page. As an additional advantage, implementing PAX on

an existing DBMS requires only changes to the page-level

data manipulation code.

4 System Implementation

We implemented NSM, PAX, and DSM in the Shore stor-

age manager [7]. Shore provides all the features of a mod-

ern storage manager, namely B-trees and R-trees [16],

ARIES-style recovery [22], hierarchical locking (record,

0962

Jane

30

7658

John

45

pid . . . 3 2 4 v 4 f

1

. .

1

1 1

presence bits

presence bits

v-offsets

attributes
records

attr. sizes

free space

}

}
}
}

page header

F-minipage

F-minipage

V-minipage

FIGURE 4: An example PAX page.

TABLE 1: NSM, DSM, and PAX comparison.

Characteristic NSM DSM PAX

Inter-record spatial locality

Low record reconstruction cost

 Scans in Shore Implementation

◦ NSM: One scan operator per relation

◦ PAX or DSM: One scan operator per attribute being read

 So the reading of the different attributes (for the same record) going on in parallel

 Standard hybrid hash join algorithm

◦ Build hash partitions on left relation, and probe using the right relation

◦ Uses scan operators to read and construct the tuples

minipages do not have sufficient space, the record is

moved to a different page.

DELETIONS. The NSM deletion algorithm uses the slot

array to mark deleted records, and the free space can be

filled upon future insertions. PAX keeps track of deleted

records using a bitmap at the beginning of the page, and

determines whether a record has been deleted using fast

bitwise calculations. Upon record deletion, PAX reorga-

nizes minipage contents to fill the gaps to minimize frag-

mentation that could affect PAX's optimal cache

utilization. As discussed in Section 6.2, minipage reorga-

nization does not affect PAX’s performance because it

incurs minimal overhead. Attribute value offsets are calcu-

lated by converting the record id to the record index within

the page, which takes into account deleted records.

For deletion-intensive workloads, an alternative

approach is to mark records as deleted but defer reorgani-

zations, leaving gaps in the minipages. As a result, cache

utilization during file scan is suboptimal, because deleted

record data are occasionally brought into the cache. To

maintain cache performance to acceptable levels, the sys-

tem schedules periodic file reorganizations. In the near

future we plan to implement this algorithm and provide the

option to use on a per-file basis the one best suited for each

application. For the purposes of this study, however, we

have implemented the first “exhaustive” alternative.

4.3 Query Operators

SCAN OPERATOR. A scan operator that supports sarga-

ble predicates [28] was implemented on top of Shore.

When running a query using NSM, one scan operator is

invoked that reads each record and extracts the attributes

involved in the predicate from it. PAX invokes one scan

operator for each attribute involved in the query. Each

operator sequentially reads values from the corresponding

minipage. The projected attribute values for qualifying

records are retrieved from the corresponding minipages

using computed offsets. With DSM, as many operators as

there are attributes in the predicate are invoked, each on a

sub-relation. The algorithm makes a list of the qualifying

record ids, and retrieves the projected attribute values

from the corresponding sub-relations through a B-tree

index on record id.

JOIN OPERATOR. The adaptive dynamic hash join algo-

rithm [23], which is also used in DB2 [20], was imple-

mented on top of Shore. The algorithm partitions the left

table into main-memory hash tables on the join attribute.

When all available main memory has been consumed, all

buckets but one are stored on the disk. Then it partitions

the right table into hash tables in a similar fashion, probing

dynamically the main-memory portion of the left table

with the right join attribute values. Using only those

attributes required by the query, it then builds hash tables

with the resulting sub-records. The join operator receives

its input from two scan operators, each reading one rela-

tion. The output can be filtered through a function that is

passed as a parameter to the operator.

5 Analysis of the impact of data placement

To evaluate PAX’s impact on cache performance, we first

ran plain range selection queries on a memory-resident

relation that consists of fixed-length numeric attributes.

Such a controlled workload helped us understand the facts

and perform sensitivity analysis. This section analyzes

cache performance and execution time when running sim-

ple queries, and discusses the three schemes’ limitations.

5.1 Setup and methodology

We conducted experiments on a Dell 6400 PII Xeon/MT

system running Windows NT 4.0. This computer features

a Pentium II Xeon processor running at 400MHz, 512MB

of main memory, and a 100MHz system bus. The proces-

sor has split 16-KB first-level (L1) data and instruction

caches and a unified 512-KB second-level (L2) cache.

Caches at both levels are non-blocking (they can service

new requests while earlier ones are still pending) with 32-

byte cache blocks.1 We obtained experimental results

using the Xeon’s hardware counters and the methodology

described in previous work [1].

The workload consists of one relation and variations

of the following range selection query:

select avg(ap)

from R

where aq > Lo and aq < Hi (1)

where ap, aq are attributes in R. This query is sufficient to

examine the net effect of each data layout when accessing

records sequentially or randomly (given their record id).

Unless otherwise stated, R contains eight 8-byte numeric

attributes, and is populated with 1.2 million records. For

predictability and easy correctness verification of experi-

mental results, we chose the attribute size so that exactly

four values fit in the 32-byte cache line, and record sizes

so that record boundaries coincide with cache line bound-

aries. We varied the projectivity, the number of attributes

in the selection predicate, their relative position, and the

number of attributes in the record. The values of the

attribute(s) used in the predicate are the same as in the

l_partkey attribute of the Lineitem table in the TPC deci-

sion-support benchmarks [15], with the same data skew

and uniform distribution.

PAX primarily targets optimizing data cache behav-

ior, and does not affect I/O performance in any way. In

1. Other systems employ larger cache blocks (e.g., 64-128

bytes), especially in L2. In such systems, PAX’s spatial local-

ity will result in even higher cache and bandwidth utilization.

Results with larger cache blocks are shown in [3].

which only to accomodate one last record on the current

page before allocating the next one. Figure 10 shows this

worst case scenario: using an exhaustive algorithm that

attempts to fill each page by 100%, PAX incurs 2-10%

performance penalty when compared to NSM.

As an alternative, we implemented a smarter algo-

rithm that reorganizes minipages only if the free space on

the page is more than 5%. As was expected, the number of

reorganizations per page dropped to half the number

incurred by the exhaustive algorithm. A more conservative

algorithm with a 10% “reorganization-worthy” free-space

threshold dropped the average number of reorganizations

to 0.8 per page. Table 2 shows that, as the average number

of reorganizations falls, the performance penalty of PAX

versus NSM during bulk-loading becomes minimal (and is

independent of the database size).

6.3 Queries

In Section 5.2 we explained why the performance

improvement provided by PAX is reduced as the projectiv-

ity increases and the query accesses a larger portion of the

record. As shown in Section 5, PAX’s performance is

superior to NSM when running range selections, espe-

cially when the query uses only a fraction of the record.

The leftmost bar group (labeled ‘RS’) in Figure 11 shows

the average speedup4 obtained by a variety of range selec-

tion queries on Lineitem (described in Section 6.1). When

using a 100-MB, a 200-MB, and a 500-MB dataset the

speedup is 14%, 13%, and 10%, respectively.

Figure 11 also depicts PAX/NSM speedups when run-

ning four TPC-H queries against a 100, 200, and 500-MB

TPC-H database. PAX outperforms NSM for all these

experiments. The speedups obtained, however, are not

constant across the experiments due to a combination of

differing amounts of I/O and interactions between the

hardware and the algorithms being used.

Queries 1 and 6 are essentially range queries that

access roughly one third of each record in Lineitem and

calculate aggregates. The difference between these TPC-H

queries and the plain range selections (RS) discussed in

the previous paragraph is that TPC-H queries exploit fur-

ther the spatial locality, because they access projected data

multiple times to calculate aggregate values. Therefore,

PAX speedup is higher due to the increased cache utiliza-

tion and varies from 15% (in the 500-MB database) to

42% (in the smaller databases).

Queries 12 and 14 are more complicated and involve

two joined tables, as well as range predicates. The join is

performed by the adaptive dynamic hash join algorithm, as

was explained in Section 4. Although both the NSM and

the PAX implementation of the hash-join algorithm only

copy the useful portion of the records, PAX still outper-

forms NSM because (a) with PAX, the useful attribute val-

ues are naturally isolated, and (b) the PAX buckets are

stored on disk using the PAX format, maintaining the

locality advantage as they are accessed for the second

phase of the join. PAX executes query 12 in 37-48% less

time than NSM. Since query 14 accesses fewer attributes

and requires less computation than query 12, PAX outper-

forms NSM by only 6-32% when running this query.

6.4 Updates

The update algorithms implemented for NSM and PAX

(discussed in Section 4.2) are based on the same philoso-

phy: update attribute values in place, and perform reorga-

nizations as needed. The difference lies in updating

variable-length attributes. When replacing a variable-

length attribute value with a larger one, PAX only needs to

shift half the data of the V-minipage on average to acco-

modate the new requirements. NSM, on average, must

move half the data of the page (because it moves records

that include “innocent” unreferenced attributes). Less fre-

quently, variable-length updates will result in a page reor-

ganization for both schemes. Overall, massive updates on

variable-length fields are rare; TPC-C’s only update query

is on the client credit history in the Payment transaction,

TABLE 2: Effect of the “reorganization worthy” threshold

on PAX bulk-loading performance.

“Reorganization-

worthy” threshold

Avg. # reorg.

/ page

Penalty wrt.

NSM

0% (always reorganize) 2.25 10.1%

5% (reorg. if < 95% full) 1.14 4.9%

10% (reorg. if < 90% full) 0.85 0.8%

4. [17].Speedup
ExecutionTime NSM()

ExecutionTime PAX()
-- 1– 100%´=

FIGURE 11: PAX/NSM speedup on read-only queries.

PAX/NSM Speedup (PII/NT)

0%

10%

20%

30%

40%

50%

RS Q1 Q6 Q12 Q14

query

P
A

X
/N

S
M

s
p

e
e
d

u
p

(%
)

100 MB

200 MB

500 MB

 Basics

 PAX: Within-page Columnar Storage

 Compression in Column-Stores

 Dremel: Storing Hierarchical Data

 Delta Lake: Storage Issues in Data Lakes

Material from Tutorial on Column-stores by Harizopoulos, Abadi, Boncz

 Using a “Telco” schema

 “usage” table has 200 columns: only 7 columns need to be used

 Much higher compression ratios (factor of 10 vs 3)

 Row store (in comparison) didn’t use indexing

century, a collection of new markets with new

requirements has arisen. In addition, the relentless advance

of technology has a tendency to change the optimization

tactics from time to time.

When either of these occurs, there is a possibility that a

new code line with a different architecture will

dramatically outperform the traditional one. Inevitably, this

is the result of a different storage architecture that has

inherent advantages relative to the OSFA one. For the

purpose of this paper, we define “dramatically outperform”

to mean at least a factor of 10 advantage on the same (or

comparable) hardware. For example, a factor of 10 is the

difference between response time of one minute and

response time of 6 seconds. Similarly, it is the difference

between an $800 PC with two CPUs and a blade farm with

20 processors. Whenever such a performance difference

occurs, customers who care about performance (i.e., ones

that are “in pain”) will be inclined to try the new

architecture. Although one can argue about whether a

factor of 10 is too high a fence for a new architecture to

clear, the number is clearly not a factor of 2 or 3. In the

latter case, one merely waits a year or two for the next

hardware advance or increases the hardware budget. A

factor of 10, in contrast, makes such tactics unworkable.

The premise of this paper is that there are at least four

markets where this factor of 10 (or higher) threshold

currently exists. In the next four sections, we detail the

reasons for our claims, which are based on benchmarking

or reports of benchmarking results by others. In the last

section of this paper, we speculate on a few ways that the

commercial DBMS market could unfold off into the future.

2. Text Databases – A Factor of 10

It is a significant disappointment that text storage and

retrieval engines do not use RDBMSs, a comment repeated

at most DBMS conferences. In fact, this market does not

use any DBMS, preferring to build directly on top of a file

system storage layer. Early warning of this “roll your own”

phenomenon came to one of us from the founder of

Inktomi (Eric Brewer) in the mid 1990s. He tried using a

commercial RDBMS in an early version of their product,

but quickly gave up when he realized that Inktomi ran

exactly one query, a three way join with constants for the

search terms in the user query. This single query could be

easily hard coded and ran about 100 times faster than the

same query in an RDBMS.

There are a myriad of reasons for this performance delta.

These include (i) the lack of need for locking or

transactions, data types other than text, and repeatable or

even complete answers, and (ii) the need for horizontal

data partitioning, application-specific compression, and

variable length lists.

In a retrospective, Brewer [Bre04] explored these reasons

in some detail. Moreover, all subsequent search engines

(e.g., Google, Lycos, etc.) have come to the same

conclusion and have built proprietary text engines.

Moreover, Google has built a complete system software

stack including a file system (GFS [Ghe03]), a special

DBMS (Bigtable [Cha06]), and pertinent parallel data

processing abstractions (MapReduce [Dea04] and Sawzall

[Pik05]). Bigtable is being deployed for a myriad of

internal storage uses.

At this point, it is likely that one of the search companies

will expose their internal storage system for customer data,

either as an appliance on the customer’s premise (along the

lines of the current Google appliance) or as a service.

When this happens, there will be one or more prominent

non-RDBMS architectures used to store customer data.

3. Data Warehouses – Another Factor of 10

It is estimated that data warehouses form 1/3 of the

RDBMS market in 2005 [Gar06, Ola06]. Right now, the

data warehouse market is dominated by RDBMS vendors

selling systems that use the traditional row-oriented

architecture. C-Store [Sto05b] and Monet [Bon04]

advocated the use of a column store for data warehouse

applications and [Har06] gave some preliminary

performance numbers. In this section, we present

additional evidence, namely two specific performance

studies using the now-released code line of Vertica

[Ver06], a complete column-oriented DBMS along the

lines of C-Store, which validate the column store

performance claims.

3.1 Telco Call Details

Most (if not all) data warehouse applications use a star or

snowflake schema, and the schema for this application is

shown in Figure 1. This schema is in production use by a

firm that specializes in business analysis of Telco call

usage

account

toll

source

Figure 1. Telco Schema

 Vertica Appliance

Query 1 2.06 300

Query 2 2.20 300

Query 3 0.09 300

Query 4 5.24 300

Query 5 2.88 300

Figure 2. Query Running Times (seconds)

detail information. Here, the central fact table (usage)

has a record per call with a variety of call detail data; the

account table contains the phone numbers which are the

billing entities; source contains the network the call

detail came from; and toll contains billing information.

Besides their schema, this firm gave Vertica 600 Gbytes of

actual data and a suite of example queries they use in their

day-to-day affairs. Moreover, they also gave Vertica

approximate running times for their current solution, a 28

blade appliance from one of the well-known DBMS

appliance vendors, which lists for about $300,000 and

implements a traditional row-store architecture. Figure 2

shows these approximate running times, as well as the

performance of Vertica on a dual core dual CPU Opteron

computer, which lists for about $2500.

Figure 3 shows the SQL for Query 2 of this benchmark

suite defined over the star schema shown in Figure 1. This

query is typical of data warehouse queries in that it first

filters using predicates over columns of the fact table or a

dimension table, and then groups the restricted fact table

over some attribute and aggregates. On this query, a

column store outperforms a row store by a factor of 47

with 1/7 the number of CPUs and two orders of magnitude

less hardware cost. There are several reasons for this

startling performance difference, but three stand out.

First, the usage table contains a myriad of details about

calls, including call forwarding information, the networks

the call traversed, call length and drop information, etc. In

all, there are more than 200 columns. While the wisdom of

such a “fat” table can be debated by schema designers, it

should be noted that the customer uses many different

fields in various ad-hoc queries. Hence, decomposing this

fact table into multiple tables would introduce joins, which

might slow performance. Also, in point of fact, the fact

table has been pre-joined with appropriate columns in

dimension tables to eliminate run-time joins, a common

tactic to improve performance in warehouse environments,

resulting in a materialized view with 212 columns. Note

further that query 2 reads 7 columns from the 212. Hence,

a column store will read exactly the 7 columns, while a row

store will read all 212―a striking difference of nearly two

orders of magnitude in byte movement from the disk.

The second consideration is compression. As noted in a

companion paper [Aba06], compression is usually more

effective in a column store than a row store. Not only are

all objects in a disk block of the same data type, but

additional compression options, such as delta encoding and

run-length encoding, are possible. In several benchmark

studies, Vertica typically has a compression ratio of a

factor of 10, better by nearly a factor of 3 than the

compression possible in competing row stores.

The third reason is sorting and indexing, which are used by

Vertica, but not by the appliance. This explains the

constant query time of the appliance, whereas Vertica

keeps the data in some sort order, which can restrict

running times for some queries.

It is now straightforward to explain Figure 2. The

competing row store did not use compression or indexing.

Hence, query times for the appliance are the time to read

600 Gbytes off the disk, an impressive 70 Mbytes/sec per

processor-disk pair. In contrast, Vertica stored less than 60

Gbytes and actually read about 2 Gbytes. A factor of 300

less I/O is guaranteed to generate a dramatic performance

improvement!

Although this customer had a very fat fact table, which

obviously skewed the performance comparison, similar,

though likely less dramatic, results have been observed in a

variety of other studies. Our next example uses a “skinny”

fact table.

3.2 Simplified TPC-H

The well known benchmark, TPC-H, is used by many

vendors to claim superiority in data warehouse

performance. This benchmark is cleverly constructed to

avoid using a snowflake schema and to render materialized

views unproductive. In interviewing about two dozen

CIOs, the authors have never seen a warehouse that did not

use a snowflake schema. Hence, Pat O’Neil simplified the

TPC-H schema to be a snowflake and defined variants of

12 TPC-H queries on this schema [One06]. The schema is

shown in Figure 4 and a few of the 12 queries in Figure 5.

Lastly, the running time of the 12 queries on a $2500

Opteron computer with 4 cores is shown in Figure 6 for

two engines, the Vertica column store and a popular row

store.

SELECT account.account_number,

sum (usage.toll_airtime),

sum (usage.toll_price)

FROM usage, toll, source, account

WHERE usage.toll_id = toll.toll_id

 AND usage.source_id = source.source_id

 AND usage.account_id = account.account_id

 AND toll.type_ind in (‘AE’. ‘AA’)

 AND usage.toll_price > 0

 AND source.type != ‘CIBER’

 AND toll.rating_method = ‘IS’

 AND usage.invoice_date = 20051013

GROUP BY account.account_number

Figure 3. Query 2

 Ramamurthy, DeWitt, Su; VLDB 2002

 Mirroring often used for fault tolerance

 Store the mirrors in different format

 Relational model + SQL on top, but a complete redesign of
storage and query execution

 All data stored in the form of “projections”

◦ In essence: “materialized views”

Dname Floor

Math 1

EECS 2

DEPT Table

 Relational model + SQL on top, but a complete redesign of
storage and query execution

 All data stored in the form of “projections”

◦ In essence: “materialized views”

Dname Floor

Math 1

EECS 2

Biology 4

DEPT Table

dept age dept.floor

Math 25 1

Math 29 1

EECS 27 2

Biology 24 4

Sara 29 Math 90K

EMP2

 Need some way to reconstruct the tuples

 Use “join indexes”

 Each column in multiple different projections to reduce the need to do joins

◦ Ideally each query covered by a single projection

 Typically a separate “write optimized store”

Vertica

Material from Tutorial on Column-stores by Harizopoulos, Abadi, Boncz

 Compression can help reduce storage costs, and I/O Costs

◦ But: decompression costs significant, and updates are more complicated

◦ For row-stores, compression benefits lower because of heterogeneity

 Run-length Encoding

◦ Works well for sorted data

Material from Tutorial on Column-stores by Harizopoulos, Abadi, Boncz

 Dictionary Encoding

Material from Tutorial on Column-stores by Harizopoulos, Abadi, Boncz

 Bit-vector Encoding

Material from Tutorial on Column-stores by Harizopoulos, Abadi, Boncz

 Frame of Reference Encoding

Material from Tutorial on Column-stores by Harizopoulos, Abadi, Boncz

Material from Tutorial on Column-stores by Harizopoulos, Abadi, Boncz

 Clear benefits in specific cases, but too many combinations and special cases

Join in C-Store may

return IDs of tuples

that match

 Compressed data divided into compressed “blocks”

◦ e.g., for RLE, a block is single triple: (value, start_pos, run_length)

 Compressed block API allows extracting information from a block

◦ getNext() or asArray() used for decompressing the data

 Use the APIs to write more generic code

 Basics

 PAX: Within-page Columnar Storage

 Compression in Column-Stores

 Dremel: Storing Hierarchical Data

 Delta Lake: Storage Issues in Data Lakes

 MapReduce good for analysis of large-scale data, but not
appropriate for ad hoc (esp. aggregate) queries

 Much of the data is hierarchical (nested) and sparse, but with a
schema (i.e., like JSON data)

 Dremel built at Google to address these use cases

◦ A nested columnar storage format

◦ In situ processing, i.e., process data in place

◦ A distributed “serving tree” to propagate a query within the storage layer

 Schema format from “protocol buffers”

◦ Used for messages

◦ Can handle ”lists” and “maps”

 Schema format from “protocol buffers”

◦ Used for messages

◦ Can handle ”lists” and “maps”

DocId

10

20

Links.Forward

20

40

60

80

Links.Backward

10

30
N.L.Code

‘en-us’

‘en’

‘en-gb’

0

1

1

0

DocId

10

20

Links.Forward

20

40

60

80

Links.Backward

NULL

10

30
N.L.Code

‘en-us’

‘en’

NULL

‘en-gb’

NULL

0

1

1

0

0

0

1

RL

RL

0

2

1

1

0

RL DL

2

2

1

2

1

No need to store NULLs

d < 3 ➔ NULL

Why not just use a bitmap for NULLs?

→ The actual DL number needed for
reconstruction

 Only supports “one-pass aggregation” queries (i.e., no joins)

 An aggregation query split up across all “tablets”, i.e., horizontal
partitions of the table

 Experimental results showing queries can be executed in
interactive times on disk-resident datasets up to a trillion
records

 From the retrospective paper in 2020: Dremel: A Decade of Interactive SQL
Analysis at Web Scale (”test-of-time award”)

 Several other formats proposed since then: Parquet (same as Dremel), ORC,
Apache Arrow

◦ ORC and Arrow keep track of number of repeated entries and explicit ”presence” bits

 From the retrospective paper in 2020: Dremel: A Decade of Interactive SQL
Analysis at Web Scale (”test-of-time award”)

 Several other formats proposed since then: Parquet (same as Dremel), ORC,
Apache Arrow

◦ ORC and Arrow keep track of number of repeated entries and explicit ”presence” bits

 Google BigQuery now uses Capacitor

◦ Very similar to Dremel, with some improvements in compression, etc.

 Authors note several open problems in this space, especially in
understanding tradeoffs and dealing with heterogeneous data

 From the retrospective paper in 2020: Dremel: A Decade of Interactive SQL
Analysis at Web Scale (”test-of-time award”)

 Other things of note:

◦ Disaggregating storage/memory and compute beneficial in the long run

◦ In situ data analysis important, but makes optimization hard

◦ Need “shuffle” in order to improve query processing (e.g., to support joins)

◦ Fully distributed query processing runs into issues – shifted to a more centralized approach

 Basics

 PAX: Within-page Columnar Storage

 Compression in Column-Stores

 Dremel: Storing Hierarchical Data

 Delta Lake: Storage Issues in Data Lakes

 Cloud object stores increasingly used for data lake storage: Amazon S3,
Azure Blob Storage, Google Cloud Storage, etc.

◦ Data usually stored as Parquet or ORC columnar formats

 Hard to guarantee ACID properties – no multi-object atomic updates

 Different consistency models offered (e.g., ”read your writes” by S3)

 Very high latencies for interactive querying, API limitations (e.g., when
running LIST against S3)

 Distributed file systems (like HDFS) also suffer from some of these issues

 Directories of files

◦ Each table stored as a collection of objects (e.g., Parquet files)

◦ No atomicity across multiple objects, eventual consistency, poor performance, no support
for operations like table versioning, auditing, etc.

 Custom Storage Engines

◦ Manage metadata in a layer above, that is strongly consistent

◦ Basically treat the cloud storage as a disk

◦ Challenges: All I/O operations need to go through metadata service, the metadata service
layer can be hard to build efficiently

 Metadata in Object Stores (Delta Lake Approach)

◦ Move metadata and transaction log into the object store itself

◦ Challenges?

 Each ”logical table” partitioned (if desired) and stored as Parquet files

 Logs generated as a JSON objects, periodically converted into Parquet format

Each log record object contains

an array of actions:

- Change metadata

- Add or remove files

- Add provenance information
- Additional information for

specific use cases

 Read the _last_checkpoint, and any other log files after that

 Figure out which data objects need to be read, using the metadata and statistics

 Read the relevant data objects, possible waiting (due to eventual consistency)

 Read up to the latest log record (say r) – we will try to write log record r+1

 Read data at table version r, and write new data objects into new files

 Attempt to write r+1.json – this needs to be atomic – if it fails, retry

 Optionally write a new checkpoint

Atomic write of r+1.json:
- Google and Azure Cloud Storage

support “put if absent”

- HDFS: can use “atomic rename”

operation

- Amazon S3: Need a separate

coordination service

 Writes are serialized, but reads provide a snapshot (but not necessarily the
latest version)

 No transactions across tables

 Transaction rates bottlenecked by the put-if-absent operations

 Time travel and rollbacks

◦ Delta Lake data objects and log are “immutable”, so easy to retrieve a past snapshot of the data

◦ Can set retention periods on a per table basis

 Efficient UPSERT/DELETE/MERGE

◦ Can use add/remove to efficiently support updates or deletes

 Streaming ingest and consumption

◦ Can write small objects to start with, and then compact them in background

◦ Could potentially avoid having to run a separate message bus altogether

 Data Layout Optimization

◦ Compact small objects in the background

◦ Z-Ordering by multiple attributes (to make it easy to run select queries against multiple
attributes)

◦ Potentially build new indexes

 Audit history is naturally available

 Schema evolution and enforcement

◦ Can update schemas in the background for older objects

 Connectors to other query and ETL engines

◦ Special format of Delta Lakes requires specialized code

◦ Can use “symlink manifest files” in some cases

 Simplify enterprise data architectures using a single system for many jobs rather
than a separate system for each

◦ So “one size does fit all”?

 Data engineering and ETL can be done directly against the Delta Lake

 Support for more efficient querying can handle some of the Warehousing use
cases

 Compliance and reproducibility: through ability to delete old data easily, and
time travel to retrieve past versions

 Serializable transactions only within a single table

◦ Technically a “delta lake table” could correspond to multiple “logical tables”

 Latencies for streaming operations

◦ Still have to deal with cloud storage latencies

 Secondary indexes

◦ Ongoing work on adding more types of indexes

 Almost a throwback to the original motivation for a “shared data bank”

◦ Hide all the complexity behind a logical abstraction that supports updates

◦ Avoid many copies of the same dataset in different systems

 Likely to become increasingly common for data lakes

◦ ”Disaggregation” a common trend

◦ Other data lakes support this kind of abstraction

◦ Recent work on “self-organizing data containers” from MIT: looking into how to automatically
reoptimize the data layouts

 Could this be used as the primary backend for an OLTP system? Why or why
not?

 Impact of the partitioning granularity

◦ Many small objects will make it easier to support updates, but penalize reads

◦ Could automatically choose the partitioning granularity based on read/write pattern

 Materialized views to support efficient OLAP on top this

 Proper ”versioning” and “branching” in a setup like this

◦ The only way to branch today is to make a copy of the entire table (CLONE)

 Fractured mirrors?

◦ Two different systems may wish to simultaneously have the same table in different
formats/layouts

◦ Could that be pushed inside the abstraction? how would consistency work?

 Could use this abstraction to separate sensitive data from non-sensitive data
automatically (for privacy and security)

	Slide 1: CMSC 724: Database Management Systems Storage
	Slide 2: Outline
	Slide 3: Data Storage Options
	Slide 4: Storage Hierarchy
	Slide 5: AMD Ryzen CPU Architecture
	Slide 6: Storage Hierarchy: Cache
	Slide 7: Disks vs SSDs
	Slide 8: Data Storage Options
	Slide 9: Shifting Tradeoffs
	Slide 10: Mapping Tuples to Disk Blocks
	Slide 11: File System or Not
	Slide 12: Through a File System
	Slide 13: Example
	Slide 14: Within a Single Block: NSM Model
	Slide 15: Decomposition Storage Model (DSM)
	Slide 16: Outline
	Slide 17: Shifting Tradeoffs
	Slide 18: Shifting Tradeoffs
	Slide 19: Shifting Tradeoffs
	Slide 20: Shifting Tradeoffs
	Slide 21: PAX: Motivation
	Slide 22: PAX: Motivation
	Slide 23: PAX
	Slide 24: PAX: Implementation in Shore
	Slide 25: PAX: Implementation in Shore
	Slide 26: Experimental Results
	Slide 27: Experimental Results
	Slide 28: Experimental Results
	Slide 29: Experimental Results
	Slide 30: Outline
	Slide 31: Column-stores vs Row-stores
	Slide 32: One size fits all? Part 2: Benchmarking
	Slide 33: Fractured Mirrors
	Slide 34: C-Store
	Slide 35: C-Store
	Slide 36: C-Store
	Slide 37: Column-stores: Updates?
	Slide 38: Compression
	Slide 39: Compression in Column-stores
	Slide 40: Compression in Column-stores
	Slide 41: Compression in Column-stores
	Slide 42: Compression in Column-stores
	Slide 43: Execution on Compressed Data: Example
	Slide 44: Execution on Compressed Data
	Slide 45: Execution on Compressed Data
	Slide 46: Execution on Compressed Data
	Slide 47: Outline
	Slide 48: Motivation
	Slide 49: Nested Columnar Storage
	Slide 50: Nested Columnar Storage
	Slide 51: Nested Columnar Storage
	Slide 52: Nested Columnar Storage
	Slide 53: Nested Columnar Storage
	Slide 54: Reconstruction
	Slide 55: Query Execution
	Slide 56: Developments since 2010
	Slide 57: Developments since 2010
	Slide 58: Developments since 2010
	Slide 59: Outline
	Slide 60: Motivation
	Slide 61: Existing Approaches to Table Storage
	Slide 62: Delta Table Storage Format
	Slide 63: Reading a Table
	Slide 64: Write Transactions
	Slide 65: More…
	Slide 66: More…
	Slide 67: Use Cases
	Slide 68: Limitations
	Slide 69: Thoughts…
	Slide 70: Open questions (and potential projects)

