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 Basics

 PAX: Within-page Columnar Storage

 Compression in Column-Stores 

 Dremel: Storing Hierarchical Data

 Delta Lake: Storage Issues in Data Lakes



 At various points, data stored in different storage hardware
◦ Memory, Disks, SSDs, Tapes, Cache

◦ Tradeoffs between speed and cost of access

◦ CPU needs the data in memory and cache to operate on it 

 Volatile vs nonvolatile
◦ Volatile: Loses contents when power switched off

 Sequential vs random access
◦ Sequential: read the data contiguously

 select * from employee

◦ Random: read the data from anywhere at any time
 select * from employee where name like ‘__a__b’



source: https://cse1.net/recaps/4-

memory.html



Die shot overlaid with functional units

https://www.techpowerup.com/review/amd-ryzen-5-1600/3.html



K8 core in the AMD Athlon 64 CPU



10.2 Magnetic Disk and Flash Storage 433

track t

sector s

spindle

cylinder c

platter

arm

read–write
head

arm assembly

rotation

Figure 10.2 Moving head disk mechanism.

typically 512 bytes; there are about 50,000 to 100,000 tracks per platter, and 1 to
5 platters per disk. The inner tracks (closer to the spindle) are of smaller length,
and in current-generation disks, the outer tracks contain more sectors than the
inner tracks; typical numbers are around 500 to 1000 sectors per track in the inner
tracks, and around 1000 to 2000 sectors per track in the outer tracks. The numbers
vary among different models; higher-capacity models usually have more sectors
per track and more tracks on each platter.

The read–write head stores information on a sector magnetically as reversals
of the direction of magnetization of the magnetic material.

Each side of a platter of a disk has a read–write head that moves across the
platter to access different tracks. A disk typically contains many platters, and the
read–write heads of all the tracks are mounted on a single assembly called a disk
arm, and move together. The disk platters mounted on a spindle and the heads
mounted on a disk arm are together known as head–disk assemblies. Since the
heads on all the platters move together, when the head on one platter is on the i th
track, the heads on all other platters are also on the i th track of their respective
platters. Hence, the ith tracks of all the platters together are called the ith cylinder.

Today, disks with a platter diameter of 3 1
2 inches dominate the market. They

have a lower cost and faster seek times (due to smaller seek distances) than do
the larger-diameter disks (up to 14 inches) that were common earlier, yet they
provide high storage capacity. Disks with even smaller diameters are used in
portable devices such as laptop computers, and some handheld computers and
portable music players.

The read–write heads are kept as close as possible to the disk surface to
increase the recording density. The head typically floats or flies only microns

1956

IBM RAMAC



 Hard disks dominant form of storage for a long time
◦ About 10ms per random access ➔ at most 100 random reads per second

◦ vs up to 500 MB/s sequential I/O

 Many traditional database design decisions driven by:
◦ Huge volumes of data on disks + Low amounts of memory + Low-speed 

networks

◦ ➔ Communication between disks and memory the main bottleneck

 Solid state drives much more common today
◦ No seeks → Much better random reads

◦ Writes require erasing an entire block, and rewriting it

◦ SSDs provide a similar interface of “blocks”



 Much faster networks

 Often cheaper to access another computer’s memory than 
accessing your own disk (in data centers)

 Cache is playing more and more important role 

 Data often fits in memory of a single machine, or a cluster of 
machines 

 “Disk” considerations less important

◦ Still: Disks are where most of the data lives today
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ID name salary dept name building budget

22222 Einstein 95000 Physics Watson 70000
12121 Wu 90000 Finance Painter 120000
32343 El Said 60000 History Painter 50000
45565 Katz 75000 Comp. Sci. Taylor 100000
98345 Kim 80000 Elec. Eng. Taylor 85000
76766 Crick 72000 Biology Watson 90000
10101 Srinivasan 65000 Comp. Sci. Taylor 100000
58583 Califieri 62000 History Painter 50000
83821 Brandt 92000 Comp. Sci. Taylor 100000
15151 Mozart 40000 Music Packard 80000
33456 Gold 87000 Physics Watson 70000
76543 Singh 80000 Finance Painter 120000

Figure 1.4 The faculty table.

We shall discuss these problems with the help of a modified database design for
our university example.

Suppose that instead of having the two separate tables instructor and depart-
ment, we have a single table, faculty, that combines the information from the two
tables (as shown in Figure 1.4). Notice that there are two rows in faculty that
contain repeated information about the History department, specifically, that
department’s building and budget. The repetition of information in our alterna-
tive design is undesirable. Repeating information wastes space. Furthermore, it
complicates updating the database. Suppose that we wish to change the budget
amount of the History department from $50,000 to $46,800. This change must
be reflected in the two rows; contrast this with the original design, where this
requires an update to only a single row. Thus, updates are more costly under the
alternative design than under the original design. When we perform the update
in the alternative database, we must ensure that every tuple pertaining to the His-
tory department is updated, or else our database will show two different budget
values for the History department.

Now, let us shift our attention to the issue of “inability to represent certain
information.” Suppose we are creating a new department in the university. In the
alternative design above, we cannot represent directly the information concerning
a department (dept name, building, budget) unless that department has at least one
instructor at the university. This is because rows in the faculty table require
values for ID, name, and salary. This means that we cannot record information
about the newly created department until the first instructor is hired for the new
department.

One solution to this problem is to introduce null values. The null value
indicates that the value does not exist (or is not known). An unknown value
may be either missing (the value does exist, but we do not have that information)
or not known (we do not know whether or not the value actually exists). As we
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ID name dept name salary

22222 Einstein Physics 95000
12121 Wu Finance 90000
32343 El Said History 60000
45565 Katz Comp. Sci. 75000
98345 Kim Elec. Eng. 80000
76766 Crick Biology 72000
10101 Srinivasan Comp. Sci. 65000
58583 Califieri History 62000
83821 Brandt Comp. Sci. 92000
15151 Mozart Music 40000
33456 Gold Physics 87000
76543 Singh Finance 80000

(a) The instructor table

dept name building budget

Comp. Sci. Taylor 100000
Biology Watson 90000
Elec. Eng. Taylor 85000
Music Packard 80000
Finance Painter 120000
History Painter 50000
Physics Watson 70000

(b) The department table

Figure 1.2 A sample relational database.

associated with the Physics department. In Chapter 8, we shall study how to
distinguish good schema designs from bad schema designs.

1.5.2 Data-Manipulation Language

The SQL query language is nonprocedural. A query takes as input several tables
(possibly only one) and always returns a single table. Here is an example of an
SQL query that finds the names of all instructors in the History department:

select instructor.name
from instructor
where instructor.dept name = ’History’;

The query specifies that those rows from the table instructor where the dept name is
History must be retrieved, and the name attribute of these rows must be displayed.
More specifically, the result of executing this query is a table with a single column
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associated with the Physics department. In Chapter 8, we shall study how to
distinguish good schema designs from bad schema designs.

1.5.2 Data-Manipulation Language

The SQL query language is nonprocedural. A query takes as input several tables
(possibly only one) and always returns a single table. Here is an example of an
SQL query that finds the names of all instructors in the History department:

select instructor.name
from instructor
where instructor.dept name = ’History’;

The query specifies that those rows from the table instructor where the dept name is
History must be retrieved, and the name attribute of these rows must be displayed.
More specifically, the result of executing this query is a table with a single column

• Very important implications on 

performance

• Quite a few different ways to do 

this 

• Similar issues even if not using 

disks as the primary storage 

?



 Option 1: Use OS File System
◦ File systems are a standard abstraction provided by Operating Systems 

(OS) for managing data

◦ Major Con: Databases don’t have as much control over the physical 
placement anymore --- OS controls that
 E.g., Say DBMS maps a relation to a “file”

 No guarantee that the file will be “contiguous” on the disk

 OS may spread it across the disk, and won’t even tell the DBMS

 Option 2: DBMS directly works with the disk or uses a 
lightweight/custom OS
◦ Increasingly uncommon – most DBMSs today run on top of OSes (e.g., 

PostgreSQL on your laptop, or on linux VMs in the cloud, or on a 
distributed HDFS)



 Option 1: Allocate a single “file” on the disk, and treat it 

as a contiguous sequence of blocks
◦ This is what PostgreSQL does

◦ The blocks may not actually be contiguous on disk

 Option 2: A different file per relation
◦ Some of the simpler DBMS use this approach

 Either way: we have a set of relations mapped to a set of 

blocks on disk



 Each relation stored separately on a separate set of blocks

◦ Assumed to be contiguous

 Each “index” maintained in a separate set of blocks

◦ Assumed to be contiguous

instructor student B+-tree index for instructor

Disk 

block

Some extra space for new tuples



Fixed Length Records

Slotted page/block structure
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2.2 The Decomposition Storage Model

Vertical partitioning is the process of striping a relation into sub-relations, each containing the values

of a subset of the initial relation’s attributes. Vertical partitioning was initially proposed in order to reduce

I/O-related costs [26]. The fully decomposed form of vertical partitioning (one attribute per stripe) is called

the decomposition storage model (DSM) [12]. DSM partitions an n-attribute relation vertically into n sub-

relations, as shown in Figure 2. Each sub-relation contains two attributes, a logical record id (surrogate)

and an attribute value (essentially, it is a clustered index on the attribute). Sub-relations are stored as regu-

lar relations in slotted pages, enabling each attribute to be scanned independently. 

DSM offers a higher degree of spatial locality when sequentially accessing the values of one attribute.

During a single-attribute scan, DSM exhibits high I/O and cache performance. DSM performance is supe-

rior to NSM when queries access fewer than 10% of the attributes in each relation. Warehousing products

such as Sybase-IQ [36] successfully use DSM-style partitioning and further optimize data access using

variant indices [27]. When evaluating a multi-attribute query, however, the database system must join the

participating sub-relations on the surrogate in order to reconstruct the partitioned records. The time spent

joining sub-relations increases with the number of attributes in the result relation. In addition, DSM incurs

a significant space overhead because the record id of each record needs be replicated.

An alternative algorithm [13] partitions each relation based on an attribute affinity graph, which con-

nects pairs of attributes based on how often they appear together in queries. The attributes are grouped in

fragments, and each fragment is stored as a separate relation to maximize I/O performance and minimize

record reconstruction cost. When the set of attributes in a query is a subset of the attributes in the fragment,

FIGURE 2: The Decomposition Storage Model (DSM). The relation is partitioned vertically into one thin relation

per attribute. Each sub-relation is then stored in the traditional fashion.
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 Store the data column-wise

 Need to maintain an “index” with each value (to be able to stitch them 
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 Good for queries that read few columns, but bad for writes or queries that 

read all columns



 Basics

 PAX: Within-page Columnar Storage

 Compression in Column-Stores 

 Dremel: Storing Hierarchical Data

 Delta Lake: Storage Issues in Data Lakes



 Computer platforms in 1980: main performance bottleneck I/O Latency



 Computer platforms today: hot data migrates to larger and slower main 
memory – almost no disk I/Os



 DBMSs on a Modern Processor: Where does time go? VLDB 1999

 Detailed profiling on a few simple queries on different databases



 DBMSs on a Modern Processor: Where does time go? VLDB 1999

 Detailed profiling on a few simple queries on different databases



 Cache misses are a major source of delays in modern systems

 Only a fraction of the data transferred to the cache is useful

◦ Typical cache line sizes: 64-256 bytes

Memory divided into ”blocks” == 

size of the cache line

”Disk blocks” often memory-

mapped (or loaded directly into 
memory)

If using n-ary storage, 

unnecessary attributes of a tuple 

are loaded into the cache

A disk block 



 Cache misses are a major source of delays in modern systems

 Only a fraction of the data transferred to the cache is useful

◦ Typical cache line sizes: 64-256 bytes

accesses when executing a main-memory workload, (b)

executes range selection queries and updates in 17-25%

less elapsed time, and (c) executes TPC-H queries involv-

ing I/O 11-42% faster than NSM on the platform we stud-

ied. When compared to DSM, PAX executes queries faster

and its execution time remains stable as more attributes are

involved in the query, while DSM’s execution time

increases due to the high record reconstruction cost.

Finally, PAX has several additional advantages.

Implementing PAX on a DBMS that uses NSM requires

only changes to the page-level data manipulation code.

PAX can be used as an alternative data layout, and the

storage manager can decide to use PAX or not when stor-

ing a relation, based solely on the number of attributes.

Furthermore, research [13] has shown that compression

algorithms work better with vertically partitioned relations

and on a per-page basis, and PAX has both of these charac-

teristics. Finally, PAX can be used orthogonally to other

storage decisions such as affinity graph-based partitioning

[11], because it operates at the page level.

The rest of this paper is organized as follows. Section

2 presents an overview of the related work, and discusses

the strengths and weaknesses of the traditional NSM and

DSM data placement schemes. Section 3 explains the

design of PAX in detail and analyzes its storage require-

ments, while Section 4 describes the implementation of

basic query processing and data manipulation algorithms.

Section 5 analyzes the effects of PAX on cache perfor-

mance on a simple numeric workload. Section 6 demon-

strates PAX’s efficiency on a subset of the TPC-H

decision-support workload. Finally, Section 7 concludes

with a summary of the advantages of PAX and discusses

possibilities for further improvement.

2 Related work

Several recent workload characterization studies report

that database systems suffer from high memory-related

processor delays when running on modern platforms. A

detailed survey of these studies is provided elsewhere

[1][34]. All studies that we are aware of agree that stall

time due to data cache misses accounts for 50-70% (OLTP

[19]) to 90% (DSS [1]) of the total memory-related stall

time, even on architectures where the instruction cache

miss rate (i.e., the number of cache misses divided by the

number of cache references) is typically higher when exe-

cuting OLTP workloads [21].

Research in computer architecture, compilers, and

database systems has focused on optimizing data place-

ment for cache performance. A compiler-directed

approach for cache-conscious data placement profiles a

program and applies heuristic algorithms to find a place-

ment solution that optimizes cache utilization [6]. Cluster-

ing, compression, and coloring are techniques that can be

applied manually by programmers to improve cache per-

formance of pointer-based data structures [8]. For database

management systems, attribute clustering improves both

compression [13] and the performance of relational query

processing [29].

The remainder of this section describes the advan-

tages and disadvantages of the dominant data placement

scheme (NSM) and its alternative (DSM), and briefly out-

lines their variants.

2.1 The N-ary Storage Model

Traditionally, a relation’s records are stored in slotted disk

pages [27] obeying the N-ary Storage Model (NSM).

NSM stores records sequentially on data pages. Figure 1

depicts an NSM page after inserting four records of a rela-

tion R with three attributes: SSN, name, and age. Each

record has a record header (RH) containing a null bitmap,

offsets to the variable-length values, and other implemen-

tation-specific information [20][29][32]. Each new record

is typically inserted into the first available free space start-

ing at the beginning of the page. Records may have vari-

able lengths, and therefore a pointer to the beginning of

the new record is stored in the next available slot from the

end of the page. One can access the nth record in a page by

following the nth pointer from the end of the page.

During predicate evaluation, however, NSM exhibits

poor cache performance. Consider the query:

select name

from R

where age < 40;

To evaluate the predicate, the query processor uses a scan

operator [14] that retrieves the value of the attribute age

from each record in the relation. Assuming that the NSM

page in Figure 1 is already in main memory and that the

cache block size is smaller than the record size, the scan

operator will incur one cache miss per record. If age is a 4-

byte integer, it is smaller than the typical cache block size

FIGURE 1: The cache behavior of NSM.
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ment for cache performance. A compiler-directed

approach for cache-conscious data placement profiles a

program and applies heuristic algorithms to find a place-

ment solution that optimizes cache utilization [6]. Cluster-

ing, compression, and coloring are techniques that can be

applied manually by programmers to improve cache per-

formance of pointer-based data structures [8]. For database

management systems, attribute clustering improves both

compression [13] and the performance of relational query

processing [29].

The remainder of this section describes the advan-

tages and disadvantages of the dominant data placement

scheme (NSM) and its alternative (DSM), and briefly out-

lines their variants.

2.1 The N-ary Storage Model

Traditionally, a relation’s records are stored in slotted disk

pages [27] obeying the N-ary Storage Model (NSM).

NSM stores records sequentially on data pages. Figure 1

depicts an NSM page after inserting four records of a rela-

tion R with three attributes: SSN, name, and age. Each

record has a record header (RH) containing a null bitmap,

offsets to the variable-length values, and other implemen-

tation-specific information [20][29][32]. Each new record

is typically inserted into the first available free space start-

ing at the beginning of the page. Records may have vari-

able lengths, and therefore a pointer to the beginning of

the new record is stored in the next available slot from the

end of the page. One can access the nth record in a page by

following the nth pointer from the end of the page.

During predicate evaluation, however, NSM exhibits

poor cache performance. Consider the query:
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 Combine the best properties of the two models
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there is a significant gain in I/O performance [2]. The performance of affinity-based vertical partitioning

depends heavily on whether queries involve attributes within the same fragment.

3 PAX

In this section, we introduce a new strategy for placing records on a page called PAX (Partition

Attributes Across). PAX (a) maximizes inter-record spatial locality within each column and within each

page, thereby eliminating unnecessary requests to main memory without a space penalty, (b) incurs a min-

imal record reconstruction cost, and (c) is orthogonal to other design decisions, because it only affects the

layout of data stored on a single page (e.g., one may decide to store one relation using NSM and another

using PAX, or first use affinity-based vertical partitioning, and then use PAX for storing the ‘thick’ sub-

relations). This section presents the detailed design of PAX.

3.1 Overview

The motivation behind PAX is to keep the attribute values of each record on the same page as in NSM,

while using a cache-friendly algorithm for placing them inside the page. PAX vertically partitions the

records within each page, storing together the values of each attribute in minipages. Figure 3 depicts an

NSM page and the corresponding PAX page, with the records of the former stored in the latter in a column-

major fashion. When using PAX, each record resides on the same page as it would reside if NSM were

used; however, all SSN values, all name values, and all age values are grouped together on minipages. PAX

increases the inter-record spatial locality (because it groups values of the same attribute that belong to dif-

ferent records) with minimal impact on the intra-record spatial locality. Although PAX employs in-page

vertical partitioning, it incurs minimal record reconstruction costs, because it does not need to perform a

join to correlate the attribute values of a particular record. 

FIGURE 3: Partition Attributes Across (PAX), and its cache behavior. PAX partitions records into minipages

within each page. As we scan R to read attribute age,values are much more efficiently mapped onto cache blocks,

and the cache space is now fully utilized.
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 Page sub-divided into minipages 
(with flexible boundaries)

 Boundaries dynamically adjusted 
based on the sizes of the variable-
length fields

 During bulk-loading, use the 
boundaries from the previous page 
as a starting point

 Updates may cause re-org

 Deletions handled by marking 
deleted records and reusing during 
inserts

page vertical partitioning, it incurs minimal record recon-

struction costs, because it does not need to perform a join

to construct a result tuple.

3.2 Design

To store a relation with degree n (i.e., with n attributes),

PAX partitions each page into n minipages. It then stores

values of the first attribute in the first minipage, values of

the second attribute in the second minipage, and so on.

The page header at the beginning of each page contains

pointers to the beginning of each minipage. The record

header information is distributed across the minipages.

The structure of each minipage is determined as follows:

• Fixed-length attribute values are stored in F-minipages.

At the end of each F-minipage there is a presence bit

vector with one entry per record that denotes null val-

ues for nullable attributes.

• Variable-length attribute values are stored in V-

minipages. V-minipages are slotted, with pointers to the

end of each value. Null values are denoted by null

pointers.

Each newly allocated page contains a page header and

as many minipages as the degree of the relation. The page

header contains the number of attributes, the attribute sizes

(for fixed length attributes), offsets to the beginning of the

minipages, the current number of records on the page and

the total space available on the page. Figure 4 depicts an

example PAX page in which two records have been

inserted. There are two F-minipages, one for the SSN

attribute and one for the age attribute. Because the name

attribute is a variable-length string, it is stored in a V-

minipage. At the end of each V-minipage there are offsets

to the end of each variable-length value.

Records on a page are accessed either sequentially or

in random order (e.g., through a non-clustered index). To

sequentially access a subset of attributes, the algorithm

accesses the values in the appropriate minipages. For

instance, the sequential scan algorithm reads all values of

a fixed-length attribute f or a variable-length attribute v

from a newly accessed page, and the indexed scan reads a

value of an attribute a, given the record id [34].

To store a relation, PAX requires the same amount of

space as NSM. NSM stores the attributes of each record

contiguously, and therefore it requires one offset (slot) per

record and one additional offset for each variable-length

attribute in each record. In contrast, PAX stores one offset

for each variable-length value, plus one offset for each of

the n minipages. Therefore, regardless of whether a rela-

tion is stored using NSM of PAX, it will occupy the same

number of pages. As explained in Section 4.1, implemen-

tation-specific details may introduce slight differences

which are insignificant to the overall performance.

3.3 Evaluation

The data placement scheme determines two factors that

affect performance. First, the inter-record spatial locality

minimizes data cache-related delays when executing itera-

tors over a subset of fields in the record. DSM provides

inter-record spatial locality, because it stores attributes

contiguously, whereas NSM does not. Second, the record

reconstruction cost minimizes the delays associated with

retrieving multiple fields of the same record.

Table 1 summarizes the characteristics of NSM,

DSM, and PAX, demonstrating the tradeoff between inter-

record spatial locality and record reconstruction cost.

NSM exhibits suboptimal cache behavior. In contrast,

DSM requires costly joins that offset the benefit from the

inter-record spatial locality. PAX offers the best of both

worlds by combining the two critical characteristics: inter-

record spatial locality, and minimal record reconstruction

overhead, by keeping all parts of each record in the same

page. As an additional advantage, implementing PAX on

an existing DBMS requires only changes to the page-level

data manipulation code.

4 System Implementation

We implemented NSM, PAX, and DSM in the Shore stor-

age manager [7]. Shore provides all the features of a mod-

ern storage manager, namely B-trees and R-trees [16],

ARIES-style recovery [22], hierarchical locking (record,
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FIGURE 4: An example PAX page.

TABLE 1: NSM, DSM, and PAX comparison.

Characteristic NSM DSM PAX

Inter-record spatial locality

Low record reconstruction cost



 Scans in Shore Implementation

◦ NSM: One scan operator per relation

◦ PAX or DSM: One scan operator per attribute being read

 So the reading of the different attributes (for the same record) going on in parallel

 Standard hybrid hash join algorithm

◦ Build hash partitions on left relation, and probe using the right relation

◦ Uses scan operators to read and construct the tuples



minipages do not have sufficient space, the record is

moved to a different page.

DELETIONS. The NSM deletion algorithm uses the slot

array to mark deleted records, and the free space can be

filled upon future insertions. PAX keeps track of deleted

records using a bitmap at the beginning of the page, and

determines whether a record has been deleted using fast

bitwise calculations. Upon record deletion, PAX reorga-

nizes minipage contents to fill the gaps to minimize frag-

mentation that could affect PAX's optimal cache

utilization. As discussed in Section 6.2, minipage reorga-

nization does not affect PAX’s performance because it

incurs minimal overhead. Attribute value offsets are calcu-

lated by converting the record id to the record index within

the page, which takes into account deleted records.

For deletion-intensive workloads, an alternative

approach is to mark records as deleted but defer reorgani-

zations, leaving gaps in the minipages. As a result, cache

utilization during file scan is suboptimal, because deleted

record data are occasionally brought into the cache. To

maintain cache performance to acceptable levels, the sys-

tem schedules periodic file reorganizations. In the near

future we plan to implement this algorithm and provide the

option to use on a per-file basis the one best suited for each

application. For the purposes of this study, however, we

have implemented the first “exhaustive” alternative.

4.3 Query Operators

SCAN OPERATOR. A scan operator that supports sarga-

ble predicates [28] was implemented on top of Shore.

When running a query using NSM, one scan operator is

invoked that reads each record and extracts the attributes

involved in the predicate from it. PAX invokes one scan

operator for each attribute involved in the query. Each

operator sequentially reads values from the corresponding

minipage. The projected attribute values for qualifying

records are retrieved from the corresponding minipages

using computed offsets. With DSM, as many operators as

there are attributes in the predicate are invoked, each on a

sub-relation. The algorithm makes a list of the qualifying

record ids, and retrieves the projected attribute values

from the corresponding sub-relations through a B-tree

index on record id.

JOIN OPERATOR. The adaptive dynamic hash join algo-

rithm [23], which is also used in DB2 [20], was imple-

mented on top of Shore. The algorithm partitions the left

table into main-memory hash tables on the join attribute.

When all available main memory has been consumed, all

buckets but one are stored on the disk. Then it partitions

the right table into hash tables in a similar fashion, probing

dynamically the main-memory portion of the left table

with the right join attribute values. Using only those

attributes required by the query, it then builds hash tables

with the resulting sub-records. The join operator receives

its input from two scan operators, each reading one rela-

tion. The output can be filtered through a function that is

passed as a parameter to the operator.

5 Analysis of the impact of data placement

To evaluate PAX’s impact on cache performance, we first

ran plain range selection queries on a memory-resident

relation that consists of fixed-length numeric attributes.

Such a controlled workload helped us understand the facts

and perform sensitivity analysis. This section analyzes

cache performance and execution time when running sim-

ple queries, and discusses the three schemes’ limitations.

5.1 Setup and methodology

We conducted experiments on a Dell 6400 PII Xeon/MT

system running Windows NT 4.0. This computer features

a Pentium II Xeon processor running at 400MHz, 512MB

of main memory, and a 100MHz system bus. The proces-

sor has split 16-KB first-level (L1) data and instruction

caches and a unified 512-KB second-level (L2) cache.

Caches at both levels are non-blocking (they can service

new requests while earlier ones are still pending) with 32-

byte cache blocks.1 We obtained experimental results

using the Xeon’s hardware counters and the methodology

described in previous work [1].

The workload consists of one relation and variations

of the following range selection query:

select avg(ap)

from R

where aq > Lo and aq < Hi (1)

where ap, aq are attributes in R. This query is sufficient to

examine the net effect of each data layout when accessing

records sequentially or randomly (given their record id).

Unless otherwise stated, R contains eight 8-byte numeric

attributes, and is populated with 1.2 million records. For

predictability and easy correctness verification of experi-

mental results, we chose the attribute size so that exactly

four values fit in the 32-byte cache line, and record sizes

so that record boundaries coincide with cache line bound-

aries. We varied the projectivity, the number of attributes

in the selection predicate, their relative position, and the

number of attributes in the record. The values of the

attribute(s) used in the predicate are the same as in the

l_partkey attribute of the Lineitem table in the TPC deci-

sion-support benchmarks [15], with the same data skew

and uniform distribution.

PAX primarily targets optimizing data cache behav-

ior, and does not affect I/O performance in any way. In

1. Other systems employ larger cache blocks (e.g., 64-128

bytes), especially in L2. In such systems, PAX’s spatial local-

ity will result in even higher cache and bandwidth utilization.

Results with larger cache blocks are shown in [3].







which only to accomodate one last record on the current

page before allocating the next one. Figure 10 shows this

worst case scenario: using an exhaustive algorithm that

attempts to fill each page by 100%, PAX incurs 2-10%

performance penalty when compared to NSM.

As an alternative, we implemented a smarter algo-

rithm that reorganizes minipages only if the free space on

the page is more than 5%. As was expected, the number of

reorganizations per page dropped to half the number

incurred by the exhaustive algorithm. A more conservative

algorithm with a 10% “reorganization-worthy” free-space

threshold dropped the average number of reorganizations

to 0.8 per page. Table 2 shows that, as the average number

of reorganizations falls, the performance penalty of PAX

versus NSM during bulk-loading becomes minimal (and is

independent of the database size).

6.3 Queries

In Section 5.2 we explained why the performance

improvement provided by PAX is reduced as the projectiv-

ity increases and the query accesses a larger portion of the

record. As shown in Section 5, PAX’s performance is

superior to NSM when running range selections, espe-

cially when the query uses only a fraction of the record.

The leftmost bar group (labeled ‘RS’) in Figure 11 shows

the average speedup4 obtained by a variety of range selec-

tion queries on Lineitem (described in Section 6.1). When

using a 100-MB, a 200-MB, and a 500-MB dataset the

speedup is 14%, 13%, and 10%, respectively.

Figure 11 also depicts PAX/NSM speedups when run-

ning four TPC-H queries against a 100, 200, and 500-MB

TPC-H database. PAX outperforms NSM for all these

experiments. The speedups obtained, however, are not

constant across the experiments due to a combination of

differing amounts of I/O and interactions between the

hardware and the algorithms being used.

Queries 1 and 6 are essentially range queries that

access roughly one third of each record in Lineitem and

calculate aggregates. The difference between these TPC-H

queries and the plain range selections (RS) discussed in

the previous paragraph is that TPC-H queries exploit fur-

ther the spatial locality, because they access projected data

multiple times to calculate aggregate values. Therefore,

PAX speedup is higher due to the increased cache utiliza-

tion and varies from 15% (in the 500-MB database) to

42% (in the smaller databases).

Queries 12 and 14 are more complicated and involve

two joined tables, as well as range predicates. The join is

performed by the adaptive dynamic hash join algorithm, as

was explained in Section 4. Although both the NSM and

the PAX implementation of the hash-join algorithm only

copy the useful portion of the records, PAX still outper-

forms NSM because (a) with PAX, the useful attribute val-

ues are naturally isolated, and (b) the PAX buckets are

stored on disk using the PAX format, maintaining the

locality advantage as they are accessed for the second

phase of the join. PAX executes query 12 in 37-48% less

time than NSM. Since query 14 accesses fewer attributes

and requires less computation than query 12, PAX outper-

forms NSM by only 6-32% when running this query.

6.4 Updates

The update algorithms implemented for NSM and PAX

(discussed in Section 4.2) are based on the same philoso-

phy: update attribute values in place, and perform reorga-

nizations as needed. The difference lies in updating

variable-length attributes. When replacing a variable-

length attribute value with a larger one, PAX only needs to

shift half the data of the V-minipage on average to acco-

modate the new requirements. NSM, on average, must

move half the data of the page (because it moves records

that include “innocent” unreferenced attributes). Less fre-

quently, variable-length updates will result in a page reor-

ganization for both schemes. Overall, massive updates on

variable-length fields are rare; TPC-C’s only update query

is on the client credit history in the Payment transaction,

TABLE 2: Effect of the “reorganization worthy” threshold

on PAX bulk-loading performance.

“Reorganization-

worthy” threshold

Avg. # reorg.

/ page

Penalty wrt.

NSM

0% (always reorganize) 2.25 10.1%

5% (reorg. if < 95% full) 1.14 4.9%

10% (reorg. if < 90% full) 0.85 0.8%

4. [17].Speedup
ExecutionTime NSM( )

ExecutionTime PAX( )
---------------------------------------------------------- 1– 100%´=

FIGURE 11: PAX/NSM speedup on read-only queries.
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 Using a “Telco” schema

 “usage” table has 200 columns: only 7 columns need to be used

 Much higher compression ratios (factor of 10 vs 3)

 Row store (in comparison) didn’t use indexing

century, a collection of new markets with new 

requirements has arisen. In addition, the relentless advance 

of technology has a tendency to change the optimization 

tactics from time to time.   

When either of these occurs, there is a possibility that a 

new code line with a different architecture will 

dramatically outperform the traditional one. Inevitably, this 

is the result of a different storage architecture that has 

inherent advantages relative to the OSFA one. For the 

purpose of this paper, we define “dramatically outperform” 

to mean at least a factor of 10 advantage on the same (or 

comparable) hardware. For example, a factor of 10 is the 

difference between response time of one minute and 

response time of 6 seconds.  Similarly, it is the difference 

between an $800 PC with two CPUs and a blade farm with 

20 processors. Whenever such a performance difference 

occurs, customers who care about performance (i.e., ones 

that are “in pain”) will be inclined to try the new 

architecture. Although one can argue about whether a 

factor of 10 is too high a fence for a new architecture to 

clear, the number is clearly not a factor of 2 or 3. In the 

latter case, one merely waits a year or two for the next 

hardware advance or increases the hardware budget. A 

factor of 10, in contrast, makes such tactics unworkable. 

The premise of this paper is that there are at least four 

markets where this factor of 10 (or higher) threshold 

currently exists. In the next four sections, we detail the 

reasons for our claims, which are based on benchmarking 

or reports of benchmarking results by others. In the last 

section of this paper, we speculate on a few ways that the 

commercial DBMS market could unfold off into the future. 

2. Text Databases – A Factor of 10 

It is a significant disappointment that text storage and 

retrieval engines do not use RDBMSs, a comment repeated 

at most DBMS conferences. In fact, this market does not 

use any DBMS, preferring to build directly on top of a file 

system storage layer. Early warning of this “roll your own” 

phenomenon came to one of us from the founder of 

Inktomi (Eric Brewer) in the mid 1990s. He tried using a 

commercial RDBMS in an early version of their product, 

but quickly gave up when he realized that Inktomi ran 

exactly one query, a three way join with constants for the 

search terms in the user query. This single query could be 

easily hard coded and ran about 100 times faster than the 

same query in an RDBMS.   

There are a myriad of reasons for this performance delta. 

These include (i) the lack of need for locking or 

transactions, data types other than text, and repeatable or 

even complete answers, and (ii) the need for horizontal 

data partitioning, application-specific compression, and 

variable length lists.  

In a retrospective, Brewer [Bre04] explored these reasons 

in some detail. Moreover, all subsequent search engines 

(e.g., Google, Lycos, etc.) have come to the same 

conclusion and have built proprietary text engines. 

Moreover, Google has built a complete system software 

stack including a file system (GFS [Ghe03]), a special 

DBMS (Bigtable [Cha06]), and pertinent parallel data 

processing abstractions (MapReduce [Dea04] and Sawzall 

[Pik05]). Bigtable is being deployed for a myriad of 

internal storage uses. 

At this point, it is likely that one of the search companies 

will expose their internal storage system for customer data, 

either as an appliance on the customer’s premise (along the 

lines of the current Google appliance) or as a service. 

When this happens, there will be one or more prominent 

non-RDBMS architectures used to store customer data. 

3. Data Warehouses – Another Factor of 10 

It is estimated that data warehouses form 1/3 of the 

RDBMS market in 2005 [Gar06, Ola06]. Right now, the 

data warehouse market is dominated by RDBMS vendors 

selling systems that use the traditional row-oriented 

architecture. C-Store [Sto05b] and Monet [Bon04] 

advocated the use of a column store for data warehouse 

applications and [Har06] gave some preliminary 

performance numbers. In this section, we present 

additional evidence, namely two specific performance 

studies using the now-released code line of Vertica 

[Ver06], a complete column-oriented DBMS along the 

lines of C-Store, which validate the column store 

performance claims. 

3.1 Telco Call Details 

Most (if not all) data warehouse applications use a star or 

snowflake schema, and the schema for this application is 

shown in Figure 1. This schema is in production use by a 

firm that specializes in business analysis of Telco call 

usage

account

toll

source

 
Figure 1. Telco Schema 

 Vertica Appliance 

Query 1 2.06 300 

Query 2 2.20 300 

Query 3 0.09 300 

Query 4 5.24 300 

Query 5 2.88 300 

 

Figure 2. Query Running Times (seconds) 

detail information.  Here, the central fact table (usage) 

has a record per call with a variety of call detail data; the 

account table contains the phone numbers which are the 

billing entities; source contains the network the call 

detail came from; and toll contains billing information. 

Besides their schema, this firm gave Vertica 600 Gbytes of 

actual data and a suite of example queries they use in their 

day-to-day affairs. Moreover, they also gave Vertica 

approximate running times for their current solution, a 28 

blade appliance from one of the well-known DBMS 

appliance vendors, which lists for about $300,000 and 

implements a traditional row-store architecture. Figure 2 

shows these approximate running times, as well as the 

performance of Vertica on a dual core dual CPU Opteron 

computer, which lists for about $2500.   

Figure 3 shows the SQL for Query 2 of this benchmark 

suite defined over the star schema shown in Figure 1.  This 

query is typical of data warehouse queries in that it first 

filters using predicates over columns of the fact table or a 

dimension table, and then groups the restricted fact table 

over some attribute and aggregates. On this query, a 

column store outperforms a row store by a factor of 47 

with 1/7 the number of CPUs and two orders of magnitude 

less hardware cost. There are several reasons for this 

startling performance difference, but three stand out. 

First, the usage table contains a myriad of details about 

calls, including call forwarding information, the networks 

the call traversed, call length and drop information, etc. In 

all, there are more than 200 columns. While the wisdom of 

such a “fat” table can be debated by schema designers, it 

should be noted that the customer uses many different 

fields in various ad-hoc queries.  Hence, decomposing this 

fact table into multiple tables would introduce joins, which 

might slow performance. Also, in point of fact, the fact 

table has been pre-joined with appropriate columns in 

dimension tables to eliminate run-time joins, a common 

tactic to improve performance in warehouse environments, 

resulting in a materialized view with 212 columns. Note 

further that query 2 reads 7 columns from the 212. Hence, 

a column store will read exactly the 7 columns, while a row 

store will read all 212―a striking difference of nearly two 

orders of magnitude in byte movement from the disk. 

The second consideration is compression. As noted in a 

companion paper [Aba06], compression is usually more 

effective in a column store than a row store. Not only are 

all objects in a disk block of the same data type, but 

additional compression options, such as delta encoding and 

run-length encoding, are possible. In several benchmark 

studies, Vertica typically has a compression ratio of a 

factor of 10, better by nearly a factor of 3 than the 

compression possible in competing row stores.   

The third reason is sorting and indexing, which are used by 

Vertica, but not by the appliance. This explains the 

constant query time of the appliance, whereas Vertica 

keeps the data in some sort order, which can restrict 

running times for some queries. 

It is now straightforward to explain Figure 2.  The 

competing row store did not use compression or indexing.  

Hence, query times for the appliance are the time to read 

600 Gbytes off the disk, an impressive 70 Mbytes/sec per 

processor-disk pair. In contrast, Vertica stored less than 60 

Gbytes and actually read about 2 Gbytes. A factor of 300 

less I/O is guaranteed to generate a dramatic performance 

improvement! 

Although this customer had a very fat fact table, which 

obviously skewed the performance comparison, similar, 

though likely less dramatic, results have been observed in a 

variety of other studies. Our next example uses a “skinny” 

fact table.  

3.2 Simplified TPC-H 

The well known benchmark, TPC-H, is used by many 

vendors to claim superiority in data warehouse 

performance. This benchmark is cleverly constructed to 

avoid using a snowflake schema and to render materialized 

views unproductive. In interviewing about two dozen 

CIOs, the authors have never seen a warehouse that did not 

use a snowflake schema. Hence, Pat O’Neil simplified the 

TPC-H schema to be a snowflake and defined variants of 

12 TPC-H queries on this schema [One06]. The schema is 

shown in Figure 4 and a few of the 12 queries in Figure 5. 

Lastly, the running time of the 12 queries on a $2500 

Opteron computer with 4 cores is shown in Figure 6 for 

two engines, the Vertica column store and a popular row 

store.   

SELECT account.account_number,  

sum (usage.toll_airtime),  

sum (usage.toll_price) 

FROM usage, toll, source, account 

WHERE usage.toll_id = toll.toll_id 

  AND usage.source_id = source.source_id 

  AND usage.account_id = account.account_id 

  AND  toll.type_ind in (‘AE’. ‘AA’) 

  AND  usage.toll_price > 0 

  AND  source.type != ‘CIBER’ 

  AND  toll.rating_method = ‘IS’ 

  AND  usage.invoice_date = 20051013 

GROUP BY  account.account_number 

 

Figure 3. Query 2 



 Ramamurthy, DeWitt, Su; VLDB 2002

 Mirroring often used for fault tolerance

 Store the mirrors in different format



 Relational model + SQL on top, but a complete redesign of 
storage and query execution

 All data stored in the form of “projections”

◦ In essence: “materialized views”
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 Relational model + SQL on top, but a complete redesign of 
storage and query execution

 All data stored in the form of “projections”

◦ In essence: “materialized views”

Dname Floor

Math 1

EECS 2

Biology 4

DEPT Table

dept age dept.floor
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 Need some way to reconstruct the tuples

 Use “join indexes”

 Each column in multiple different projections to reduce the need to do joins

◦ Ideally each query covered by a single projection



 Typically a separate “write optimized store” 

Vertica
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 Compression can help reduce storage costs, and I/O Costs

◦ But: decompression costs significant, and updates are more complicated

◦ For row-stores, compression benefits lower because of heterogeneity



 Run-length Encoding

◦ Works well for sorted data
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 Dictionary Encoding
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 Bit-vector Encoding
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 Frame of Reference Encoding
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 Clear benefits in specific cases, but too many combinations and special cases

Join in C-Store may 

return IDs of tuples 

that match



 Compressed data divided into compressed “blocks”

◦ e.g., for RLE, a block is single triple: (value, start_pos, run_length)

 Compressed block API allows extracting information from a block

◦ getNext() or asArray() used for decompressing the data



 Use the APIs to write more generic code
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 MapReduce good for analysis of large-scale data, but not 
appropriate for ad hoc (esp. aggregate) queries

 Much of the data is hierarchical (nested) and sparse, but with a 
schema (i.e., like JSON data)

 Dremel built at Google to address these use cases

◦ A nested columnar storage format

◦ In situ processing, i.e., process data in place

◦ A distributed “serving tree” to propagate a query within the storage layer



 Schema format from “protocol buffers”

◦ Used for messages

◦ Can handle ”lists” and “maps” 



 Schema format from “protocol buffers”

◦ Used for messages

◦ Can handle ”lists” and “maps” 
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 Only supports “one-pass aggregation” queries (i.e., no joins)

 An aggregation query split up across all “tablets”, i.e., horizontal 
partitions of the table

 Experimental results showing queries can be executed in 
interactive times on disk-resident datasets up to a trillion 
records



 From the retrospective paper in 2020: Dremel: A Decade of Interactive SQL 
Analysis at Web Scale (”test-of-time award”)

 Several other formats proposed since then: Parquet (same as Dremel), ORC, 
Apache Arrow

◦ ORC and Arrow keep track of number of repeated entries and explicit ”presence” bits



 From the retrospective paper in 2020: Dremel: A Decade of Interactive SQL 
Analysis at Web Scale (”test-of-time award”)

 Several other formats proposed since then: Parquet (same as Dremel), ORC, 
Apache Arrow

◦ ORC and Arrow keep track of number of repeated entries and explicit ”presence” bits

 Google BigQuery now uses Capacitor

◦ Very similar to Dremel, with some improvements in compression, etc.

 Authors note several open problems in this space, especially in 
understanding tradeoffs and dealing with heterogeneous data



 From the retrospective paper in 2020: Dremel: A Decade of Interactive SQL 
Analysis at Web Scale (”test-of-time award”)

 Other things of note:

◦ Disaggregating storage/memory and compute beneficial in the long run

◦ In situ data analysis important, but makes optimization hard

◦ Need “shuffle” in order to improve query processing (e.g., to support joins)

◦ Fully distributed query processing runs into issues – shifted to a more centralized approach
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 Cloud object stores increasingly used for data lake storage: Amazon S3, 
Azure Blob Storage, Google Cloud Storage, etc.

◦ Data usually stored as Parquet or ORC columnar formats

 Hard to guarantee ACID properties – no multi-object atomic updates

 Different consistency models offered (e.g., ”read your writes” by S3)

 Very high latencies for interactive querying, API limitations (e.g., when 
running LIST against S3)

 Distributed file systems (like HDFS) also suffer from some of these issues



 Directories of files

◦ Each table stored as a collection of objects (e.g., Parquet files)

◦ No atomicity across multiple objects, eventual consistency, poor performance, no support 
for operations like table versioning, auditing, etc.

 Custom Storage Engines

◦ Manage metadata in a layer above, that is strongly consistent

◦ Basically treat the cloud storage as a disk

◦ Challenges: All I/O operations need to go through metadata service, the metadata service 
layer can be hard to build efficiently

 Metadata in Object Stores (Delta Lake Approach)

◦ Move metadata and transaction log into the object store itself

◦ Challenges?



 Each ”logical table” partitioned (if desired) and stored as Parquet files

 Logs generated as a JSON objects, periodically converted into Parquet format

Each log record object contains

an array of actions:

- Change metadata

- Add or remove files

- Add provenance information
- Additional information for 

specific use cases



 Read the _last_checkpoint, and any other log files after that

 Figure out which data objects need to be read, using the metadata and statistics

 Read the relevant data objects, possible waiting (due to eventual consistency)



 Read up to the latest log record (say r) – we will try to write log record r+1 

 Read data at table version r, and write new data objects into new files 

 Attempt to write r+1.json – this needs to be atomic – if it fails, retry

 Optionally write a new checkpoint

Atomic write of r+1.json:
- Google and Azure Cloud Storage 

support “put if absent”

- HDFS: can use “atomic rename” 

operation

- Amazon S3: Need a separate 

coordination service



 Writes are serialized, but reads provide a snapshot (but not necessarily the 
latest version)

 No transactions across tables

 Transaction rates bottlenecked by the put-if-absent operations

 Time travel and rollbacks

◦ Delta Lake data objects and log are “immutable”, so easy to retrieve a past snapshot of the data

◦ Can set retention periods on a per table basis

 Efficient UPSERT/DELETE/MERGE

◦ Can use add/remove to efficiently support updates or deletes 

 Streaming ingest and consumption

◦ Can write small objects to start with, and then compact them in background

◦ Could potentially avoid having to run a separate message bus altogether



 Data Layout Optimization

◦ Compact small objects in the background

◦ Z-Ordering by multiple attributes (to make it easy to run select queries against multiple 
attributes)

◦ Potentially build new indexes

 Audit history is naturally available 

 Schema evolution and enforcement

◦ Can update schemas in the background for older objects

 Connectors to other query and ETL engines

◦ Special format of Delta Lakes requires specialized code

◦ Can use “symlink manifest files” in some cases



 Simplify enterprise data architectures using a single system for many jobs rather 
than a separate system for each

◦ So “one size does fit all”?

 Data engineering and ETL can be done directly against the Delta Lake

 Support for more efficient querying can handle some of the Warehousing use 
cases

 Compliance and reproducibility: through ability to delete old data easily, and 
time travel to retrieve past versions



 Serializable transactions only within a single table

◦ Technically a “delta lake table” could correspond to multiple “logical tables”

 Latencies for streaming operations

◦ Still have to deal with cloud storage latencies

 Secondary indexes

◦ Ongoing work on adding more types of indexes



 Almost a throwback to the original motivation for a “shared data bank”

◦ Hide all the complexity behind a logical abstraction that supports updates

◦ Avoid many copies of the same dataset in different systems

 Likely to become increasingly common for data lakes

◦ ”Disaggregation” a common trend

◦ Other data lakes support this kind of abstraction

◦ Recent work on “self-organizing data containers” from MIT: looking into how to automatically 
reoptimize the data layouts



 Could this be used as the primary backend for an OLTP system? Why or why 
not?

 Impact of the partitioning granularity

◦ Many small objects will make it easier to support updates, but penalize reads

◦ Could automatically choose the partitioning granularity based on read/write pattern

 Materialized views to support efficient OLAP on top this

 Proper ”versioning” and “branching” in a setup like this

◦ The only way to branch today is to make a copy of the entire table (CLONE)

 Fractured mirrors?

◦ Two different systems may wish to simultaneously have the same table in different 
formats/layouts

◦ Could that be pushed inside the abstraction? how would consistency work?

 Could use this abstraction to separate sensitive data from non-sensitive data 
automatically (for privacy and security)
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