CMSC 724: Database Management Systems Storage

Instructor: Amol Deshpande amol@cs.umd.edu

Outline

- Basics
- PAX: Within-page Columnar Storage
- Compression in Column-Stores
- Dremel: Storing Hierarchical Data
- Delta Lake: Storage Issues in Data Lakes

Data Storage Options

> At various points, data stored in different storage hardware

- Memory, Disks, SSDs, Tapes, Cache
- Tradeoffs between speed and cost of access
- CPU needs the data in memory and cache to operate on it
- Volatile vs nonvolatile
 - Volatile: Loses contents when power switched off

Sequential vs random access

- Sequential: read the data contiguously
 - select * from employee
- Random: read the data from anywhere at any time
 - select * from employee where name like '___a__b'

source: https://cse1.net/recaps/4memory.html

AMD Ryzen CPU Architecture

Die shot overlaid with functional units

https://www.techpowerup.com/review/amd-ryzen-5-1600/3.html

Storage Hierarchy: Cache

K8 core in the AMD Athlon 64 CPU

Disks vs SSDs

Shock resistant up to 350g/2ms

Shock resistant up to 1500g/0.5ms

Data Storage Options

- Hard disks dominant form of storage for a long time
 - About 10ms per random access → at most 100 random reads per second
 - vs up to 500 MB/s sequential I/O
- Many traditional database design decisions driven by:
 - Huge volumes of data on disks + Low amounts of memory + Low-speed networks
 - → Communication between disks and memory the main bottleneck
- Solid state drives much more common today
 - No seeks \rightarrow Much better random reads
 - Writes require erasing an entire block, and rewriting it
 - SSDs provide a similar interface of "blocks"

- Much faster networks
- Often cheaper to access another computer's memory than accessing your own disk (in data centers)
- Cache is playing more and more important role
- Data often fits in memory of a single machine, or a cluster of machines
- "Disk" considerations less important
 - Still: Disks are where most of the data lives today

Mapping Tuples to Disk Blocks

ID	nı	ime	sa	lary	dept_na	ime	building	g budget
22222	E Ei	instein	95	5000	Physic	S	Watson	70000
12121	W	/u	90	0000	Financ	æ	Painter	120000
32343	E	Said	60	0000	Histor	y	Painter	50000
45565	K	atz	75	5000	Comp	. Sci.	Taylor	100000
98345	K	im	80	0000	Elec. E	ing.	Taylor	85000
76766	C	rick	72	2000	Biolog	у	Watson	90000
10101	Sı	rinivasan	65	5000	Comp	. Sci.	Taylor	100000
585 <u>83</u>	C	alifieri	62	2000	Histor	V	Painter	50000
838	ID	name		dept.	name	sala	ry aylor	100000
15151	»222 ³ ∕	lozart Einste	$\frac{40}{10}$	1000 hv	si Music	950	00 Packaro	d 80000
33456	212G	old	87	1000 [°]	Physic	s 900	Watson	70000
76543	32343 ⁱ	nghi Said	1 80	0000	Financ	e 600	00 Painter	120000
4	15565	Katz	-	Con	np. Sci.	750	00	
9	98345	Kim		Elec	. Eng.	800	00	
7	76766	Crick		Biol	ogy	720	00	
1	10101	Sriniv	asan	Con	np. Sci.	650	00	
5	58583	Califie	eri	Hist	ory	620	00	
8	33821	Brand	t	Con	np. Sci.	920	00	
1	15151	Mozar	rt Jt	M110				
Э	33456	Gold	uepi_	nume	bulla	ing	buugei	
7	76543	Singh	Com	pF 92 0	ince Taylo	or800	00100000	
			Biolo	ogy	Wats	son	90000	
			Elec.	. Eng.	Tayle	or	85000	
			Mus	ic	Pack	ard	80000	
			Fina	nce	Pain	ter	120000	
			Hist	ory	Pain	ter	50000	
			Phys	sics	Wats	son	70000	

- Very important implications on performance
- Quite a few different ways to do this
- Similar issues even if not using disks as the primary storage

File System or Not

- Option 1: Use OS File System
 - File systems are a standard abstraction provided by Operating Systems (OS) for managing data
 - Major Con: Databases don't have as much control over the physical placement anymore --- OS controls that
 - E.g., Say DBMS maps a relation to a "file"
 - No guarantee that the file will be "contiguous" on the disk
 - OS may spread it across the disk, and won't even tell the DBMS
- Option 2: DBMS directly works with the disk or uses a lightweight/custom OS
 - Increasingly uncommon most DBMSs today run on top of OSes (e.g., PostgreSQL on your laptop, or on linux VMs in the cloud, or on a distributed HDFS)

Through a File System

- Option 1: Allocate a single "file" on the disk, and treat it as a contiguous sequence of blocks
 - This is what PostgreSQL does
 - The blocks may not actually be contiguous on disk
- Option 2: A different file per relation
 - Some of the simpler DBMS use this approach
- Either way: we have a set of relations mapped to a set of blocks on disk

Example

- Each relation stored separately on a separate set of blocks
 - Assumed to be contiguous
- Each "index" maintained in a separate set of blocks
 - Assumed to be contiguous

Within a Single Block: NSM Model

header				、 、		
record 0	10101	Srinivasan	Comp. Sci.	65000		Eived Longth Decords
record 1				A		Fixed Length Recolds
record 2	15151	Mozart	Music	40000		
record 3	22222	Einstein	Physics	95000		
record 4						
record 5	33456	Gold	Physics	87000	\sum	
record 6				*		
record 7	58583	Califieri	History	62000		Slotted page/block structure
record 8	76543	Singh	Finance	80000		
record 9	76766	Crick	Biology	72000		
record 10	83821	Brandt	Comp. Sci.	92000		
record 11	98345	Kim	Elec. Eng.	80000		

Decomposition Storage Model (DSM)

- Store the data column-wise
- Need to maintain an "index" with each value (to be able to stitch them together)
- Good for queries that read few columns, but bad for writes or queries that read all columns

Outline

- Basics
- PAX: Within-page Columnar Storage
- Compression in Column-Stores
- Dremel: Storing Hierarchical Data
- Delta Lake: Storage Issues in Data Lakes

• Computer platforms in 1980: main performance bottleneck I/O Latency

 Computer platforms today: hot data migrates to larger and slower main memory – almost no disk I/Os

- DBMSs on a Modern Processor: Where does time go? VLDB 1999
- Detailed profiling on a few simple queries on different databases

Figure 5.1: Query execution time breakdown into the four time components.

- DBMSs on a Modern Processor: Where does time go? VLDB 1999
- Detailed profiling on a few simple queries on different databases

Figure 5.2: Contributions of the five memory components to the memory stall time (T_M)

PAX: Motivation

- Cache misses are a major source of delays in modern systems
- > Only a fraction of the data transferred to the cache is useful
 - Typical cache line sizes: 64-256 bytes

Memory divided into "blocks" == size of the cache line

"Disk blocks" often memorymapped (or loaded directly into memory)

If using n-ary storage, unnecessary attributes of a tuple are loaded into the cache

PAX: Motivation

- Cache misses are a major source of delays in modern systems
- Only a fraction of the data transferred to the cache is useful
 - Typical cache line sizes: 64-256 bytes

select name
from R
where age < 40;</pre>

FIGURE 1: The cache behavior of NSM.

Combine the best properties of the two models

FIGURE 3: Partition Attributes Across (PAX), and its cache behavior. *PAX partitions records into minipages within each page. As we scan R to read attribute age, values are much more efficiently mapped onto cache blocks, and the cache space is now fully utilized.*

PAX: Implementation in Shore

- Page sub-divided into minipages (with flexible boundaries)
- Boundaries dynamically adjusted based on the sizes of the variablelength fields
- During bulk-loading, use the boundaries from the previous page as a starting point
- Updates may cause re-org
- Deletions handled by marking deleted records and reusing during inserts

FIGURE 4: An example PAX page.

PAX: Implementation in Shore

- Scans in Shore Implementation
 - NSM: One scan operator per relation
 - PAX or DSM: One scan operator per attribute being read
 - So the reading of the different attributes (for the same record) going on in parallel

- Standard hybrid hash join algorithm
 - Build hash partitions on left relation, and probe using the right relation
 - Uses scan operators to read and construct the tuples

select $avg(a_p)$ from R where $a_q > Lo$ and $a_q < Hi$

FIGURE 6: *Elapsed time comparison as a function of the number of attributes in the query.*

FIGURE 8: PAX/NSM sensitivity to projectivity.

~

FIGURE 9: *PAX/NSM sensitivity to the number of attributes in the relation.*

Outline

- Basics
- PAX: Within-page Columnar Storage
- Compression in Column-Stores
- Dremel: Storing Hierarchical Data
- Delta Lake: Storage Issues in Data Lakes

Column-stores vs Row-stores

One size fits all? Part 2: Benchmarking

- Using a "Telco" schema
- "usage" table has 200 columns: only 7 columns need to be used
- Much higher compression ratios (factor of 10 vs 3)
- Row store (in comparison) didn't use indexing

```
SELECT account.account number,
       sum (usage.toll airtime),
       sum (usage.toll price)
       usage, toll, source, account
FROM
       usage.toll id = toll.toll id
WHERE
       usage.source id = source.source id
  AND
       usage.account id = account.account id
  AND
       toll.type ind in ('AE'. 'AA')
  AND
       usage.toll price > 0
  AND
  AND
       source.type != 'CIBER'
       toll.rating method = 'IS'
  AND
       usage.invoice date = 20051013
  AND
GROUP BY account.account number
```

	Vertica	Appliance
Query 1	2.06	300
Query 2	2.20	300
Query 3	0.09	300
Query 4	5.24	300
Query 5	2.88	300

Figure 2. Query Running Times (seconds)

Figure 3. Query 2

Fractured Mirrors

- Ramamurthy, DeWitt, Su; VLDB 2002
- Mirroring often used for fault tolerance
- Store the mirrors in different format

C-Store

- Relational model + SQL on top, but a complete redesign of storage and query execution
- All data stored in the form of "projections"
 - In essence: "materialized views"

Name	Age	Dept	Salary
Bob	25	Math	10K
Bill	27	EECS	50K
Jill	24	Biology	80K

 Table 1: Sample EMP data

Dname	Floor
Math	1
EECS	2

DEPT Table

EMP1(name, age| age)
EMP2(dept, age, DEPT.floor| DEPT.floor)
EMP3(name, salary| salary)
DEPT1(dname, floor| floor)

Example 2: Projections in Example 1 with sort orders

Jill	24
Bob	25
Bill	27

EMP1			
Name	Age		
Jill	24		
Bob	25		
Bill	27		

C-Store

- Relational model + SQL on top, but a complete redesign of storage and query execution
- All data stored in the form of "projections"
 - In essence: "materialized views"

Name	Age	Dept	Salary	
Bob	25	Math	10K	
Bill	27	EECS	50K	
Jill	24	Biology	80K	
Sara	29	Math	90K	

Dname	Floor
Math	1
EECS	2
Biology	4
DEF	T Table

EMP1(name, age| age) EMP2(dept, age, DEPT.floor| DEPT.floor) EMP3(name, salary| salary) DEPT1(dname, floor| floor)

Example 2: Projections in Example 1 with sort orders

dept	age	dept.floor
Math	25	1
Math	29	1
EECS	27	2
Biology	24	4

C-Store

- Need some way to reconstruct the tuples
- Use "join indexes"
- Each column in multiple different projections to reduce the need to do joins
 - Ideally each query covered by a single projection

Figure 2: A join index from EMP3 to EMP1.

Column-stores: Updates?

Typically a separate "write optimized store"

Vertica

Compression

- Compression can help reduce storage costs, and I/O Costs
 - But: decompression costs significant, and updates are more complicated
 - For row-stores, compression benefits lower because of heterogeneity

- Run-length Encoding
 - Works well for sorted data

Dictionary Encoding

Bit-vector Encoding

Frame of Reference Encoding

Execution on Compressed Data: Example

Execution on Compressed Data

• Clear benefits in specific cases, but too many combinations and special cases

Join in C-Store may return IDs of tuples that match

```
NLJOIN(PREDICATE q, COLUMN c1, COLUMN c2)
IF c1 is not compressed and c2 is not compressed
   FOR EACH VALUE valc1 with position i in c1 do
     FOR EACH VALUE valc2 with position j in c2 do
       IF q(valc1, valc2) THEN OUTPUT-LEFT: (i), OUTPUT-RIGHT: (j)
     END
   END
 IF c1 is not compressed and c2 is RLE compressed
   FOR EACH VALUE valc1 with position i in c1 do
     FOR EACH TRIPLE t WITH VAL v, STARTPOS j AND RUNLEN k IN c2
       IF q(valc1,v) THEN:
         OUTPUT-LEFT: t,
         OUTPUT-RIGHT: (j \dots j+k-1)
     END
   END
 IF c1 is not compressed and c2 is bit-vector compressed
   FOR EACH VALUE valc1 with position i in c1 do
     For each value valc2 with bitstring b in c2 do
       //Assume that there are num '1's in b
       IF q(valc1, valc2) THEN OUTPUT
         OUTPUT-LEFT: NEW RLE TRIPLE (NULL, i, num),
         OUTPUT-RIGHT: b
     END
   END
 ETC. ETC. FOR EVERY POSSIBLE COMBINATION OF ENCODING TYPES
```

Execution on Compressed Data

- Compressed data divided into compressed "blocks"
 - e.g., for RLE, a block is single triple: (value, start_pos, run_length)
- Compressed block API allows extracting information from a block
 - getNext() or asArray() used for decompressing the data

Properties	Iterator Access	Block Information
isOneValue()	getNext()	getSize()
isValueSorted()	asArray()	getStartValue()
isPosContig()		getEndPosition()

Table 1: Compressed Block API

Execution on Compressed Data

• Use the APIs to write more generic code

```
Count(Column c1)

b = \text{Get Next compressed block from c1}

While b is not null

if b.isOneValue()

x = \text{Fetch current count for b.getStartVal()}

x = x + b.getSize()

ELSE

a = b.\text{AsArray}()

FOR EACH ELEMENT i IN a

x = \text{Fetch current count for } i

x = x + 1

b = \text{Get Next compressed block from c1}
```

Figure 2: Pseudocode for Simple Count Aggregation

Encoding Type	Sorted?	1 value?	Pos. contig.?
RLE	yes	yes	yes
Bit-string	yes	yes	no
Null Supp.	no/yes	no	yes
Lempel-Ziv	no/yes	no	yes
Dictionary	no/yes	no	yes
Uncompressed	no/yes	no	no/yes

Outline

- Basics
- PAX: Within-page Columnar Storage
- Compression in Column-Stores
- Dremel: Storing Hierarchical Data
- Delta Lake: Storage Issues in Data Lakes

Motivation

- MapReduce good for analysis of large-scale data, but not appropriate for ad hoc (esp. aggregate) queries
- Much of the data is hierarchical (nested) and sparse, but with a schema (i.e., like JSON data)
- Dremel built at Google to address these use cases
 - A nested columnar storage format
 - In situ processing, i.e., process data in place
 - A distributed "serving tree" to propagate a query within the storage layer

- Schema format from "protocol buffers"
 - Used for messages
 - Can handle "lists" and "maps"

```
message Document {
   required int64 DocId;
   optional group Links {
      repeated int64 Backward;
      repeated int64 Forward; }
   repeated group Name {
      repeated group Language {
        required string Code;
        optional string Url; }}
```

Schema: List of Strings	Data: ["a", "b", "c",]
<pre>message ExampleList { repeated string list; }</pre>	<pre>{ list: "a", list: "b", list: "c", }</pre>

Schema: Map of strings to strings	Data: {"AL" => "Alabama",}					
<pre>message ExampleMap { repeated group map { required string key; optional string value; } }</pre>	<pre>{ map: { key: "AL", value: "Alabama" }, map: { key: "AK", value: "Alaska" }, }</pre>					

- Schema format from "protocol buffers"
 - Used for messages
 - Can handle "lists" and "maps"

```
message Document {
  required int64 DocId;
  optional group Links {
    repeated int64 Backward;
    repeated int64 Forward; }
  repeated group Name {
    repeated group Language {
        required string Code;
        optional string Url; }}
```

```
DocId: 10
                 \mathbf{r}_1
Links
  Forward: 20
  Forward: 40
  Forward: 60
Name
  Language
    Code: 'en-us'
    Country: 'us'
  Language
    Code: 'en'
  Url: 'http://A'
Name
  Url: 'http://B'
Name
  Language
    Code: 'en-gb'
    Country: 'gb'
```

```
DocId: 20 r<sub>2</sub>
Links
Backward: 10
Backward: 30
Forward: 80
Name
Url: 'http://C'
```

<pre>message Document {</pre>	Docld	Links.Forward
required int64 DocId; optional group Links {	10	20
<pre>repeated int64 Backward; repeated int64 Forward; }</pre>	20	40
<pre>repeated group Name { repeated group Language {</pre>	60	
<pre>required string Code; optional string Country; }</pre>		80

optional string Url; }}

DocId: 20	r ₂
Links	-
Backward:	10
Backward:	30
Forward:	80
Name	
Url: 'http	p://C'

Links.Backward	
10	N.L.Code
30	'en-us'
	'en'
	'en-gb'

<pre>message Document {</pre>	Docld	Links.Forward	RI
required int64 DocId; optional group Links {	10	20	0
<pre>repeated int64 Backward; repeated int64 Forward; }</pre>	20	40	1
<pre>repeated group Name { repeated group Language {</pre>		60	1
<pre>required string Code; optional string Country; }</pre>		80	0

optional string Url; }}

DocId: 10 \mathbf{r}_1
Links
Forward: 20
Forward: 40
Forward: 60
Name
Language
Code: 'en-us'
Country: 'us'
Language
Code: 'en'
Url: 'http://A'
Name
Url: 'http://B'
Name
Language
Code: 'en-gb'
Country: 'gb'

DocId: 20	\mathbf{r}_2
Links	-
Backward:	10
Backward:	30
Forward:	80
Name	
Url: 'http	p://C'

Links.Backward	RL
NULL	0
10	0
30	1

N.L.Code	RL	DL	
'en-us'	0	2	
'en'	2	2	
NULL	1	1	
'en-gb'	1	2	
NULL	0	1	

```
message Document {
  required int64 DocId;
  optional group Links {
    repeated int64 Backward;
    repeated int64 Forward; }
  repeated group Name {
    repeated group Language {
        required string Code;
        optional string Country; }
        optional string Url; }}
```


DocId: 20	\mathbf{r}_2
Links	-
Backward	: 10
Backward	: 30
Forward:	80
Name	
Url: 'ht	tp://C'

Docld)		Name.U	Name.Url			Links.Forward			$\left[\right]$	Links.Ba	ckv	vard
value	r	d	value	r	d		value	r	d		value	r	d
10	0	0	http://A	0	2		20	0	2		NULL	0	1
20	0	0	http://B	1	2		40	1	2		10	0	2
	_		NULL	1	1		60	1	2		30	1	2
			http://C	0	2		80	0	2				

No need to store NULLs $d < 3 \rightarrow NULL$

Why not just use a bitmap for NULLs? → The actual DL number needed for reconstruction

Reconstruction

Docld				Name.Url			Links.Fo	rwa	rd	Links.Backward			
value	r	d		value	r	d	value	r	d		value	r	d
10	0	0		http://A	0	2	20	0	2		NULL	0	1
20	0	0		http://B	1	2	40	1	2		10	0	2
				NULL	1	1	60	1	2		30	1	2
				http://C	0	2	80	0	2				

Name.Language.Code										
value	r	d								
en-us	0	2								
en	2	2								
NULL	1	1								
en-gb	1	2								
NULL	0	1								

Name.Language.Country											
value	r	d									
us	0	3									
NULL	2	2									
NULL	1	1									
gb	1	3									
NULL	0	1									

Figure 4: Complete record assembly automaton. Edges are labeled with repetition levels.

Figure 5: Automaton for assembling records from two fields, and the records it produces

Query Execution

- Only supports "one-pass aggregation" queries (i.e., no joins)
- An aggregation query split up across all "tablets", i.e., horizontal partitions of the table
- Experimental results showing queries can be executed in interactive times on disk-resident datasets up to a trillion records

Developments since 2010

- From the retrospective paper in 2020: Dremel: A Decade of Interactive SQL Analysis at Web Scale ("test-of-time award")
- Several other formats proposed since then: Parquet (same as Dremel), ORC, Apache Arrow

Desta

ORC and Arrow keep track of number of repeated entries and explicit "presence" bits 0

Docld]			Name.Url			$\left[\right]$	Links.Fo	orwa	ırd	Links.Backward			
value	r	d		value	r	d		value	r	d	value	r	d	
10	0	0		http://A	0	2		20	0	2	NULL	0	1	
20	0	0		http://B	1	2		40	1	2	10	0	2	
				NULL	1	1		60	1	2	30	1	2	
				http://C	0	2		80	0	2				

Name.La	angu	Jage	e.Code	Name.Language.Country					
value	r	d		value	r	d			
en-us	0	2		us	0	3			
en	2	2		NULL	2	2			
NULL	1	1		NULL	1	1			
en-gb	1	2		gb	1	3			
NULL	0	1		NULL	0	1			

Dociu			lame		Name.U	ri				
value	р	le	en	-	value	р				
10	true		3		http://A	tr	ue]		
20	true		1		http://B	tr	ue]		
						fa	lse			
					http://C	tr	ue			
								_		
Name.l	anguage		Name.Language.Code					Name.L	.anguage.(Country
len		_	value		n			value	-	
					P			value	Р	
2			en-u	IS	true			us	P true	
2 0			en-u en	IS	true true			US	p true false	
2 0 1			en-u en	ıs ıb	true true true			us	p true false true	

Figure 7: Columnar representation of the data in Figure 5 showing length (len) and presence (p)

Developments since 2010

- From the retrospective paper in 2020: Dremel: A Decade of Interactive SQL Analysis at Web Scale ("test-of-time award")
- Several other formats proposed since then: Parquet (same as Dremel), ORC, Apache Arrow
 - ORC and Arrow keep track of number of repeated entries and explicit "presence" bits
- Google BigQuery now uses Capacitor
 - Very similar to Dremel, with some improvements in compression, etc.
- Authors note several open problems in this space, especially in understanding tradeoffs and dealing with heterogeneous data

Developments since 2010

- From the retrospective paper in 2020: Dremel: A Decade of Interactive SQL Analysis at Web Scale ("test-of-time award")
- Other things of note:
 - Disaggregating storage/memory and compute beneficial in the long run
 - In situ data analysis important, but makes optimization hard
 - Need "shuffle" in order to improve query processing (e.g., to support joins)
 - Fully distributed query processing runs into issues shifted to a more centralized approach

Outline

- Basics
- PAX: Within-page Columnar Storage
- Compression in Column-Stores
- Dremel: Storing Hierarchical Data
- Delta Lake: Storage Issues in Data Lakes

Motivation

- Cloud object stores increasingly used for data lake storage: Amazon S3, Azure Blob Storage, Google Cloud Storage, etc.
 - Data usually stored as Parquet or ORC columnar formats
- Hard to guarantee ACID properties no multi-object atomic updates
- Different consistency models offered (e.g., "read your writes" by S3)
- Very high latencies for interactive querying, API limitations (e.g., when running LIST against S3)
- > Distributed file systems (like HDFS) also suffer from some of these issues

Existing Approaches to Table Storage

Directories of files

- Each table stored as a collection of objects (e.g., Parquet files)
- No atomicity across multiple objects, eventual consistency, poor performance, no support for operations like table versioning, auditing, etc.
- Custom Storage Engines
 - Manage metadata in a layer above, that is strongly consistent
 - Basically treat the cloud storage as a disk
 - Challenges: All I/O operations need to go through metadata service, the metadata service layer can be hard to build efficiently
- Metadata in Object Stores (Delta Lake Approach)
 - Move metadata and transaction log into the object store itself
 - Challenges?

Delta Table Storage Format

- Each "logical table" partitioned (if desired) and stored as Parquet files
- Logs generated as a JSON objects, periodically converted into Parquet format

Each log record object contains an array of actions:

- Change metadata
- Add or remove files
- Add provenance information
- Additional information for specific use cases

Figure 2: Objects stored in a sample Delta table.

Reading a Table

- Read the _last_checkpoint, and any other log files after that
- Figure out which data objects need to be read, using the metadata and statistics
- Read the relevant data objects, possible waiting (due to eventual consistency)

Figure 2: Objects stored in a sample Delta table.

Write Transactions

- Read up to the latest log record (say r) we will try to write log record r+1
- Read data at table version r, and write new data objects into new files
- Attempt to write r+1.json this needs to be atomic if it fails, retry
- Optionally write a new checkpoint

Atomic write of *r*+1.*j*son:

- Google and Azure Cloud Storage support "put if absent"
- HDFS: can use "atomic rename" operation
- Amazon S3: Need a separate coordination service

Figure 2: Objects stored in a sample Delta table.

More...

- Writes are serialized, but reads provide a snapshot (but not necessarily the latest version)
- No transactions across tables
- Transaction rates bottlenecked by the put-if-absent operations
- Time travel and rollbacks
 - Delta Lake data objects and log are "immutable", so easy to retrieve a past snapshot of the data
 - Can set retention periods on a per table basis
- Efficient UPSERT/DELETE/MERGE
 - Can use add/remove to efficiently support updates or deletes
- Streaming ingest and consumption
 - Can write small objects to start with, and then compact them in background
 - Could potentially avoid having to run a separate message bus altogether

More...

- Data Layout Optimization
 - Compact small objects in the background
 - Z-Ordering by multiple attributes (to make it easy to run select queries against multiple attributes)
 - Potentially build new indexes
- Audit history is naturally available
- Schema evolution and enforcement
 - Can update schemas in the background for older objects
- Connectors to other query and ETL engines
 - Special format of Delta Lakes requires specialized code
 - Can use "symlink manifest files" in some cases

Use Cases

- Simplify enterprise data architectures using a single system for many jobs rather than a separate system for each
 - So "one size does fit all"?
- > Data engineering and ETL can be done directly against the Delta Lake
- Support for more efficient querying can handle some of the Warehousing use cases
- Compliance and reproducibility: through ability to delete old data easily, and time travel to retrieve past versions

Limitations

- Serializable transactions only within a single table
 - Technically a "delta lake table" could correspond to multiple "logical tables"
- Latencies for streaming operations
 - Still have to deal with cloud storage latencies
- Secondary indexes
 - Ongoing work on adding more types of indexes

Thoughts...

- Almost a throwback to the original motivation for a "shared data bank"
 - Hide all the complexity behind a logical abstraction that supports updates
 - Avoid many copies of the same dataset in different systems
- Likely to become increasingly common for data lakes
 - "Disaggregation" a common trend
 - Other data lakes support this kind of abstraction
 - Recent work on "self-organizing data containers" from MIT: looking into how to automatically reoptimize the data layouts
 Machine Machine Machine Machine Machine Machine 4

Figure 1: SDC Architecture: Client 1 and 2 access the same SDC file on cloud storage. Client 3 and 4 work on the same in-memory SDC file 2, which is backed by a cloud SDC file.

Open questions (and potential projects)

- Could this be used as the primary backend for an OLTP system? Why or why not?
- Impact of the partitioning granularity
 - Many small objects will make it easier to support updates, but penalize reads
 - Could automatically choose the partitioning granularity based on read/write pattern
- Materialized views to support efficient OLAP on top this
- Proper "versioning" and "branching" in a setup like this
 - The only way to branch today is to make a copy of the entire table (CLONE)
- Fractured mirrors?
 - Two different systems may wish to simultaneously have the same table in different formats/layouts
 - Could that be pushed inside the abstraction? how would consistency work?
- Could use this abstraction to separate sensitive data from non-sensitive data automatically (for privacy and security)