CMSC 724: Database Management Systems
Storage

Instructor: Amol Deshpande
amol@cs.umd.edu

Outline

Basics

v

v

PAX: Within-page Columnar Storage

v

Compression in Column-Stores

v

Dremel: Storing Hierarchical Data

v

Delta Lake: Storage Issues in Data Lakes

m

Data Storage Options

» At various points, data stored in different storage hardware
> Memory, Disks, SSDs, Tapes, Cache
> Tradeoffs between speed and cost of access
> CPU needs the data in memory and cache to operate on it

» Volatile vs nonvolatile
> Volatile: Loses contents when power switched off

» Sequential vs random access
o Sequential: read the data contiguously
 select * from employee
°c Random: read the data from anywhere at any time
+ select * from employee where name like *__a b’

source: https://csel.net/recaps/4-

S H . h memory.html|
Direct —
Access to CPU
Temporary
— Storage
Main Memory RAM Areas
Virtual Memory
Indirect Access to CPU =
Secondary Starage Device Type
= Al &/ Permanent
perating System Networ Stora
il — ge

Assisted Memory Removable Internet Rea
Management Drives Storage

Input Sources

Scanners/

Keyboard Removable ll Camera/
Media Mic/
Video

AMD Ryzen CPU Architecture

T

- = S g o
Interconnects. = R

TR
i T
H%%',IJ] :‘ JNWTI'”‘

(AF 1088 RRR 000 A0 pE A A

Die shot overlaid with functional units

https://www.techpowerup.com/review/amd-ryzen-5-1600/3.html

Storage Hierarchy: Cache

K8 core in the AMD Athlon 64 CPU

Main Memonry
== 8 GB
- Other
ZPUs
L2 Unified
1 MB 16-way
A i [i A [)
L2 ITLE L2 ODTLE
512 entries 512 entries
A-way A-way
Y i Y i Y Y
L1 Instruction Cache L1ITLE L1 DTLE I L1 Data Cache
E4<E 2-way 1 KB 47 MB 1 KB 472 MB Tl | E4KB 2-way 2 ports

32 entries| 8 entries| |32 entries |8 entries
full assoc full assoc] |full assoc full assoc

1956

Disks vs SSDs M A

spindle

arm assembly

read-write

rotation

Platters

Spindle

R/W Head

NAND Flash

Actuator Arm
Memory

Actuator Axis

Controller

Shock resistant up to 350g/2ms Shock resistant up to 1500g/0.5ms

Data Storage Options

» Hard disks dominant form of storage for a long time

> About 10ms per random access =2 at most 100 random reads per second
> vs up to 500 MB/s sequential I/O

» Many traditional database design decisions driven by:

> Huge volumes of data on disks + Low amounts of memory + Low-speed
networks

o =% Communication between disks and memory the main bottleneck

» Solid state drives much more common today
> No seeks = Much better random reads
o Writes require erasing an entire block, and rewriting it
o SSDs provide a similar interface of “blocks”

Shifting Tradeoffs

» Much faster networks

» Often cheaper to access another computer’s memory than
accessing your own disk (in data centers)

» Cache is playing more and more important role

» Data often fits in memory of a single machine, or a cluster of
machines

» “Disk” considerations less important
o Still: Disks are where most of the data lives today

Mapping Tuples to Disk Blocks

ID name | salary | dept_name | building ‘ budget | ° Very Important Impllcatlons on
22222 | Einstein 95000 | Physics Watson 70000
12121 | Wu 90000 | Finance Painter | 120000 performance
32343 | ElSaid 60000 | History Painter 50000 . .
45565 | Katz 75000 | Comp.Sci. | Taylor | 100000 Quite a few different ways to do
98345 | Kim 80000 | Elec. Eng. Taylor 85000 .
76766 Crick 72000 Biology Watson 90000 th IS
10101 | Srinivasan | 65000 | Comp. Sci. | Taylor 100000
58583 | Califieri 62000 | History Painter 50000 e Similar issues even if not using
83d ID name ’ dept_name ‘ salary |"aylor 100000 ;)
15150, 3 3 D7agt oo RO, T Music] gmoqp Nackard | 80000 disks as the primary storage
3345451 ch 1%5‘: 87009 s Andehysias ggpop Yatson 70000
765432491080 o.;q | 8U0QY: ¢ Finande .nnnn Fainter 120000
45565 | Katz Comp. Sci. | 75000
98345 | Kim Elec. Eng. | 80000 7
76766 | Crick Biology 72000
10101 | Srinivasan | Comp. Sci. | 65000
58583 | Califieri History 62000
83821 | Brandt Comp. Sci. | 92000 | i assembly
15151 | Mozart Mucie 1 40000
33456 | Gold | dept-name ‘ building | budget |
76543 | Singh| CompF&tan¢eTaylpr800D0100000

Biology Watson 90000
Elec. Eng. | Taylor 85000

ead-write

Music Packard 80000
Finance Painter 120000
History Painter 50000

Physics Watson 70000

rotation

File System or Not

» Option 1: Use OS File System

° File systems are a standard abstraction provided by Operating Systems
(OS) for managing data

o Major Con: Databases don’t have as much control over the physical
placement anymore --- OS controls that
* E.g., Say DBMS maps a relation to a “file”
* No guarantee that the file will be “contiguous” on the disk
* 0OS may spread it across the disk, and won’t even tell the DBMS

» Option 2: DBMS directly works with the disk or uses a

lightweight/custom OS

> Increasingly uncommon — most DBMSs today run on top of OSes (e.g.,
PostgreSQL on your laptop, or on linux VMs in the cloud, or on a
distributed HDFS)

Through a File System

» Option 1: Allocate a single “file” on the disk, and treat it

as a contiguous sequence of blocks
o This is what PostgreSQL does
> The blocks may not actually be contiguous on disk

» Option 2: A different file per relation
> Some of the simpler DBMS use this approach

» Either way: we have a set of relations mapped to a set of
blocks on disk

Example

» Each relation stored separately on a separate set of blocks
> Assumed to be contiguous

» Each “index” maintained in a separate set of blocks
> Assumed to be contiguous

Disk
block

instructor student

m Some extra space for new tuples

B+-tree index for instructor

Within a Single Block: NSM Model

header N

record 0 | 10101 | Srinivasan | Comp. Sci. | 65000 > .
e : y @ Fixed Length Records
record2 | 15151 | Mozart Music 40000
record 3 | 22222 | Einstein Physics 95000
record 4 4
record 5 | 33456 | Gold Physics 87000 >
record 6 4
record 7 | 58583 | Califieri History 62000 | —— Slotted page/blOCk structure
record 8 | 76543 | Singh Finance 80000
record 9 | 76766 | Crick Biology 72000
record 10 | 83821 | Brandt Comp. Sci. | 92000
record 11 | 98345 | Kim Elec. Eng. 80000
Block Header Records
Size # Entries Free Space -
Location P

End of Free Space

Decomposition Storage Model (DSM)

» Store the data column-wise

» Need to maintain an “index” with each value (to be able to stitch them
together)

» Good for queries that read few columns, but bad for writes or queries that
read all columns

R1 PAGE HEADER |1]0962|
RID | SSN
] 567 2| 7658]3|3859|4|5523 sub-relation R1
2 |7658 R2 - el
3 3859 RID | Name -
4 |5523 T o PAGE HEADER |[1{Jane [
5 [9743 | [2 [Jon R3 2| Johnj3) Jim |4jSusan] t ub-relation R2
6 |0618 3 |Jim RID | Age ‘ [a]] o]]
4 Susan 1 30 |
5 | Leon > 145 PAGE HEADER |1/ 30 [2J}-
6 | Dan 3 120 45]3{20]4] 52 sub-relation R3
4 |52 AERn
5 |43 B
6 37

Outline

Basics

v

v

PAX: Within-page Columnar Storage

v

Compression in Column-Stores

v

Dremel: Storing Hierarchical Data

v

Delta Lake: Storage Issues in Data Lakes

m

Shifting Tradeoffs

» Computer platforms in 1980: main performance bottleneck I/O Latency

DBMS Execution | PROCESSOR | 10 cycles/instruction

1 6 cycles

DBMS Data and 1 Megabyte
Instructions Sl L ESOIR (Buffer pool)

<1 MBps

Hot data

Shifting Tradeoffs

» Computer platforms today: hot data migrates to larger and slower main
memory — almost no disk |/Os

DBMS Execution PROCESSORH CACHE -

Shifting Tradeoffs

» DBMSs on a Modern Processor: Where does time go? VLDB 1999

Query execution time

» Detailed profiling on a few simple queries on different databases

10% Sequential Range Selection

100% -
80% A
60% -
40% -
20% -

0%

B C

D

10% Indexed Range Selection

100% - ! 100% -
80% - 80% -
60% - 60% -
40% - 40%
20% 20% -

0% . 0%

Join

C D

A B C

O Computation

B Memory stalls

O Branch mispredictions

Hl Resource stalls

Figure 5.1: Query execution time breakdown into the four time components.

Shifting Tradeoffs

» DBMSs on a Modern Processor: Where does time go? VLDB 1999

» Detailed profiling on a few simple queries on different databases

Memory stall time

100%

80% -
60% -
40% -
20% -

0%

10% Sequential Range Selection 10% Indexed Range Selection Join
100% 100%
u 80% - 80% 1 —-—
60% - 60% -
40% - 40% -
20% - 20% -
— . . . 0% T T 0% T T T
A B C D C D A B C D
OL1 D-stalls (bottom) H L1 I-stalls OL2 D-stalls H L2 I-stalls OITLB stalls (top)

Figure 5.2: Contributions of the five memory components to the memory stall time (Ty;)

PAX: Motivation

» Cache misses are a major source of delays in modern systems

» Only a fraction of the data transferred to the cache is useful

o Typical cache line sizes: 64-256 bytes

Cache

Cache Line 0

Cache Line 1

Cache line 62

Cache Line 63

Main Memory

Block 0

Block 1

Block 64

Block 65

Block 255

Block 256

Block 4094

Elock 4095

A disk block

Memory divided into "blocks” ==
size of the cache line

"Disk blocks” often memory-
mapped (or loaded directly into
memory)

If using n-ary storage,
unnecessary attributes of a tuple
are loaded into the cache

PAX: Motivation

» Cache misses are a major source of delays in modern systems

» Only a fraction of the data transferred to the cache is useful

o Typical cache line sizes: 64-256 bytes

select name
from R
where age < 40;

NSM PAGE
f - - — 1
PAGE HEADER | RH1| 0962 |
Jane |30 | RH2 | 7658 | John :
45 1 RH3 £89 Jim| 20 | RH4 |
5523 | Susan| 52 f |
v /
\ \ |
\ \ I
A |
AR |
I\ |
¢ | | o | ol

CACHE

FIGURE 1: The cache behavior of NSM.

PAX

» Combine the best properties of the two models

NSM PAGE PAX PAGE CACHE
PAGE HEADER | RH1 | 0962 PAGE HEADER | 0962 | 7658
Jane |30 | RH2|7658| John 3859 | 5523 block 1
45 | RH3 | 3589| Jim| 20 | RH4
5523| Susan| 52
Jane | John | Jim | Susan

I Bl [T

FIGURE 3: Partition Attributes Across (PAX), and its cache behavior. PAX partitions records into minipages
within each page. As we scan R to read attribute age,values are much more efficiently mapped onto cache blocks,
and the cache space is now fully utilized.

PAX: Implementation in Shore

Page sub-divided into minipages
(with flexible boundaries)

Boundaries dynamically adjusted
based on the sizes of the variable-
length fields

During bulk-loading, use the
boundaries from the previous page
as a starting point

Updates may cause re-org

Deletions handled by marking
deleted records and reusing during
inserts

} page header

-minipage

attributes free space
#records
l l attr. sizes
Z\l,&
pid 131214 |v|4|f
0962 | 7658
presence bits |11
Jane | John

30 | 45

presence bits

}
)

1

1

V-minipage

F-minipage

FIGURE 4: An example PAX page.

PAX: Implementation in Shore

» Scans in Shore Implementation
> NSM: One scan operator per relation
° PAX or DSM: One scan operator per attribute being read

* So the reading of the different attributes (for the same record) going on in parallel

» Standard hybrid hash join algorithm
o Build hash partitions on left relation, and probe using the right relation

o Uses scan operators to read and construct the tuples

m

Experimental Results

NSM/PAX/DSM Elapsed Time

50 -
select avg(ay) — A NSM
from R —~ 40 4 —m— PAX
- \n
where a; > Lo and a; < Hi : —e—DSM
9 30 -
2
Q
E 20
O
Q
8
g 10
(Y]
0 1 1 1 1 1 1 1

1 2 3 4 5 6 7
number of attributes in query

FIGURE 6: Elapsed time comparison as a function of the
number of attributes in the query.

Experimental Results

NSM PAX CPU time

160 1 @ L1 Dpata Penalty 160 1 m L1 Data Penalty 1800 - B Misc

140 { [L2 Data penalty . . 140 { O L2 Data penalty 1600 - BMem

1400 - @ Comp
-2120- . 'g120- -21200-
100 [M H $ 100 - 8

= - =1000 -
:,.)- 80 - § 80 - qg)_ 800 4
8 60 - $ 60- £ 600-
S 40 - E 40 - E 400 -
§ 20 - § 20 - ﬂ ﬂ ﬂ H § 200 -
S 9 N S) ' B S N Y

1% 5% 10% 20% 50% 100% 1% 5% 10% 20% 50% 100% NSM PAX

selectivity selectivity Page Layout

FIGURE 7: PAX impact on memory stalls

Experimental Results

time (seconds)

NSM/PAX Elapsed Time

1 2 3 4 5 6 7
projectivity

FIGURE 8: PAX/NSM sensitivity to projectivity.

NSM/PAX Elapsed Time per Record
5 i H‘//‘/‘_‘

2 1 —a— NSM

—o— PAX
0 T T T T T 1
2 4 8 16 32 64

number of attributes in relation

FIGURE 9: PAX/NSM sensitivity to the number of
attributes in the relation.

time (microseconds)
w

Experimental Results

PAX/NSM Speedup (PII/NT) Updates with Various Selectivities
50% - 18% -
0100 MB 16% A
_ 40% A E 200 MB . 14% -
S @500 MB 2
o o 12% T
> 30% - 3
ks S 10% -
o a
; 200 ; 8% 1 selectivity
4] 0 ‘£ 6% 4 —H—1%
< S —*%—10%
L 10% - < 4% —a—20%
20, | —©—50%
—*— 100%
0% - : 0% - - - - —
RS Q1 Q6 Q12 Ql4 1 2 3 4 5 6 7
query number of updated attributes

FIGURE 11: PAX/NSM speedup on read-only queries. FIGURE 12: PAX/NSM speedup on updates.

Outline

Basics

v

v

PAX: Within-page Columnar Storage

v

Compression in Column-Stores

v

Dremel: Storing Hierarchical Data

v

Delta Lake: Storage Issues in Data Lakes

m

Column-stores vs Row-stores

ik 4l

ORI MBS~ e A s

S A A e e i

One size fits all? Part 2: Benchmarking

Using a “Telco” schema

v

v

“usage” table has 200 columns: only 7 columns need to be used

Much higher compression ratios (factor of 10 vs 3)

v

Row store (in comparison) didn’t use indexing

v

SELECT account.account number,
sum (usage.toll airtime),
sum (usage.toll price)

FROM usage, toll, source, account

WHERE usage.toll id = toll.toll id Vertica Appliance
AND usage.sourgeiid = source.;ourceiid gzueny / 2.06 300
AND wusage.account_id = account.account id QueryZ 2.20 300
AND toll.type ind in (‘AE’. ‘AA’) Query 3 0.09 300
AND usage.toll price > 0 Query4 5.24 300
AND source.type != ‘CIBER’ QZueKy.5 2.88 300
AND toll.rating method = ‘IS’
AND usage.invoice date = 20051013
GROUP BY account.acc_ount_number Figure 2 Query Running TimeS (SecondS)

Figure 3. Query 2

Fractured Mirrors

» Ramamurthy, DeWitt, Su; VLDB 2002
» Mirroring often used for fault tolerance

» Store the mirrors in different format

o~ o T
L I 1 I 1 1 1 | g -
If—-‘"’ T -~ i_““a.

S -"-—-___ﬁ I

o L 1T I 1 =)

C-Store

» Relational model + SQL on top, but a complete redesign of

storage and query execution

All data stored in the form of “projections”

o |n essence: “materialized views”

EMP1(name, age| age)
EMP2 (dept, age, DEPT.floor| DEPT.floor)

Name

Age

Dept

Salary

Bob

25

Math

10K

Bill

27

EECS

50K

Jill

24

Biology

80K

Table 1: Sample EMP data

Math
EECS

EMP3 (name, salary| salary)
DEPT1 (dname, floor| floor)

Example 2: Projections in Example 1 with sort orders

Jill 24 EMP1
Bob 25 Name | Age
DEPT Table Bil 27 Jill 24
Bob 25
Bill 27

C-Store

» Relational model + SQL on top, but a complete redesign of

storage and query execution

» All data stored in the form of “projections”

o |n essence: “materialized views”

Name Age Dept Salary
Bob 25 Math 10K
Bill 27 EECS 50K
Jill Biology 80K
a2 [wan ook
A CARJAN A e N\JeannR P " AJiVAR wigives
Math 1
EECS 2
Biology 4

EMP1(name, age| age)

EMP2 (dept, age, DEPT.floor| DEPT.floor)
EMP3 (name, salary| salary)

DEPT1 (dname, floor| floor)

Example 2: Projections in Example 1 with sort orders

N I S

Math 25 1
Math 29 1
EECS 27 2
Biology 24 4

EMP2

C-Store

» Need some way to reconstruct the tuples

» Use “join indexes”

» Each column in multiple different projections to reduce the need to do joins

Ideally each query covered by a single projection

Join Index
SID Key
2
3
1

EMPA1
Name | Age
Jill 24
Bob 25
Bill 27
EMP3
Name | Salary
Bob 10K
Bill 50K
Jill 80K

Flgure 2: A join index from EMP3 to EMPI

Column-stores: Updates?

» Typically a separate “write optimized store”

Vertica

Material from Tutorial on Column-stores by Harizopoulos, Abadi, Boncz

Compression

» Compression can help reduce storage costs, and I/O Costs
o But: decompression costs significant, and updates are more complicated

> For row-stores, compression benefits lower because of heterogeneity

Compression in Column-stores

» Run-length Encoding

o Works well for sorted data

=
—
= = — — — = —= — — — — — — =
<D
—_—
-
—_—
P—1
s o] —[—]—]z [re]lre]|—[—]—]—[—] =
<>
p——
| —
_ >
2 [=|—[ee]|co]| 2z [en]|oe ||| [<]|
<D
— — — — =
= = > > =
e — s — — == [~
— > <> — =1 =
— <> P’ = I ==
<> — — [= —
= - - = = b1~
= <> <> P =
> P <> —_— =
= P P =
—_— =
=
=
U p— = -
[=) — —_— | | == 3
L) = —~ = = =1
- <> <> - = — == P—
= — P —— = => [— |'= F—
== (= ~> | <> | = —
—_———— | — — —
— <> = —
=
=
- - -
2 |l=]—lo=]|e=] 2 [em]|o= o= [[[—1 [<= | =-
<D

Compression in Column-stores

» Dictionary Encoding

- Foreaeh
e Vel
e
donary ety

. Diionary can
e ek o
perColmn

- Columstores
T
aovanage
difonay
oS may
eneode mull
Tl & onoe

Qe

> > — —— = = = > — — —— —

Qe

w Quartr

i

(I
I

[l

b Vi

i

w

i t

._. Dconary
ioney

2 Q1 02,0

.01

Q) (122000403 03
A

06T (103 01 n O

Compression in Column-stores

» Bit-vector Encoding

FOUCAhOe g

Ve, Y, Incolmn
 Crete bt
b

l=tifel]zy
- (00 forcolumn

Wi e uniue
Vlls

- Eaoh bibetor
tan b her
Compressd |
st

l~>]r~~]—=]—=]=[]—=[]—]

== [| — | — |

!
!
!
!
!
!
!

!
!
!
!

!
!
!
!
!
!
!

!
!
!
!

Compression in Column-stores

» Frame of Reference Encoding

1 Encodes values as b b
offsetfrom chosen frame
of reference

- Soecial escane code e
al it setto 1) inicates
a difrence lrger than
Can be stored In b bits

- e escape code,
orginl (uncompresse)

HT
TR

valle s writen

Comoressing Reltons & naches
" Goldsten, Ramakishnan, Shaft
ICOE%

it

Frame: 50

d /rm \
ol /M
§ /ﬂm
0 /w
o /@
0 /.w)
§ I
R
it /ﬁo
02 /._
0 1
il .

)

-4 bis per
Valug

Exoeptions (e
part 3o b
eyt eal i
eucepos)

Execution on Compressed Data: Example

p——— p——— p——— —
s> s> = > s>
____I}_ ___C_.LJ _l“-..J L
[> < _~>> —_—
> > [— —_
—— —1 — < _ >
- - - ——
—— > < _Fm < > [—]
[—— [——— — —
[— <>
1 .

(1 B

Execution on Compressed Data

» Clear benefits in specific cases, but too many combinations and special cases

42
36 38 1]2
421 M [42] = [3]2
44 46 51
38

Join in C-Store may
return IDs of tuples
that match

NLJOIN(PREDICATE q, COLUMN cl, COLUMN c2)
IF ¢l IS NOT COMPRESSED AND c2 IS NOT COMPRESSED
FOR EACH VALUE valcl WITH POSITION % IN ¢l DO
FOR EACH VALUE valc2 WITH POSITION j IN ¢2 DO
IF q(valecl,valc2) THEN OUTPUT-LEFT: (i), OUTPUT-RIGHT: (j)
END
END
IF ¢l IS NOT COMPRESSED AND c2 IS RLE COMPRESSED
FOR EACH VALUE valel WITH POSITION % IN ¢l DO
FOR EACH TRIPLE t WITH VAL v,STARTPOS j AND RUNLEN k IN c2
IF g(valcl,v) THEN:
OUTPUT-LEFT: t,
OUTPUT-RIGHT: (j ... j+k-1)
END
END
IF ¢l IS NOT COMPRESSED AND c¢2 IS BIT-VECTOR COMPRESSED
FOR EACH VALUE valcl WITH POSITION i IN ¢l DO
FOR EACH VALUE valc2 WITH BITSTRING b IN ¢2 DO
//ASSUME THAT THERE ARE num ’1’S IN b
IF q(valel,vale2) THEN OUTPUT
OUTPUT-LEFT: NEW RLE TRIPLE (NULL,i,num),
OUTPUT-RIGHT: b
END
END
ETC. ETC. FOR EVERY POSSIBLE COMBINATION OF ENCODING TYPES

Execution on Compressed Data

» Compressed data divided into compressed “blocks”

> e.g., for RLE, a block is single triple: (value, start_pos, run_length)

» Compressed block API allows extracting information from a block

o getNext() or asArray() used for decompressing the data

Properties Iterator Access|Block Information
isOneValue() |getNext() getSize()
isValueSorted() |asArray() getStart Value()
isPosContig|() getEndPosition()

Table 1: Compressed Block API

M

Execution on Compressed Data

» Use the APIs to write more generic code

CoUNT(COLUMN cl)
b = GET NEXT COMPRESSED BLOCK FROM cl

WHILE b IS NOT NULL
IF b.ISONEVALUE()
£ = FETCH CURRENT COUNT FOR b.GETSTARTVAL()
x = x + b.GETSIZE()
ELSE
a = b.ASARRAY()
FOR EACH ELEMENT % IN a
& = FETCH CURRENT COUNT FOR 1
r=x+ 1
b = GET NEXT COMPRESSED BLOCK FROM cl

Figure 2: Pseudocode for Simple Count Aggregation

Encoding Type |Sorted?|1 value?|Pos. contig.?
RLE yes yes yes
Bit-string yes yes no

Null Supp. no/yes no yes
Lempel-Ziv no/yes no yes
Dictionary no/yes no yes
Uncompressed no/yes no no/yes

Outline

Basics

v

v

PAX: Within-page Columnar Storage

v

Compression in Column-Stores

v

Dremel: Storing Hierarchical Data

v

Delta Lake: Storage Issues in Data Lakes

m

Motivation

» MapReduce good for analysis of large-scale data, but not
appropriate for ad hoc (esp. aggregate) queries

» Much of the data is hierarchical (nested) and sparse, but with a
schema (i.e., like JSON data)

» Dremel built at Google to address these use cases
> A nested columnar storage format
° In situ processing, i.e., process data in place

o A distributed “serving tree” to propagate a query within the storage layer

Nested Columnar Storage

» Schema format from “protocol buffers”

o Used for messages

> Can handle ”lists” and “maps”

message Document ({
required int64 DocId;
optional group Links {
repeated int64 Backward;
repeated int64 Forward; }
repeated group Name {
repeated group Language {
required string Code;
optional string Country;
optional string Url; }}

}

Schema: List of Strings

Data: [“a”, “b”, “c%, ...]

message Examplelist
repeated string list;
}

{

list: “a”;
lists “b*
IA8E: “e¥;

Schema: Map of strings to strings

Data: {*aL” => “Alabama”, ...}

message ExampleMap {
repeated group map {
required string key;

optional string value;

}

{

map: {
key: “AL”",
value: “Alabama”
jl
map: {
key: “AK”,
value: “Alaska”

Nested Columnar Storage

» Schema format from “protocol buffers”
o Used for messages

> Can handle ”lists” and “maps”

DocId: 10 l'l DocId: 20 1'2
Links Links
Forward: 20 Backward: 10
message Document ({

: . Forward: 40 Backward: 30
required int64 DocId; Forward: 60 Forward: 80
optional group Links { Name Name

. Language Url: 'http://C’
repeated int64 Backward; Code: 'en-us'
repeated int64 Forward; } Country: 'us'

Language
repeated group Name ({ Code: 'en'
repeated group Language { Url: 'http://A’
required string Code; Name
ql‘l] g9 ’ Url: 'http://B'
optional string Country; } Name
. . Language
optional string Url; }} Code: 'en-gb'
Country: 'gb'

Nested Columnar Storage

message Document {

required inté64 DocId;
optional group Links {
repeated int64 Backward;
repeated int64 Forward; }
repeated group Name {
repeated group Language {
required string Code;
optional string Country; }
optional string Url; }}

10 20
20 40

DocId: 10

Links
Forward: 20
Forward: 40
Forward: 60

Name
Language

Language
Code: 'en'
Name

Name
Language

r,

Code: 'en-us'
Country: 'us'

Url: 'http://A'

Url: 'http://B'

Code: 'en-gb'
Country: 'gb'

DocId: 20 r2
Links
Backward: 10
Backward: 30
Forward: 80
Name
Url: 'http://C'

—

60
80

Links.Backward

10
30

Links.Forward

S + +—» O

‘en-us’
ien’
‘en-gb’

Nested Columnar Storage
nessage pocument. | Links.Forward &

required inté64 DocId;

optional group Links {]O 20 0
repeated int64 Backward;
repeated int64 Forward; } 20 40 1
repeated group Name { 6 O
repeated group Language { 1
required string Code; 80
optional string Country; } 0
optional string Url; }}
DocId: 10 r DocId: 20 1'2 .
Links ' |ninks Links.Backward [={8
Forward: 20 Backward: 10
Forward: 40 Backward: 30 NULL 0
Forward: 60 Forward: 80
Name Name -I O
Language Url: 'http://C' O N.L.COde RL DL
Code: 'en-us'
Country: 'us' 30 1 ‘en-us’ 0O 2
Language
Code: 'en' ‘ ’
Url: 'http://A' en 2 2
Name
Url: 'http://B' NULL 1 1
Name . b’
Language en-—
Code: 'en-gb' g 1 2
Country: 'gb' NULL

Nested Columnar Storage

message Document {
required inté64 DocId;
optional group Links {
repeated int64 Backward;

repeated int64 Forward; } m m Links.Forward || Links.Backward
repeated group Name { value r value r d value r d value r d

d
repeated group Language { 10 0 0| | http://A O 2 20 |0 2| | NULL 0 1
required string Code; 20 |0 0| httpyB 1 2 40 |1 2 0 |0 2
o?tional sFring Country; } NULL 1 1 60 |1 2 30 1 2
optional string Url; }} http/C | 0 2 80 0 2
Name.Language.Code Name.Language.Count
DocId: 10 l'l DocId: 20 1'2 guag guag ry
Links Links value r d value r d
Forward: 20 Backward: 10 en-us |0 2 us 0 3
Forward: 40 Backward: 30 en 2 2 R >
. F d: 80
Forward: 60 orwaz NULL |1 1 < NULL |1 1
Name Name ——
Language Url: 'http://C' en-gb |1 2 gb 1
Code: 'en-us' NULL |0 1 NULL | O
Country: 'us'
Language No need to store NULLS
Code: 'en'
Url: 'http://A' d < 3 9 NULL
Name
Url: 'http://B'
Name
L))
agg;:?e.en_gb. Why not just use a bitmap for NULLs?
Country: 'gb' - The actual DL number needed for

\ reconstruction

Reconstruction .

0

1 O Links.Backward J—OD[Links.Forward 01
/_0/

m Name.Url Links.Forward || Links.Backward [Name.Language.Code] 0,1,2 [Name.Language.Country]
value r value r value r d value - 2

|

d d r d
10 0 0 http://A | 0 2 20 0 2 NULL | 0 1
20 0 0 http://B |1 2 40 1 2 10 0 2
NULL |1 1 60 1 2 30 1 2

http://C |0 2 80 0 2

Figure 4: Complete record assembly automaton. Edges are labeled

Name.Language.Code Name.Language.Country with repetition levels.
value r d value r d
us

en-us |0 2 0 3

en 2 2 NULL 2 2
NULL |1 1 NULL |1 1
en-gb |1 2 gb 1 3
NULL |0 1 NULL 0 1

DoecId: 10 Sl
Name
Language
Docld Country: 'us'
Language
O” Name
Language
1,20 Name.Language.Country} Country: 'gb'
0
DocId: 20 SZ
Name

Figure 5: Automaton for assembling records from two fields, and
the records it produces

Query Execution

» Only supports “one-pass aggregation” queries (i.e., no joins)

» An aggregation query split up across all “tablets”, i.e., horizontal
partitions of the table

» Experimental results showing queries can be executed in
interactive times on disk-resident datasets up to a trillion
records

Developments since 2010

» From the retrospective paper in 2020: Dremel: A Decade of Interactive SQL
Analysis at Web Scale (“test-of-time award”)

» Several other formats proposed since then: Parquet (same as Dremel), ORC,
Apache Arrow

° ORC and Arrow keep track of number of repeated entries and explicit "presence” bits

[Docld | Name.Url Links.Forward || Links.Backward Name Name.Url
value r d value r value r d value r d value value

d
10 0 0 hitp://A 1 0 2 20 0 2 NULL |0 1 true http://A | true
20 0 0 hitp:/iB 1 2 40 1 2 10 0 2 true http://B true
NULL |1 1 60 1 2 30 1 2 false
hitp//IC 10 2 80 0 2 http://C true

Name.Language.Code Name.Language.Country
Name.Language Name. Language Code Name. Languaga Country
value r d value r d
value value
en-us 0 2 us 0 3

en 2 9 NULL |2 2 2 en-us true true
NULL |1 1 NULL |1 1 0 en true false
en-gb 1 2 gb 1.3 ! en-gb true gb true
NULL | O 1 NULL |0 1 0

Figure 7: Columnar representation of the data in Figure 5
showing length (len) and presence (p)

Developments since 2010

» From the retrospective paper in 2020: Dremel: A Decade of Interactive SQL
Analysis at Web Scale (“test-of-time award”)

» Several other formats proposed since then: Parquet (same as Dremel), ORC,
Apache Arrow

° ORC and Arrow keep track of number of repeated entries and explicit "presence” bits

» Google BigQuery now uses Capacitor

> Very similar to Dremel, with some improvements in compression, etc.

» Authors note several open problems in this space, especially in
understanding tradeoffs and dealing with heterogeneous data

Developments since 2010

» From the retrospective paper in 2020: Dremel: A Decade of Interactive SQL
Analysis at Web Scale (“test-of-time award”)

» Other things of note:

o Disaggregating storage/memory and compute beneficial in the long run

° In situ data analysis important, but makes optimization hard

(¢]

Need “shuffle” in order to improve query processing (e.g., to support joins)

(e]

Fully distributed query processing runs into issues — shifted to a more centralized approach

Outline

Basics

v

v

PAX: Within-page Columnar Storage

v

Compression in Column-Stores

v

Dremel: Storing Hierarchical Data

v

Delta Lake: Storage Issues in Data Lakes

m

Motivation

» Cloud object stores increasingly used for data lake storage: Amazon S3,
Azure Blob Storage, Google Cloud Storage, etc.

o Data usually stored as Parquet or ORC columnar formats
» Hard to guarantee ACID properties — no multi-object atomic updates
» Different consistency models offered (e.g., “read your writes” by S3)

» Very high latencies for interactive querying, API limitations (e.g., when
running LIST against S3)

» Distributed file systems (like HDFS) also suffer from some of these issues

Existing Approaches to Table Storage

» Directories of files
> Each table stored as a collection of objects (e.g., Parquet files)

> No atomicity across multiple objects, eventual consistency, poor performance, no support
for operations like table versioning, auditing, etc.

» Custom Storage Engines
° Manage metadata in a layer above, that is strongly consistent
o Basically treat the cloud storage as a disk

> Challenges: All I/O operations need to go through metadata service, the metadata service
layer can be hard to build efficiently

» Metadata in Object Stores (Delta Lake Approach)

> Move metadata and transaction log into the object store itself

o Challenges?

M

Delta Table Storage Format

» Each ”logical table” partitioned (if desired) and stored as Parquet files

» Logs generated as a JSON objects, periodically converted into Parquet format

mytable/date=2020-01-01/1b8a32d2ad.parquet)
/a2dc5244F7 .parquet
/date=2020-01-02/f52312dfae.parquet

/ba68f6bd4f.parquet |

/_delta_log/000001. json)

/000002 . json

Data objects
r (partitioned
by date field)

Each log record object contains

an array of actions: /800003 . js0n
y /000003 . parquet | Log records
- Change metadata /000004 . json & checkpoints
- Add or remove files oy hecnoint
- Add provenance information /
- Additional information for contains {version: 70006637} Combines log
SpeCifiC use cases Transaction’s operations, e.g., records 1to 3

add date=2020-01-01/a2dc5244f7f7.parquet
add date=2020-01-02/ba68f6bd4fle.parquet

Figure 2: Objects stored in a sample Delta table.

Reading a Table

» Read the _last_checkpoint, and any other log files after that
» Figure out which data objects need to be read, using the metadata and statistics

» Read the relevant data objects, possible waiting (due to eventual consistency)

mytable/date=2020-01-01/1b8a32d2ad.parquet |
/a2dc5244F7.parquet
/date=2020-01-02/f52312dfae.parquet
/ba68f6bd4f.parquet |
/_delta_log/000001. json
/000002 . json
/000003. json
/000003 .parquet
/000004 . json
/000005 . json
/_last_checkpoint

Data objects
r (partitioned
by date field)

Log records
& checkpoints

Contains {version: “000003”} */
Combines log

Transaction’s operations, e.g., records 1to 3
add date=2020-01-01/a2dc5244f7f7.parquet
add date=2020-01-02/ba68f6bd4fle.parquet

\\\\sgw Figure 2: Objects stored in a sample Delta table.

Write Transactions

» Read up to the latest log record (say r) — we will try to write log record r+1

» Read data at table version r, and write new data objects into new files
» Attempt to write r+1.json — this needs to be atomic — if it fails, retry
» Optionally write a new checkpoint
mytable/date=2020-01-01/1b8a32d2ad.parquet |)
/a2dc5244f7.parquet Data .O.bJeCtS
/date=2020-81-82/52312dfae.parquet | (Partitioned
.) . /ba68f6bd4f.parquet | by date field)
Atomic write of r+1.json: /_delta_log/@0eee1l. json
- Google and Azure Cloud Storage Joon00s. e
support “put if absent” /000003 . parquet i
HDFS: can “at : 2 /000004 . json
: . use “atomic rename /000005 . json
operation /_last_checkpoint
- Amazon S3: Need a separate | , /
)) . Contains {version: “000003”}
coordination service Combines log

Transaction’s operations, e.g., records 1to 3
add date=2020-01-01/a2dc5244f7f7.parquet
add date=2020-01-02/ba68f6bd4fle.parquet

Figure 2: Objects stored in a sample Delta table.

More...

» Writes are serialized, but reads provide a snapshot (but not necessarily the
latest version)

» No transactions across tables
» Transaction rates bottlenecked by the put-if-absent operations

» Time travel and rollbacks
> Delta Lake data objects and log are “immutable”, so easy to retrieve a past snapshot of the data

° Can set retention periods on a per table basis

» Efficient UPSERT/DELETE/MERGE
> Can use add/remove to efficiently support updates or deletes
» Streaming ingest and consumption

o Can write small objects to start with, and then compact them in background

° Could potentially avoid having to run a separate message bus altogether

More...

» Data Layout Optimization
o Compact small objects in the background

o Z-Ordering by multiple attributes (to make it easy to run select queries against multiple
attributes)

o Potentially build new indexes
» Audit history is naturally available
» Schema evolution and enforcement
o Can update schemas in the background for older objects

» Connectors to other query and ETL engines

o Special format of Delta Lakes requires specialized code

° Can use “symlink manifest files” in some cases

Use Cases

Simplify enterprise data architectures using a single system for many jobs rather
than a separate system for each

v

o So “one size does fit all”?

» Data engineering and ETL can be done directly against the Delta Lake

» Support for more efficient querying can handle some of the Warehousing use
cases

» Compliance and reproducibility: through ability to delete old data easily, and
time travel to retrieve past versions

Limitations

» Serializable transactions only within a single table

o Technically a “delta lake table” could correspond to multiple “logical tables”

» Latencies for streaming operations

o Still have to deal with cloud storage latencies

» Secondary indexes

° 0Ongoing work on adding more types of indexes

Thoughts...

» Almost a throwback to the original motivation for a “shared data bank”
> Hide all the complexity behind a logical abstraction that supports updates

° Avoid many copies of the same dataset in different systems

» Likely to become increasingly common for data lakes

> "Disaggregation” a common trend
o Other data lakes support this kind of abstraction

° Recent work on “self-organizing data containers” from MIT: looking into how to automatically
reoptimize the data layouts iachine | [achine Machine3

Machine 4
1 2
dlientd Clients Client®
Membry Menory
Clientl Client2
SOC lib sDClb |

/In-Memory - / In-Memory - | /In-Memory - 5DC File2
SDC Filel

SDC File2

A AN .

\ I /’/ ’; /’_/
Y A el
/" Cloud - 5DC Filel { oud - L= N ("~ Cloud - SDC FileN h
Data File a] Data File a Data File a

Data File b [Data Fileb ‘ MetaData File

3 Data Filec
MetaData File | MetaData File

Figure 1: SDC Architecture: Client 1 and 2 access the same
SDC file on cloud storage. Client 3 and 4 work on the same
in-memory SDC file 2, which is backed by a cloud SDC file.

Open questions (and potential projects)

» Could this be used as the primary backend for an OLTP system? Why or why
not?

» Impact of the partitioning granularity
> Many small objects will make it easier to support updates, but penalize reads
> Could automatically choose the partitioning granularity based on read/write pattern

» Materialized views to support efficient OLAP on top this

» Proper ”versioning” and “branching” in a setup like this
° The only way to branch today is to make a copy of the entire table (CLONE)
» Fractured mirrors?

> Two different systems may wish to simultaneously have the same table in different
formats/layouts

> Could that be pushed inside the abstraction? how would consistency work?

» Could use this abstraction to separate sensitive data from non-sensitive data
automatically (for privacy and security)

	Slide 1: CMSC 724: Database Management Systems Storage
	Slide 2: Outline
	Slide 3: Data Storage Options
	Slide 4: Storage Hierarchy
	Slide 5: AMD Ryzen CPU Architecture
	Slide 6: Storage Hierarchy: Cache
	Slide 7: Disks vs SSDs
	Slide 8: Data Storage Options
	Slide 9: Shifting Tradeoffs
	Slide 10: Mapping Tuples to Disk Blocks
	Slide 11: File System or Not
	Slide 12: Through a File System
	Slide 13: Example
	Slide 14: Within a Single Block: NSM Model
	Slide 15: Decomposition Storage Model (DSM)
	Slide 16: Outline
	Slide 17: Shifting Tradeoffs
	Slide 18: Shifting Tradeoffs
	Slide 19: Shifting Tradeoffs
	Slide 20: Shifting Tradeoffs
	Slide 21: PAX: Motivation
	Slide 22: PAX: Motivation
	Slide 23: PAX
	Slide 24: PAX: Implementation in Shore
	Slide 25: PAX: Implementation in Shore
	Slide 26: Experimental Results
	Slide 27: Experimental Results
	Slide 28: Experimental Results
	Slide 29: Experimental Results
	Slide 30: Outline
	Slide 31: Column-stores vs Row-stores
	Slide 32: One size fits all? Part 2: Benchmarking
	Slide 33: Fractured Mirrors
	Slide 34: C-Store
	Slide 35: C-Store
	Slide 36: C-Store
	Slide 37: Column-stores: Updates?
	Slide 38: Compression
	Slide 39: Compression in Column-stores
	Slide 40: Compression in Column-stores
	Slide 41: Compression in Column-stores
	Slide 42: Compression in Column-stores
	Slide 43: Execution on Compressed Data: Example
	Slide 44: Execution on Compressed Data
	Slide 45: Execution on Compressed Data
	Slide 46: Execution on Compressed Data
	Slide 47: Outline
	Slide 48: Motivation
	Slide 49: Nested Columnar Storage
	Slide 50: Nested Columnar Storage
	Slide 51: Nested Columnar Storage
	Slide 52: Nested Columnar Storage
	Slide 53: Nested Columnar Storage
	Slide 54: Reconstruction
	Slide 55: Query Execution
	Slide 56: Developments since 2010
	Slide 57: Developments since 2010
	Slide 58: Developments since 2010
	Slide 59: Outline
	Slide 60: Motivation
	Slide 61: Existing Approaches to Table Storage
	Slide 62: Delta Table Storage Format
	Slide 63: Reading a Table
	Slide 64: Write Transactions
	Slide 65: More…
	Slide 66: More…
	Slide 67: Use Cases
	Slide 68: Limitations
	Slide 69: Thoughts…
	Slide 70: Open questions (and potential projects)

