
Instructor: Amol Deshpande

amol@cs.umd.edu

 Part 1 Slides

◦ Query evaluation techniques for large databases, Skew Avoidance, Query
compilation/vectorization

◦ Query Optimization: Overview, How good are the query optimizers,
really?, Reordering for Outerjoins, Query Rewriting

 Adaptive Query Processing

◦ Eddies

◦ Progressive Query Optimization

◦ Compilation and adaptivity

 Worst case optimal joins

 Froid: Databases and UDFs

 In traditional settings:

◦ Queries over many tables

◦ Unreliability of traditional cost estimation

◦ Success, maturity make problems more apparent, critical

 In new environments:

◦ e.g. data integration, web services, streams, P2P...

◦ Unknown dynamic characteristics for data and runtime

◦ Increasingly aggressive sharing of resources and computation

◦ Interactivity in query processing

 Note two distinct themes lead to the same conclusion:

◦ Unknowns: even static properties often unknown in new environments and often
unknowable a priori

◦ Dynamics: environment changes can be very high

 Motivates intra-query adaptivity

 Autonomic/self-tuning optimization
◦ Chen and Roussoupolous: Adaptive selectivity estimation [SIGMOD 1994]

◦ LEO (@IBM), SITS (@MSR): Learning from previous executions

 Robust/least-expected cost optimization

 Parametric optimization
◦ Choose a collection of plans, each optimal for a different setting of

parameters

◦ Select one at the beginning of execution

 Competitive optimization
◦ Start off multiple plans... kill all but one after a while

 Adaptive operators
More details in our survey: “Adaptive Query Processing”; FnT
2007

 Low-overhead, evolutionary approaches
◦ Typically apply to non-pipelined execution

◦ Late binding: Don’t instatntiate the entire plan at start

◦ Mid-query reoptimization: At “materialization” points, review
the remaining plan and possibly re-optimize

 Pipelined execution
◦ No materialization points, so the above doesn’t apply

◦ The operators may contain complex states, raising correctness
issues

◦ Eddies

 Always guarantee correct execution, but allows reordering during
execution

 Lot of work in 1998-2008 timeframe -- not much since

 We will start with a general overview of AQP as
presented in a later survey and tutorial

 Then go through the three papers (first two quickly,
and the last one in more detail)
◦ First two will be covered in the tutorial

Low-Overhead Adaptivity:

Non-pipelined Execution

Late Binding; Staged Execution

Materialization points make natural decision points where

the next stage can be changed with little cost:

– Re-run optimizer at each point to get the next stage

– Choose among precomputed set of plans – parametric query

optimization [INSS’92, CG’94, …]

AR

NLJ

sort

C

B

MJ

MJ

sort

Normal execution: pipelines separated

by materialization points

e.g., at a sort, GROUP BY, etc.

materialization

point

Mid-query Reoptimization
[KD’98,MRS+04]

Choose checkpoints at which to monitor cardinalities

Balance overhead and opportunities for switching plans

If actual cardinality is too different from estimated,

Avoid unnecessary plan re-optimization (where the plan doesn’t change)

Re-optimize to switch to a new plan
Try to maintain previous computation during plan switching

▪ Most widely studied technique:
-- Federated systems (InterViso 90, MOOD 96), Red Brick,

Query scrambling (96), Mid-query re-optimization (98),
Progressive Optimization (04), Proactive Reoptimization (05), …

Where?

How?

When?

AR

NLJ

B

C

HJ

MJ

sort

C

B

MJ

MJ

sort

Mid-query Reoptimization

▪ At materialization points, re-evaluate the rest of the query

plan

▪ Example:

R.a = 10 R.b < 20R resultR.c like …

R1 R2 R3Materialize

R1

Initial query plan chosen

Estimated

selectivities
0.05 0.1 0.2

A free opportunity to re-evaluate the rest of the query plan

 - Exploit by gathering information about the materialized result

Mid-query Reoptimization

▪ At materialization points, re-evaluate the rest of the query

plan

▪ Example:

R.a = 10 R.b < 20R resultR.c like …

R1 R2 R3Materialize

R1; build

1-d hists

Initial query plan chosen

Estimated

selectivities
0.05 0.1 0.2

A free opportunity to re-evaluate the rest of the query plan

 - Exploit by gathering information about the materialized result

Mid-query Reoptimization

▪ At materialization points, re-evaluate the rest of the query

plan

▪ Example:

R.b < 20 R.c like …

R2 R3
R.a = 10R

R1
Materialize

R1

Initial query plan chosen

Estimated

selectivities
0.05 0.1 0.2

Re-estimated

selectivities

0.5 0.01

Significantly different ➔ original plan probably sub-optimal

Reoptimize the remaining part of the query

Materialize

R1; build

1-d hists

Where to Place Checkpoints?

Lazy checkpoints: placed above materialization points
– No work need be wasted if we switch plans here

Eager checkpoints: can be placed anywhere
– May have to discard some partially computed results

– Useful where optimizer estimates have high uncertainty

A

C

B

R

MJ

NLJ

MJ

sort

More checkpoints ➔ more opportunities for

switching plans

Overhead of (simple) monitoring is small

[SLMK’01]

Consideration: it is easier to switch plans at

some checkpoints than others

sort

Lazy

Eager

When to Re-optimize?

▪ Suppose actual cardinality is different from estimates:

how high a difference should trigger a re-optimization?

▪ Idea: do not re-optimize if current plan is still the best

1. Heuristics-based [KD’98]:

 e.g., re-optimize < time to finish execution

2. Validity range [MRS+04]: precomputed range of a parameter

(e.g., a cardinality) within which plan is optimal
– Place eager checkpoints where the validity range is narrow

– Re-optimize if value falls outside this range

– Variation: bounding boxes [BBD’05]

 Query evaluation techniques for large databases, Skew
Avoidance, Query compilation/vectorization

 Query Optimization: Overview, How good are the query
optimizers, really?, Reordering for Outerjoins, Query Rewriting

 Adaptive Query Processing

◦ Eddies

◦ Progressive Query Optimization

◦ Compilation and adaptivity

 Trigger re-optimization during query execution if errors too high

 Through use of CHECK operators inserted into the query plan

◦ Succeeds if the observed values within a range around the estimates

 If optimizer estimates accurate, the only overhead is the
“couting” done by CHECK

execution cost. While this works fine for Telegraph’s interac-

tive processing metric, a regular optimizer is needed to handle

the more common completion time or total work metrics.

Integrating Eddies with a traditional query optimizer remains

a challenge for future work.

Among commercial systems, the DEC RDB system [AZ96]

ran multiple access methods competitively before picking

one. To the best of our knowledge, the only commercial

DBMS currently shipping with a form of POP is the Redbrick

DBMS, which specializes in processing queries over star

schemas. The specific star schema plan used is not fully

determined until execution time. Intermediate results of all

dimension table accesses are first computed. The cardinality

of those intermediate results is then used to select the appro-

priate method for accessing the fact tables. While this product

uses progressive re-optimization, it does so only for a very

specific query execution strategy. The issues of arbitrary

CHECK placement, join re-ordering, and intermediate result

re-use are not addressed.

The closest analogy to our validity range computation method

is the work on parametric optimization (e.g. [CG94, HS02])

where different plans are generated for different intervals of

the optimization parameters. The main problem here is the

combinatorial explosion of the number of plans that need to

be generated, stored, loaded, and decided among at runtime.

We avoid this explosion by embedding validity range compu-

tation into the optimizer pruning phase (Section 2.2).

2 Progressive Query Optimization

Progressive Query Optimization (POP) is comprised of sev-

eral key aspects for protecting against query processing disas-

ter due to the choice of a suboptimal QEP.

1. POP can detect a suboptimal QEP in the midst of execu-

tion and cause it to be re-optimized. Alternating optimiza-

tion and execution steps can occur any number of times.

Partial result records can be pipelined to the application at

each execution step using techniques to prevent duplicate

rows from being returned to the application.

2. During each execution step, POP monitors the actual

values of key estimated parameters used to select the QEP

and feeds this information back into a re-optimization step.

This aspect of POP improves the likelihood that an opti-

mal plan will be selected for the next execution step.

3. POP also makes materialized partial results available for

reuse during the next execution step. Rather than force the

optimizer to reuse these partial results by rewriting the

query or some other means, they are packaged as material-

ized views in order to take advantage of the optimizer’s

ability to make a cost-based decision with regard to their

reuse (see section 2.3 for more details).

Checkpoints are the POP points of control. A checkpoint

inserted into a QEP is effectively an assertion to ensure that

optimization parameter estimates agree with the actual values

for those parameters as measured during query execution. Our

current research focuses on the monitoring of cardinality

estimates; however, a checkpoint could monitor other proper-

ties as well. A checkpoint monitors the number of rows flow-

ing from a producer to a consumer during query execution. It

may also buffers rows that it sees. A checkpoint suspends

query execution and triggers re-optimization if the number of

rows it sees violates the check condition. In our prototype of

POP a check condition defines the cardinality range (or check

range) for which the check condition is true. Determining

check ranges depends on the ability to compute the validity

range for each subplan P rooted with plan operator o, which

defines for each input stream into o the range of cardinalities

for which o is the optimal root operator for P as discussed in

more detail in section 2.2. Our system implements various

flavors of checkpoints (as discussed in section 3),

Checkpoints are manifested in POP plans by CHECK opera-

tors. CHECK has no relational semantics. Each CHECK has a

check range parameter defining a range of cardinalities [l, u].

The check range is dependent on the cardinality estimate as

well as the remainder of the QEP above the CHECK. CHECK

is successful when the actual cardinality a is within the check

range, i.e., a Î [l, u]. If CHECK succeeds, query processing

will continue normally; otherwise, query execution is termi-

nated and re-optimization is triggered. Actual cardinality

estimates measured during the partial execution of the query,

occurring up to the point where the check range was violated,

are fed back into the re-optimization phase. Moreover, mate-

rialized intermediate results are made available for re-use

during the re-optimization phase. The decision as to whether

or not intermediate results are reused during re-optimization is

based upon cost analysis. As described later, it may under

certain circumstances be preferable to avoid reusing these

results.

NLJN

CHECKPOINT

NLJN
Add checkpoint

Re-optimization

O I

R R

I

O

HSJN

O I

R

Figure 2: Adding CHECK to the outer of a NLJN

An example of POP is given in Figure 2. The QEP in the left

part of the figure joins the outer (O) and inner (I) sub-plans

using the (index) nested-loop join (NLJN) method before

processing the remainder of the plan (R). The choice of the

operator joining O and I depends heavily on the cardinality

estimate for the result of the sub-plan O. Usually the opti-

mizer will prefer NLJN for joining O and I, when the cardi-

nality of O is small relative to I and there is an index on I to

apply the join predicate. If the cardinality of O is much larger

than estimated, another join method, such as hash-join

(HSJN) or merge-join (MGJN), might be more efficient, and

thus preferred by the optimizer.

Since the choice of an inappropriate join method can result in

performance degradations of orders of magnitude, adding

CHECK to the outer sub-plan of an NLJN helps to prevent the

execution of sub-optimal plans and thus bad query response

times. CHECK added above O in the middle part of Figure 2

ensures that the NLJN method is optimal not only for the

cardinalities estimated at optimization time, but also for the

actual cardinalities measured at runtime, thus making this

plan more robust. When the check range is violated, re-

optimization of the query is triggered, which might result in a

significant change in the QEP such as replacing NLJN in

 Trigger re-optimization during query execution if errors too high

 Through use of CHECK operators inserted into the query plan

◦ Succeeds if the observed values within a range around the estimates

 If optimizer estimates accurate, the only overhead is the
“couting” done by CHECK

 If CHECK detects significant error, then “reoptimize”

◦ Partial results made available to the optimizer to use if it wants (in the form of a
materialized view)

Figure 2 with a more suitable join method such as hash join

(HSJN).

2.1 Architecture of POP

Extending a DBMS with POP capability involves:

a) Adding logic to the plan generator of the query

optimizer to determine the check range by deter-

mining the cardinality range for which any given

operator is optimal in the current plan.

b) Adding logic to the post-pass of the optimizer for

deciding the most judicious location of CHECKs

c) Adding code generator logic for translating CHECK

into executable code

d) Adding logic to the runtime system for interpreting

CHECK.

e) Adding logic to exploit intermediate results when

CHECK fails, so that work already done can be re-

used during re-optimization.

To illustrate those enhancements to the architecture of a

DMBS, Figure 1 distinguishes the initial run (first query

execution until the violation of the check range triggered re-

optimization) and the re-optimization run of a query for ex-

planatory purposes. Actually, the re-optimization run could

again add CHECKs to the new QEP and become the initial

run for a second re-optimization.

Parser

Rewrite

(rule based

optimizer)

Code

Generator

Optimizer

(cost based)

SQL Compiler

Runtime

Parser

Code

Generator

SQL Compiler

Runtime

I. Initial run II. Re-optimization

Add checkpoints to

plan

Perform check,

upon failure:

1. retain already

computed results,

2. trigger re

-optimization,

and

Rewrite

(rule based

optimizer)

Optimizer

(cost based)

Possibly reuse

previous

intermediate

results

Clean up3
.
R

e
-O

p
ti
m

iz
e

Figure 1: Progressive Optimization architecture

During the initial optimization of a query, the post-pass of the

optimizer adds CHECK operators to the QEP based on the

reliability of an estimate as well as the potential harm of an

estimation error. When CHECK is executed, the check range

is compared to the actual cardinality observed by the runtime

system. If the check range is violated, the runtime system

retains intermediate results together with their actual cardinal-

ity values and triggers re-optimization of the query. Actual

cardinalities measured during the initial run help the re-

optimization step avoid the same mistake. After optimization

and execution of the query in the re-optimization run, cleanup

actions are necessary to remove the intermediate results and

free locks on tables and indexes used during the initial run.

2.2 Computation of Validity Ranges

It is crucial to minimize risk of POP by re-optimizing only

when we are sure that the plan will change. In general, this is

the parametric query optimization problem, computing the

optimal plan for every possible combination of parameter

values [CG94, HS02]. For POP we avoid this exponential

explosion of parameters by forming a validity range for each

edge of the QEP.

Definition: Consider a plan edge e that flows rows into opera-

tor o, and let P be the subplan rooted at o. The validity range

for e is an upper and lower bound on the number of rows

flowing through e, such that if the range is violated at run-

time, we can guarantee P is suboptimal with respect to the

optimizer’s cost model. This range is defined conservatively,

i.e., even within the validity range P may become suboptimal

with respect to alternative QEP we do consider. This conser-

vative definition is fine, since we only want to avoid needless

re-optimization.

The main advantage of validity ranges over parametric opti-

mization is that we need not enumerate beforehand all possi-

ble optimal plans under all possible parameter values – we

only need the cardinality ranges within which the chosen plan

remains optimal. However we cannot use ad hoc thresholds

on cardinality errors because the effect of cardinalities on

query optimality is very complex. A 100x error in cardinality

of the NATION table of a TPC-H schema may make no

difference to plan optimality, whereas a 10 percent increase in

ORDERS may turn a two-stage hash join into a three-stage

hash join, making the query plan highly suboptimal.

POP computes validity ranges during the plan enumeration
and pruning phases of the optimizer through a plan sensitivity

analysis. It iteratively narrows the validity range for each

input to an operator of the currently optimal plans, when

pruning alternative plans during optimization.

C
o

st

Input Cardinality

Palt

Popt

Cost(Palt)

Cost(Popt)

e c

C
o

st

Input Cardinality

Palt

Popt

Cost(Palt)

Cost(Popt)

e c

Figure 4: Computing the Upper Bound of a Validity Range

Suppose that during dynamic programming, plan Popt with

root operator oopt is being compared with another plan Palt

having the same properties (joined tables, applied predicates,

sort order, projected columns) and different only in the root

operator oalt. Suppose that Popt dominates, and we prune Palt

due to its higher cost.

The cost for Popt and Palt is a function of the cardinalities of

the input edges of the root operator. Consider one edge with

estimated cardinality e. Figure 4 illustrates how we can nar-

row the upper bound of the validity range of this edge. As we

prune plan Palt, we determine if there exists an input cardinal-

ity c > e such that the cost functions cost(Palt, c) and cost(Popt,

c) intersect. We do this by solving for the root of cost(Palt , c)

– cost(Popt , c) = 0. When a root operator has multiple input

edges (e.g., joins), we need to find the roots by treating the

cost functions of Poptand Palt as multi-variate functions of the

input cardinalities.

 Helps only re-optimize when necessary

 The general problem is that of “parametric” optimization

◦ i.e., find the best plan for each combination of parameters

◦ Too expensive

 Instead:

◦ Consider P1 and P2 -- two identical plans except for the top operator

◦ Let cost(P1) < cost(P2) per the estimates → we would choose P1 over P2

◦ Let “x” denote an edge into the top operator, and let “result(x) = e” denote the result flowing
along “x”

◦ Figure out: at what value of |result(x)|, we would have chosen P2 instead

Figure 2 with a more suitable join method such as hash join

(HSJN).

2.1 Architecture of POP

Extending a DBMS with POP capability involves:

a) Adding logic to the plan generator of the query

optimizer to determine the check range by deter-

mining the cardinality range for which any given

operator is optimal in the current plan.

b) Adding logic to the post-pass of the optimizer for

deciding the most judicious location of CHECKs

c) Adding code generator logic for translating CHECK

into executable code

d) Adding logic to the runtime system for interpreting

CHECK.

e) Adding logic to exploit intermediate results when

CHECK fails, so that work already done can be re-

used during re-optimization.

To illustrate those enhancements to the architecture of a

DMBS, Figure 1 distinguishes the initial run (first query

execution until the violation of the check range triggered re-

optimization) and the re-optimization run of a query for ex-

planatory purposes. Actually, the re-optimization run could

again add CHECKs to the new QEP and become the initial

run for a second re-optimization.

Parser

Rewrite

(rule based

optimizer)

Code

Generator

Optimizer

(cost based)

SQL Compiler

Runtime

Parser

Code

Generator

SQL Compiler

Runtime

I. Initial run II. Re-optimization

Add checkpoints to

plan

Perform check,

upon failure:

1. retain already

computed results,

2. trigger re

-optimization,

and

Rewrite

(rule based

optimizer)

Optimizer

(cost based)

Possibly reuse

previous

intermediate

results

Clean up3
.

R
e

-O
p
ti
m

iz
e

Figure 1: Progressive Optimization architecture

During the initial optimization of a query, the post-pass of the

optimizer adds CHECK operators to the QEP based on the

reliability of an estimate as well as the potential harm of an

estimation error. When CHECK is executed, the check range

is compared to the actual cardinality observed by the runtime

system. If the check range is violated, the runtime system

retains intermediate results together with their actual cardinal-

ity values and triggers re-optimization of the query. Actual

cardinalities measured during the initial run help the re-

optimization step avoid the same mistake. After optimization

and execution of the query in the re-optimization run, cleanup

actions are necessary to remove the intermediate results and

free locks on tables and indexes used during the initial run.

2.2 Computation of Validity Ranges

It is crucial to minimize risk of POP by re-optimizing only

when we are sure that the plan will change. In general, this is

the parametric query optimization problem, computing the

optimal plan for every possible combination of parameter

values [CG94, HS02]. For POP we avoid this exponential

explosion of parameters by forming a validity range for each

edge of the QEP.

Definition: Consider a plan edge e that flows rows into opera-

tor o, and let P be the subplan rooted at o. The validity range

for e is an upper and lower bound on the number of rows

flowing through e, such that if the range is violated at run-

time, we can guarantee P is suboptimal with respect to the

optimizer’s cost model. This range is defined conservatively,

i.e., even within the validity range P may become suboptimal

with respect to alternative QEP we do consider. This conser-

vative definition is fine, since we only want to avoid needless

re-optimization.

The main advantage of validity ranges over parametric opti-

mization is that we need not enumerate beforehand all possi-

ble optimal plans under all possible parameter values – we

only need the cardinality ranges within which the chosen plan

remains optimal. However we cannot use ad hoc thresholds

on cardinality errors because the effect of cardinalities on

query optimality is very complex. A 100x error in cardinality

of the NATION table of a TPC-H schema may make no

difference to plan optimality, whereas a 10 percent increase in

ORDERS may turn a two-stage hash join into a three-stage

hash join, making the query plan highly suboptimal.

POP computes validity ranges during the plan enumeration

and pruning phases of the optimizer through a plan sensitivity

analysis. It iteratively narrows the validity range for each

input to an operator of the currently optimal plans, when

pruning alternative plans during optimization.

C
o

st

Input Cardinality

Palt

Popt

Cost(Palt)

Cost(Popt)

e c
C

o
st

Input Cardinality

Palt

Popt

Cost(Palt)

Cost(Popt)

e c

Figure 4: Computing the Upper Bound of a Validity Range

Suppose that during dynamic programming, plan Popt with

root operator oopt is being compared with another plan Palt

having the same properties (joined tables, applied predicates,

sort order, projected columns) and different only in the root

operator oalt. Suppose that Popt dominates, and we prune Palt

due to its higher cost.

The cost for Popt and Palt is a function of the cardinalities of

the input edges of the root operator. Consider one edge with

estimated cardinality e. Figure 4 illustrates how we can nar-

row the upper bound of the validity range of this edge. As we

prune plan Palt, we determine if there exists an input cardinal-

ity c > e such that the cost functions cost(Palt, c) and cost(Popt,

c) intersect. We do this by solving for the root of cost(Palt , c)

– cost(Popt , c) = 0. When a root operator has multiple input

edges (e.g., joins), we need to find the roots by treating the

cost functions of Poptand Palt as multi-variate functions of the

input cardinalities.

 Helps only re-optimize when necessary

 The general problem is that of “parametric” optimization

◦ i.e., find the best plan for each combination of parameters

◦ Too expensive

 Instead:

◦ Consider P1 and P2 -- two identical plans except for the top operator

◦ Let cost(P1) < cost(P2) per the estimates → we would choose P1 over P2

◦ Let “x” denote an edge into the top operator, and let “result(x) = e” denote the result flowing
along “x”

◦ Figure out: at what value of |result(x)|, we would have chosen P2 instead

 Use numerical techniques to find these validity ranges

 Treat it as a materialized view, and let the optimizer decide

 If the plan under CHECK has a side-effect (e.g., update), then must reuse that
plan (i.e., not redo that portion)

 In many cases, better not to use the partial result

that re-create intermediate result from scratch. The optimizer

could even create an index on the materialized view before re-

using it if worthwhile.

Re-optimization takes place in the same transaction as the

initial partial execution and holds all locks acquired previ-

ously. Therefore it is guaranteed that all persisted results are

still transactionally correct when re-execution takes place.

To minimize the overhead and thereby the risk of re-opti-

mization, these intermediate results are not necessarily written

out to disk. Rather the temporarily MV has a pointer to the

actual runtime object for the scan from the current execution.

If this view is reused, the fields of this in-memory object are

modified to satisfy the new plan (e.g., the internal id’s for

each column of this scan may change when the plan changes).

The standard mechanisms for matching MVs to a query is

used to determine if the MV created from the intermediate

result can be used for some part of the query. Once the inter-

mediate results have been matched to the query, the query

optimizer will construct plans that exploit each matched MV

in addition to the original plans, using the known cardinality

for the subplan corresponding to that MV in all cases, and

then choose the cheapest plan as usual. In most cases, a plan

that re-uses the MV representing the intermediate result

should win. Unlike regular MVs, however, the runtime sys-

tem has to remember to remove any of these temporarily

materialized views after completing query execution.

If the plan under CHECK performs a side-effect (in-

sert/delete/update), the intermediate results must always be

matched and reused – otherwise the side-effect would be

applied twice.

Intuitively it seems that intermediate results should always be

reused rather than be thrown away. But this is not always true.

A wrong initial choice of join order, for instance, might create

a prohibitively large intermediate result that would have been

avoided with a different join order. Moreover, we have found

that many cardinality estimation errors are due to violations of

the independence assumption between predicates, and are

therefore underestimates, leading to larger-than-expected

intermediate results. Using this intermediate result could incur

a much higher cost than restarting from scratch. Instead of

always using intermediate results, POP gives the optimizer

the choice whether or not to use the intermediate results. This

choice is based on the optimizer’s cost model, which is en-

hanced by better cardinality and statistics information ob-

tained from the previous partial execution of the query.

NLJN

NLJN

CHECK

B

P

MATERIALIZATION

POINT

A C

HSJN

P

CMV

(A join B)

NLJN

P

BNLJN

CA

Alternative 1

Alternative 2

Figure 6: Two alternatives considered in re-optimization

The right part of Figure 6 shows two alternatives QEPs

among other alternatives that the query optimizer will con-

sider when re-optimizing the QEP in the left part of the figure

at the CHECK. Alternative 1 reuses the materialized view

created from the intermediate result at the materialization

point below CHECK, whereas Alternative 2 uses a different

join order and does not reuse the previous work. The opti-

mizer’s cost model will decide which alternative to choose for

the re- optimized query.

3 Variants of CHECK

The main metrics to evaluate CHECK are the risk and oppor-

tunity of re-optimization at the checkpoint. An additional

metric is its usability in pipelined plans, i.e., QEPs that do not

have any operators that block row processing, but stream all

rows directly to the user in order to reduce the time that that

user has to wait before seeing the query’s first results. Re-

optimization in this case might be triggered after some results

have already been returned. Without buffering or compensat-

ing for those rows, re-optimization will result in unexpected

duplicates, which is inconsistent with the semantics of the

original query.

We now present five flavors of CHECK to meet these chal-

lenges: lazy checking (LC), lazy checking with eager materi-

alization (LCEM), eager checking without compensation

(ECWC), eager checking with buffering (ECB), and eager

checking with deferred compensation (ECDC). The first three

apply only to non-pipelined plans, and the last two apply to all

plans.

3.1 Lazy Checking

Lazy checking (LC) piggybacks on materialization points,

i.e., points in a QEP where an entire intermediate result is

materialized before proceeding with further operators of the

plan. Examples for such materialization points are a) the

SORT operator (which sorts its input, e.g. for a sort-merge

join or group-by), b) the TEMP operator (which creates a

temporary table, e.g., for caching subquery results), and c) the

build side of the hash join operator. Placing CHECK above a

materialization point means that the cardinality of the mate-

rialization point will be checked exactly once, that is, after the

materialization has been completed. Materialization points are

ideal checkpoints for two reasons. First, LC needs no com-

pensation, because no results could have been output before

re-optimization. Second, the materialization creates interme-
diate results that can be reused by the re-optimized query.

MATERIALIZATION

POINT

MATERIALIZATION

POINT

CHECKPOINT

Eager checking
R

P

R

P

Lazy checking
MATERIALIZATION

POINT

R

P2

CHECKPOINT

P1

(a) (b)

Figure 7: Lazy checking (LC) and eager checking without

compensation (ECWC)

 If there is already a materialization point, can add CHECK there for free (lazy)

 Can add explicit materialization along with a CHECK

◦ Extra overhead in doing that

 Eager CHECKs don’t wait for materialization

 ECWC (Eager without compensation)

◦ There is a materialization afterwards → no results will be output to the user

◦ So can easily reoptimize without worrying about compensation

that re-create intermediate result from scratch. The optimizer

could even create an index on the materialized view before re-

using it if worthwhile.

Re-optimization takes place in the same transaction as the

initial partial execution and holds all locks acquired previ-

ously. Therefore it is guaranteed that all persisted results are

still transactionally correct when re-execution takes place.

To minimize the overhead and thereby the risk of re-opti-

mization, these intermediate results are not necessarily written

out to disk. Rather the temporarily MV has a pointer to the

actual runtime object for the scan from the current execution.

If this view is reused, the fields of this in-memory object are

modified to satisfy the new plan (e.g., the internal id’s for

each column of this scan may change when the plan changes).

The standard mechanisms for matching MVs to a query is

used to determine if the MV created from the intermediate

result can be used for some part of the query. Once the inter-

mediate results have been matched to the query, the query

optimizer will construct plans that exploit each matched MV

in addition to the original plans, using the known cardinality

for the subplan corresponding to that MV in all cases, and

then choose the cheapest plan as usual. In most cases, a plan

that re-uses the MV representing the intermediate result

should win. Unlike regular MVs, however, the runtime sys-

tem has to remember to remove any of these temporarily

materialized views after completing query execution.

If the plan under CHECK performs a side-effect (in-

sert/delete/update), the intermediate results must always be

matched and reused – otherwise the side-effect would be

applied twice.

Intuitively it seems that intermediate results should always be

reused rather than be thrown away. But this is not always true.

A wrong initial choice of join order, for instance, might create

a prohibitively large intermediate result that would have been

avoided with a different join order. Moreover, we have found

that many cardinality estimation errors are due to violations of

the independence assumption between predicates, and are

therefore underestimates, leading to larger-than-expected

intermediate results. Using this intermediate result could incur

a much higher cost than restarting from scratch. Instead of

always using intermediate results, POP gives the optimizer

the choice whether or not to use the intermediate results. This

choice is based on the optimizer’s cost model, which is en-

hanced by better cardinality and statistics information ob-

tained from the previous partial execution of the query.

NLJN

NLJN

CHECK

B

P

MATERIALIZATION

POINT

A C

HSJN

P

CMV

(A join B)

NLJN

P

BNLJN

CA

Alternative 1

Alternative 2

Figure 6: Two alternatives considered in re-optimization

The right part of Figure 6 shows two alternatives QEPs

among other alternatives that the query optimizer will con-

sider when re-optimizing the QEP in the left part of the figure

at the CHECK. Alternative 1 reuses the materialized view

created from the intermediate result at the materialization

point below CHECK, whereas Alternative 2 uses a different

join order and does not reuse the previous work. The opti-

mizer’s cost model will decide which alternative to choose for

the re- optimized query.

3 Variants of CHECK

The main metrics to evaluate CHECK are the risk and oppor-

tunity of re-optimization at the checkpoint. An additional

metric is its usability in pipelined plans, i.e., QEPs that do not

have any operators that block row processing, but stream all

rows directly to the user in order to reduce the time that that

user has to wait before seeing the query’s first results. Re-

optimization in this case might be triggered after some results

have already been returned. Without buffering or compensat-

ing for those rows, re-optimization will result in unexpected

duplicates, which is inconsistent with the semantics of the

original query.

We now present five flavors of CHECK to meet these chal-

lenges: lazy checking (LC), lazy checking with eager materi-

alization (LCEM), eager checking without compensation

(ECWC), eager checking with buffering (ECB), and eager

checking with deferred compensation (ECDC). The first three

apply only to non-pipelined plans, and the last two apply to all

plans.

3.1 Lazy Checking

Lazy checking (LC) piggybacks on materialization points,

i.e., points in a QEP where an entire intermediate result is

materialized before proceeding with further operators of the

plan. Examples for such materialization points are a) the

SORT operator (which sorts its input, e.g. for a sort-merge

join or group-by), b) the TEMP operator (which creates a

temporary table, e.g., for caching subquery results), and c) the

build side of the hash join operator. Placing CHECK above a

materialization point means that the cardinality of the mate-

rialization point will be checked exactly once, that is, after the

materialization has been completed. Materialization points are

ideal checkpoints for two reasons. First, LC needs no com-

pensation, because no results could have been output before

re-optimization. Second, the materialization creates interme-

diate results that can be reused by the re-optimized query.

MATERIALIZATION

POINT

MATERIALIZATION

POINT

CHECKPOINT

Eager checking
R

P

R

P

Lazy checking
MATERIALIZATION

POINT

R

P2

CHECKPOINT

P1

(a) (b)

Figure 7: Lazy checking (LC) and eager checking without

compensation (ECWC)

 With Buffering: Buffer results until you are sure things are okay

◦ Delays the pipeline for some time

 With Deferred Compensation

◦ Keep track of what tuples have already been output

◦ Check that side table before outputting new tuples after reoptimization

◦ Potentially a lot of repeated work

between the two sub-plans. The RETURN plan operator in the

figure denotes the operation that returns rows to the user.

Because of deferred compensation, ECDC neither delays

pipelining nor buffers any rows. However, in order to enable

deferred compensation, an INSERT operator is inserted just

below the return operator. INSERT uses a temporary table S

to remember the rids of all rows that have been returned to the

user. These rids may need to be constructed if the row has

been derived from a base table. If re-optimization is triggered,

the optimizer adds an anti join (set difference) plan operator

on top of the re-optimized QEP P* to compensate for already

returned rows from the initial run of the query.

CHECK

INSERT S

RETURN

P
P2

P1

P*

ANTI-JOIN
(not exists)

S

RETURNRETURN

Re-optimization

Eager checkingEager checking

deferred compensation

Figure 9 Eager checking with deferred compensation

Figure 10 shows the implementation of the check (CHECK)

and buffered check (BUFCHECK) operators via an

open/next/close model. The implementation of check can be

simplified if the DBMS maintains counters for each plan

operator. In this case, the check operator can directly refer to

the counters of the operator below CHECK. Similarly, if

CHECK is only placed above a materialization point, check-

ing can be optimized to be only executed once (i.e., after the

materialization has completed) and refer to the counter of the

materialized intermediate result.

Figure 10: Check implementation for check range [low,high]

CHECK.OPEN:
 count = 0;
CHECK.NEXT:
 count++;
 r = childStream.next();
 if count > high
 call re-optimization;
 if count < low and r = EOF
 call re-optimization;
 else
 return r;

CHECK.CLOSE:

 Æ

BUFCHECK.OPEN:
 count = 0;
 allocate B of size b; // buffer
 for i = 0 to b do
 B[i] = childStream.next();
 if childStream.EOF()
 and i < low
 call re-optimization;

BUFCHECK.NEXT:
 count++;

 if high < count
 call re-optimization;

 if count < b
 return B[count];
 else
 return childStream.next();

 BUFCHECK.CLOSE:
 free B;

3.4 Risks and Opportunities for each flavor of

Checkpoint

Lazy checks (LCs) impose the least risk during query process-

ing because their input is materialized and can be reused. But

their opportunity is limited to materialization points in the

plan.

Lazy checks with Eager Materialization (LCEMs) impose the

additional overhead of materializing results, and could thus be

more risky. So we choose to place LCEMs only on the outer

side of NLJN, where cardinalities are likely to be small. By

introducing these artificial materialization points, LCEMs

provide greater re-optimization opportunities.

The main problem with LCs and LCEMs is that they wait for

full materialization before re-optimizing. This can be bad if

the result is much larger than expected -- LCEMs are espe-

cially affected, because there the materialization is artificially

introduced.

Eager checks with Buffering (ECBs) avoid this problem by

checking before materialization is completed. The penalty is

that the sub-plan being materialized has to be completely re-
run, modulo other materialization points within it. In general

we want to couple both approaches, placing an LCEM above

an ECB so that the ECB can prevent the materialization from

growing beyond bounds. The relative risk of inserting the

ECBs vs. the LCEM depends on the relative costs of re-

running the outer and materializing the results. Also, like any

eager CHECK, ECBs terminate early and thus will not enable

the optimizer to use the correct cardinality for the subplan

during re-optimization. They merely give the optimizer a

lower bound for the correct cardinality that is higher than the

previous estimate, ensuring that a different plan will chosen,

but there is no guarantee that the new plan will be optimal.

ECWC and ECDC give much greater opportunities for re-

optimization. ECWC can be placed anywhere below materi-

alization points. ECDC works even in pipelined plans and

requires only one buffer for the entire query, regardless of

how many checkpoints exist in the QEP. Because of the anti-

join post-processing of the re-optimized query, ECDC reduces

the overhead of the initial run of the query and puts more of

the cost upon re-optimization, which can be good if re-

optimization is rare. As a penalty for this virtually unlimited

opportunity for re-optimization, ECWC and ECDC have high

risk, because they fail to retain work done.

4 CHECK Placement

Table 1 summarizes the 5 flavors of checkpoints.

LCEM and ECB checkpoints are placed on the outer side of

nested loop joins during plan enumeration. After the optimal

plan has been chosen, LC checkpoints are placed above mate-

rialization operators. ECWC and ECDC checkpoints can be

placed arbitrarily.

In our current implementation, the materialization points we

consider are SORTs and TEMPs. The two other kinds of

reusable results that arise during query processing are: (a) the

build side of hash joins, and (b) rid-lists generated from in-

dexes. We have found SORT and TEMP reuse alone to pro-

vide for significant performance improvements, but plan to

enhance our prototype to reuse further intermediate results in

order to make re-optimization even more efficient.

Our validity range estimation ensures that checkpoints will

not trigger re-optimization unless an alternative better plan is

available. However, LCEM and ECB checkpoints induce the

overhead of an extra materialization even with no re-

optimization. Moreover, even if a better plan is available, we

might throw away so much additional work using eager

checking (with ECB, ECWC and ECDC checkpoints) that the

overall execution is slower. As we intend to be conservative,

the default behavior of our prototype is to only place LC and

 Degradation in some cases -- sometimes two errors cancelled
each other out in the original plan

overhead is that we must redo the fraction of the query that is

already completed – this ranges from 0 to about 60% in the

figure. Many re-optimization opportunities are closely clus-

tered together, especially in the early stages of query execu-

tion. This is because joins over the smaller tables typically

separate materialization points.

6 POP in Action

In this section we apply POP to a real-world database and

customer workload, using an 8-way PowerPC with 1.4 GHz

Power4 CPUs, 32 GB RAM, 56 FASTT managed disks with a

total of 36 GB net storage space. The database holds data of a

department of motor vehicles (DMV), consisting of more than

30 tables and more than 100 indexes. The major tables of the

database are the CAR and OWNER table storing 8 million

respectively 6 million records. The overall size of the data-

base is 7.4 GB. The CAR table contains major correlations,

like a correlation between the columns MAKE, MODEL,

COLOR, and MODEL, WEIGHT. There are also correlations

when joining CAR and OWNER, like correlations between

ZIP, MAKE and AGE, MAKE. We use 39 real-world queries

obtained from the DMV to evaluate POP. The queries are

very complex decision support queries, joining more than 10

tables in average.

Although the DMV workload did not use any parameter

markers, it contained many other pitfalls that caused the

optimizer to use wrong estimates: Many of the queries restrict

several correlated columns, thus creating major cardinality

estimation errors as the optimizer uses independence to com-

bine the selectivities of these columns. Moreover, many of the

queries uses complex predicates like substring comparisons,

LIKE-predicates, and complex IN-lists and disjunctions. All

of these predicates are additional sources of estimation errors.

The largest cardinality estimation errors we have observed in

the DMV queries exceed six orders of magnitude! For these

complex real-world queries it is hardly possible for the opti-

mizer to determine the right query plan based on its basic

statistics and assumptions.

With POP no query runs longer than 5 minutes, whereas

without POP the longest query took more than 20 minutes.

0

250

500

750

1000

1250

1500

0 250 500 750 1000 1250 1500

Response Time without POP

R
es

p
o
n
se

 t
im

e
w

it
h
 P

O
P

Degradation

Improvement

Figure 15: Scatter Plot of Response Times with and without

POP on the DMV database

The scatter plot of the response times in Figure 15 shows that

while 22 queries receive an improvement with POP, we notice

a slight to moderate performance degradation in 17 queries.

This performance degradation is due to two facts: In some

circumstances the better cardinality information available to

the optimizer during re-optimization resulted in the choice of

a worse plan (!) because two estimation errors had canceled

each other out during the initial run of the query, and no

longer did so after re-optimization. In addition, we use a

simplistic cost model for the cost for re-using an intermediate

result, and this model leads to over-eager re-optimizations.

Improving the optimizer’s cost functions can solve the first

problem. The second problem arises because we wanted to

study re-optimizations extensively in this prototype and so

used a generous cost model for reoptimization. So we are

confident we can avoid this performance degradation when

transferring this work into the product.

Figure 16 shows the speedup or regression experienced by

each individual query. While POP reaches impressive speed-

ups of almost two orders of magnitude, the maximum regres-

sion due to a wrong optimizer decision during re-optimization

was a factor of 5.

-10

0

10

20

30

40

50

60

70

80

90

39 Real-World Complex Queries

S
p
ee

d
u
p
 (

+
)/

R
e
g
re

ss
io

n
 F

a
ct

o
r
 (

-)

Figure 16: Speedup and Regression of each Query

Overall, POP adds significant robustness to the processing of

the DMV queries, impressively speeding up several long-

running queries.

7 Future Work

Synchronization in Parallel DBMSs

While implementing CHECK is relatively simple and

straightforward for serial uni-processor environments, the

cardinality counters it uses must be globally synchronized in

symmetric multi-processor and shared nothing environments.

Such synchronization can be a costly operation that can sub-

stantially delay query processing, and must be viewed as

another risk of checkpointing in multi-processor environ-

ments. Alternatively, one can locally re-optimize a partial

QEP executed on one node if the check range for this node

alone is violated. Local checking in multi-processor environ-

ments would require that between global synchronization

points (exchange operators in Volcano [GM93]) each node

may change its plan, thus giving each node the chance to

execute a different partial QEP.

Checking Opportunities

POP can be considered to be a more conservative mode of

query execution, which is useful for complex ad-hoc queries

or queries with parameter makers where statistics or the opti-

overhead is that we must redo the fraction of the query that is

already completed – this ranges from 0 to about 60% in the

figure. Many re-optimization opportunities are closely clus-

tered together, especially in the early stages of query execu-

tion. This is because joins over the smaller tables typically

separate materialization points.

6 POP in Action

In this section we apply POP to a real-world database and

customer workload, using an 8-way PowerPC with 1.4 GHz

Power4 CPUs, 32 GB RAM, 56 FASTT managed disks with a

total of 36 GB net storage space. The database holds data of a

department of motor vehicles (DMV), consisting of more than

30 tables and more than 100 indexes. The major tables of the

database are the CAR and OWNER table storing 8 million

respectively 6 million records. The overall size of the data-

base is 7.4 GB. The CAR table contains major correlations,

like a correlation between the columns MAKE, MODEL,

COLOR, and MODEL, WEIGHT. There are also correlations

when joining CAR and OWNER, like correlations between

ZIP, MAKE and AGE, MAKE. We use 39 real-world queries

obtained from the DMV to evaluate POP. The queries are

very complex decision support queries, joining more than 10

tables in average.

Although the DMV workload did not use any parameter

markers, it contained many other pitfalls that caused the

optimizer to use wrong estimates: Many of the queries restrict

several correlated columns, thus creating major cardinality

estimation errors as the optimizer uses independence to com-

bine the selectivities of these columns. Moreover, many of the

queries uses complex predicates like substring comparisons,

LIKE-predicates, and complex IN-lists and disjunctions. All

of these predicates are additional sources of estimation errors.

The largest cardinality estimation errors we have observed in

the DMV queries exceed six orders of magnitude! For these

complex real-world queries it is hardly possible for the opti-

mizer to determine the right query plan based on its basic

statistics and assumptions.

With POP no query runs longer than 5 minutes, whereas

without POP the longest query took more than 20 minutes.

0

250

500

750

1000

1250

1500

0 250 500 750 1000 1250 1500

Response Time without POP

R
e
sp

o
n
se

 t
im

e
w

it
h
 P

O
P

Degradation

Improvement

Figure 15: Scatter Plot of Response Times with and without

POP on the DMV database

The scatter plot of the response times in Figure 15 shows that

while 22 queries receive an improvement with POP, we notice

a slight to moderate performance degradation in 17 queries.

This performance degradation is due to two facts: In some

circumstances the better cardinality information available to

the optimizer during re-optimization resulted in the choice of

a worse plan (!) because two estimation errors had canceled

each other out during the initial run of the query, and no

longer did so after re-optimization. In addition, we use a

simplistic cost model for the cost for re-using an intermediate

result, and this model leads to over-eager re-optimizations.

Improving the optimizer’s cost functions can solve the first

problem. The second problem arises because we wanted to

study re-optimizations extensively in this prototype and so

used a generous cost model for reoptimization. So we are

confident we can avoid this performance degradation when

transferring this work into the product.

Figure 16 shows the speedup or regression experienced by

each individual query. While POP reaches impressive speed-

ups of almost two orders of magnitude, the maximum regres-

sion due to a wrong optimizer decision during re-optimization

was a factor of 5.

-10

0

10

20

30

40

50

60

70

80

90

39 Real-World Complex Queries

S
p
e
e
d
u
p
 (

+
)/

R
e
g
r
e
ss

io
n
 F

a
c
to

r
 (

-)

Figure 16: Speedup and Regression of each Query

Overall, POP adds significant robustness to the processing of

the DMV queries, impressively speeding up several long-

running queries.

7 Future Work

Synchronization in Parallel DBMSs

While implementing CHECK is relatively simple and

straightforward for serial uni-processor environments, the

cardinality counters it uses must be globally synchronized in

symmetric multi-processor and shared nothing environments.

Such synchronization can be a costly operation that can sub-

stantially delay query processing, and must be viewed as

another risk of checkpointing in multi-processor environ-

ments. Alternatively, one can locally re-optimize a partial

QEP executed on one node if the check range for this node

alone is violated. Local checking in multi-processor environ-

ments would require that between global synchronization

points (exchange operators in Volcano [GM93]) each node

may change its plan, thus giving each node the chance to

execute a different partial QEP.

Checking Opportunities

POP can be considered to be a more conservative mode of

query execution, which is useful for complex ad-hoc queries

or queries with parameter makers where statistics or the opti-

How to Reoptimize

Getting a better plan:

– Plug in actual cardinality information acquired during this

query (as possibly histograms), and re-run the optimizer

Reusing work when switching to the better plan:

– Treat fully computed intermediate results as materialized

views

• Everything that is under a materialization point

– Note: It is optional for the optimizer to use these in the

new plan

➢Other approaches are possible (e.g., query scrambling

[UFA’98])

Pipelined Execution

Adapting Pipelined Queries

Adapting pipelined execution is often necessary:

– Too few materializations in today’s systems

– Long-running queries

– Wide-area data sources

– Potentially endless data streams

The tricky issues:

– Some results may have been delivered to the user

• Ensuring correctness non-trivial

– Database operators build up state

• Must reason about it during adaptation

• May need to manipulate state

Eddies [AH’00]

Query processing as routing of tuples through operators

Pipelined query execution using an eddy

An eddy operator

• Intercepts tuples from sources

 and output tuples from operators

• Executes query by routing source

 tuples through operators

A traditional pipelined query plan

R.a = 10 R.b < 20R resultR.c like …

R1 R2 R3

EddyR

result

R.a = 10

R.c like …

R.b < 20

Encapsulates all aspects of

adaptivity in a “standard”

dataflow operator:

measure, model, plan and

actuate.

Eddies [AH’00]

a b c …

15 10 AnameA …

An R Tuple: r1

r1

r1

EddyR

result

R.a = 10

R.c like …

R.b < 20

ready bit i :

 1 → operator i can be applied

 0 → operator i can’t be applied

Eddies [AH’00]

a b c … ready done

15 10 AnameA … 111 000

An R Tuple: r1

r1

Operator 1

Operator 2

Operator 3

EddyR

result

R.a = 10

R.c like …

R.b < 20

done bit i :

 1 → operator i has been applied

 0 → operator i hasn’t been applied

Eddies [AH’00]

a b c … ready done

15 10 AnameA … 111 000

An R Tuple: r1

r1

Operator 1

Operator 2

Operator 3

EddyR

result

R.a = 10

R.c like …

R.b < 20

Eddies [AH’00]

a b c … ready done

15 10 AnameA … 111 000

An R Tuple: r1

r1

Operator 1

Operator 2

Operator 3

Used to decide validity and need

 of applying operators

EddyR

result

R.a = 10

R.c like …

R.b < 20

Eddies [AH’00]

a b c … ready done

15 10 AnameA … 111 000

An R Tuple: r1

r1

Operator 1

Operator 2

Operator 3

satisfied
r1

r1

a b c … ready done

15 10 AnameA … 101 010

r1

not satisfied

eddy looks at the

 next tuple

For a query with only selections,

 ready = complement(done)

EddyR

result

R.a = 10

R.c like …

R.b < 20

Eddies [AH’00]

a b c …

10 15 AnameA …

An R Tuple: r2

Operator 1

Operator 2

Operator 3

r2
EddyR

result

R.a = 10

R.c like …

R.b < 20

satisfied

satisfied

satisfied

Eddies [AH’00]

a b c … ready done

10 15 AnameA … 000 111

An R Tuple: r2

Operator 1

Operator 2

Operator 3

r2

if done = 111,

 send to output

r2

EddyR

result

R.a = 10

R.c like …

R.b < 20

satisfied

satisfied

satisfied

Eddies [AH’00]

Adapting order is easy
– Just change the operators to which tuples are sent

– Can be done on a per-tuple basis

– Can be done in the middle of tuple’s “pipeline”

How are the routing decisions made?

 Using a routing policy

Operator 1

Operator 2

Operator 3

EddyR

result

R.a = 10

R.c like …

R.b < 20

Routing Policies that Have Been Studied

Deterministic [D03]

– Monitor costs & selectivities continuously

– Re-optimize periodically using rank ordering

(or A-Greedy for correlated predicates)

Lottery scheduling [AH00]

– Each operator runs in thread with an input queue

– “Tickets” assigned according to tuples input / output

– Route tuple to next eligible operator with room in queue,

based on number of “tickets” and “backpressure”

Content-based routing [BBDW05]

– Different routes for different plans based on attribute values

Routing Policy 3: Lottery Scheduling

▪ Originally suggested routing policy [AH’00]

▪ Applicable only if each operator runs in a separate thread

▪ Uses two easily obtainable pieces of information for making

routing decisions:

– Busy/idle status of operators

– Tickets per operator

Operator 1

Operator 2

Operator 3

EddyR

result

R.a = 10

R.c like …

R.b < 20

Routing Policy 3: Lottery Scheduling

▪ Routing decisions based on busy/idle status of operators

Rule:

 IF operator busy,

 THEN do not route more

 tuples to it

Rationale:

 Every thread gets equal time

 SO IF an operator is busy,

 THEN its cost is perhaps very

 high

Operator 1

Operator 2

Operator 3

EddyR

result

R.a = 10

R.c like …

R.b < 20

BUSY

IDLE

IDLE

Routing Policy 3: Lottery Scheduling

▪ Routing decisions based on tickets

Rules:

 1. Route a new tuple randomly

 weighted according to the

 number of tickets

tickets(O1) = 10

tickets(O2) = 70

tickets(O3) = 20

Will be routed to:

 O1 w.p. 0.1

 O2 w.p. 0.7

 O3 w.p. 0.2

Operator 1

Operator 2

Operator 3

Eddy

result

R.a = 10

R.c like …

R.b < 20

r

Routing Policy 3: Lottery Scheduling

▪ Routing decisions based on tickets

Rules:

 1. Route a new tuple randomly

 weighted according to the

 number of tickets

tickets(O1) = 10

tickets(O2) = 70

tickets(O3) = 20

r

Operator 1

Operator 2

Operator 3

Eddy

result

R.a = 10

R.c like …

R.b < 20

Routing Policy 3: Lottery Scheduling

▪ Routing decisions based on tickets

Rules:

 1. Route a new tuple randomly

 weighted according to the

 number of tickets

 2. route a tuple to an operator Oi

 tickets(Oi) ++; Operator 1

Operator 2

Operator 3

Eddy

result

R.a = 10

R.c like …

R.b < 20

tickets(O1) = 11

tickets(O2) = 70

tickets(O3) = 20

Routing Policy 3: Lottery Scheduling

▪ Routing decisions based on tickets

r

Rules:

 1. Route a new tuple randomly

 weighted according to the

 number of tickets

 2. route a tuple to an operator Oi

 tickets(Oi) ++;

 3. Oi returns a tuple to eddy

 tickets(Oi) --;

Operator 1

Operator 2

Operator 3

Eddy

result

R.a = 10

R.c like …

R.b < 20

tickets(O1) = 11

tickets(O2) = 70

tickets(O3) = 20

Routing Policy 3: Lottery Scheduling

▪ Routing decisions based on tickets

r

Rules:

 1. Route a new tuple randomly

 weighted according to the

 number of tickets

 2. route a tuple to an operator Oi

 tickets(Oi) ++;

 3. Oi returns a tuple to eddy

 tickets(Oi) --;

Operator 1

Operator 2

Operator 3

Eddy

result

R.a = 10

R.c like …

R.b < 20

tickets(O1) = 10

tickets(O2) = 70

tickets(O3) = 20

Will be routed to:

 O2 w.p. 0.777

 O3 w.p. 0.222

Routing Policy 3: Lottery Scheduling

▪ Routing decisions based on tickets

Rationale:

 Tickets(Oi) roughly corresponds to

 (1 - selectivity(Oi))

 So more tuples are routed to

 highly selective operators

Rules:

 1. Route a new tuple randomly

 weighted according to the

 number of tickets

 2. route a tuple to an operator Oi

 tickets(Oi) ++;

 3. Oi returns a tuple to eddy

 tickets(Oi) --;

Operator 1

Operator 2

Operator 3

Eddy

result

R.a = 10

R.c like …

R.b < 20

tickets(O1) = 10

tickets(O2) = 70

tickets(O3) = 20

Routing Policy 3: Lottery Scheduling

▪ Effect of the combined lottery scheduling policy:

– Low cost operators get more tuples

– Highly selective operators get more tuples

– Some tuples are knowingly routed according to sub-optimal orders

• To explore

• Necessary to detect selectivity changes over time

Eddies: Post-Mortem

▪ Plan Space explored

– Allows arbitrary “horizontal partitioning”

– Not necessarily correlated with order of arrival

.

.

R.a = 10 R.b < 20 R.c like …

R.b < 20 R.a= 10 R.c like …

.

.

order

of

arrival

In a later paper, we looked at optimizing for horizontal partitioning directly

Pipelined Execution Part II:

Adaptive Join Processing

Adaptive Join Processing: Outline

▪ Single streaming relation

– Left-deep pipelined plans

▪ Multiple streaming relations

– Execution strategies for multi-way joins

– History-independent execution

– History-dependent execution

Left-Deep Pipelined Plans

Simplest method of joining tables

– Pick a driver table (R). Call the rest driven tables

– Pick access methods (AMs) on the driven tables (scan, hash, or index)

– Order the driven tables

– Flow R tuples through the driven tables

 For each r R do:

look for matches for r in A;

for each match a do:

 look for matches for <r,a> in B;

 …

R
B

NLJ

C

NLJ

A

NLJ

Adapting a Left-deep Pipelined Plan

Simplest method of joining tables

– Pick a driver table (R). Call the rest driven tables

– Pick access methods (AMs) on the driven tables

– Order the driven tables

– Flow R tuples through the driven tables

 For each r R do:

look for matches for r in A;

for each match a do:

 look for matches for <r,a> in B;

 …

Almost identical

to selection

ordering

R
B

NLJ

C

NLJ

A

NLJ

Adapting a Left-deep Pipelined Plan

Key issue: Duplicates

Adapting the choice of driver table

 [L+07] Carefully use indexes to achieve this

Adapting the choice of access methods

– Static optimization: explore all possibilities and pick best

– Adaptive: Run multiple plans in parallel for a while,

 and then pick one and discard the rest [Antoshenkov’ 96]

• Cannot easily explore combinatorial options

R
B

NLJ

C

NLJ

A

NLJ

 Continuously ”reorder” operators as the query is executing

◦ By changing the “order” in which tuples visit operators

◦ Obviate the need for selectivity estimation and optimization entirely

◦ Naturally handles situations where the selectivities change over time (for long-
running queries)

Eddies: Continuously Adaptive Query Processing

Ron Avnur Joseph M. Hellerstein

University of California, Berkeley

avnur@cohera.com, jmh@cs.berkeley.edu

In large federated and shared-nothing databases, resources can
exhibit widely fluctuating characteristics. Assumptions made
at the time a query is submitted will rarely hold throughout
the duration of query processing. As a result, traditional static
query optimization and execution techniques are ineffective in
these environments.

In this paper we introduce a query processing mechanism
called an eddy, which continuously reorders operators in a
query plan as it runs. We characterize the moments of sym-
metry during which pipelined joins can be easily reordered,
and the synchronization barriers that require inputs from dif-
ferent sources to be coordinated. By combining eddies with
appropriate join algorithms, we merge the optimization and
execution phases of query processing, allowing each tuple to
have a flexible ordering of the query operators. This flexibility
is controlled by a combination of fluid dynamics and a simple
learning algorithm. Our initial implementation demonstrates
promising results, with eddies performing nearly as well as
a static optimizer/executor in static scenarios, and providing
dramatic improvements in dynamic execution environments.

There is increasing interest in query engines that run at un-
precedented scale, both for widely-distributed information re-
sources, and for massively parallel database systems. We are
building a system called Telegraph, which is intended to run
queries over all the data available on line. A key requirement
of a large-scale system like Telegraph is that it function ro-
bustly in an unpredictable and constantly fluctuating environ-
ment. This unpredictability is endemic in large-scale systems,
because of increased complexity in a number of dimensions:

Hardware and Workload Complexity: In wide-area envi-
ronments, variabilities are commonly observable in the bursty
performance of servers and networks [UFA98]. These systems
often serve large communities of users whose aggregate be-
havior can be hard to predict, and the hardware mix in the wide
area is quite heterogeneous. Large clusters of computers can
exhibit similar performance variations, due to a mix of user
requests and heterogeneous hardware evolution. Even in to-
tally homogeneous environments, hardware performance can
be unpredictable: for example, the outer tracks of a disk can
exhibit almost twice the bandwidth of inner tracks [Met97].

Data Complexity: Selectivity estimation for static alphanu-

Figure 1: An eddy in a pipeline. Data flows into the eddy from
input relations and . The eddy routes tuples to opera-
tors; the operators run as independent threads, returning tuples
to the eddy. The eddy sends a tuple to the output only when
it has been handled by all the operators. The eddy adaptively
chooses an order to route each tuple through the operators.

meric data sets is fairly well understood, and there has been
initial work on estimating statistical properties of static sets of
data with complex types [Aok99] and methods [BO99]. But
federated data often comes without any statistical summaries,
and complex non-alphanumeric data types are now widely in
use both in object-relational databases and on the web. In these
scenarios – and even in traditional static relational databases –
selectivity estimates are often quite inaccurate.

User Interface Complexity: In large-scale systems, many
queries can run for a very long time. As a result, there is in-
terest in Online Aggregation and other techniques that allow
users to “Control” properties of queries while they execute,
based on refining approximate results [HAC 99].

For all of these reasons, we expect query processing param-
eters to change significantly over time in Telegraph, typically
many times during a single query. As a result, it is not appro-
priate to use the traditional architecture of optimizing a query
and then executing a static query plan: this approach does
not adapt to intra-query fluctuations. Instead, for these en-
vironments we want query execution plans to be reoptimized
regularly during the course of query processing, allowing the
system to adapt dynamically to fluctuations in computing re-
sources, data characteristics, and user preferences.

In this paper we present a query processing operator called
an eddy, which continuously reorders the application of pipe-

 Selections are arbitrarily reorderable

 What about joins?
Eddies: Continuously Adaptive Query Processing

Ron Avnur Joseph M. Hellerstein

University of California, Berkeley

avnur@cohera.com, jmh@cs.berkeley.edu

In large federated and shared-nothing databases, resources can
exhibit widely fluctuating characteristics. Assumptions made
at the time a query is submitted will rarely hold throughout
the duration of query processing. As a result, traditional static
query optimization and execution techniques are ineffective in
these environments.

In this paper we introduce a query processing mechanism
called an eddy, which continuously reorders operators in a
query plan as it runs. We characterize the moments of sym-
metry during which pipelined joins can be easily reordered,
and the synchronization barriers that require inputs from dif-
ferent sources to be coordinated. By combining eddies with
appropriate join algorithms, we merge the optimization and
execution phases of query processing, allowing each tuple to
have a flexible ordering of the query operators. This flexibility
is controlled by a combination of fluid dynamics and a simple
learning algorithm. Our initial implementation demonstrates
promising results, with eddies performing nearly as well as
a static optimizer/executor in static scenarios, and providing
dramatic improvements in dynamic execution environments.

There is increasing interest in query engines that run at un-
precedented scale, both for widely-distributed information re-
sources, and for massively parallel database systems. We are
building a system called Telegraph, which is intended to run
queries over all the data available on line. A key requirement
of a large-scale system like Telegraph is that it function ro-
bustly in an unpredictable and constantly fluctuating environ-
ment. This unpredictability is endemic in large-scale systems,
because of increased complexity in a number of dimensions:

Hardware and Workload Complexity: In wide-area envi-
ronments, variabilities are commonly observable in the bursty
performance of servers and networks [UFA98]. These systems
often serve large communities of users whose aggregate be-
havior can be hard to predict, and the hardware mix in the wide
area is quite heterogeneous. Large clusters of computers can
exhibit similar performance variations, due to a mix of user
requests and heterogeneous hardware evolution. Even in to-
tally homogeneous environments, hardware performance can
be unpredictable: for example, the outer tracks of a disk can
exhibit almost twice the bandwidth of inner tracks [Met97].

Data Complexity: Selectivity estimation for static alphanu-

Figure 1: An eddy in a pipeline. Data flows into the eddy from
input relations and . The eddy routes tuples to opera-
tors; the operators run as independent threads, returning tuples
to the eddy. The eddy sends a tuple to the output only when
it has been handled by all the operators. The eddy adaptively
chooses an order to route each tuple through the operators.

meric data sets is fairly well understood, and there has been
initial work on estimating statistical properties of static sets of
data with complex types [Aok99] and methods [BO99]. But
federated data often comes without any statistical summaries,
and complex non-alphanumeric data types are now widely in
use both in object-relational databases and on the web. In these
scenarios – and even in traditional static relational databases –
selectivity estimates are often quite inaccurate.

User Interface Complexity: In large-scale systems, many
queries can run for a very long time. As a result, there is in-
terest in Online Aggregation and other techniques that allow
users to “Control” properties of queries while they execute,
based on refining approximate results [HAC 99].

For all of these reasons, we expect query processing param-
eters to change significantly over time in Telegraph, typically
many times during a single query. As a result, it is not appro-
priate to use the traditional architecture of optimizing a query
and then executing a static query plan: this approach does
not adapt to intra-query fluctuations. Instead, for these en-
vironments we want query execution plans to be reoptimized
regularly during the course of query processing, allowing the
system to adapt dynamically to fluctuations in computing re-
sources, data characteristics, and user preferences.

In this paper we present a query processing operator called
an eddy, which continuously reorders the application of pipe-

- An index lookup can be

treated as a “selection”
- Send an S tuple, get back
augmented tuples

- Note: decision to use the
index cannot be “adapted”

- These two are tricky

- Nested loops requires
iterating over all of inner

- Hash join requires building a

hash table on inner

 Synchronization Barriers

◦ Many operators explicitly enforce an order in which tuples must be read
from the inputs

◦ e.g., Sort-merge joins: at most points, the next tuple to read must be read
from a specific input

◦ Hash joins: need to read all of ”inner” before outer tuples can be read

 Moments of Symmetry

◦ Sort-merge join is symmetric

◦ But Nested-loops is not

 However, can change the outer/inner at specific points

 Join operators with more moments of symmetric preferred

◦ e.g., Symmetric Hash Join Operator

 Implemented in the context of River project

 Eddy is a separate module that talks to all other operators

◦ Uses “ready” and “done” bitsets to direct traffic

 Lottery scheduling-based routing policy

◦ Promising initial results, but bunch of caveats

 Query evaluation techniques for large databases, Skew
Avoidance, Query compilation/vectorization

 Query Optimization: Overview, How good are the query
optimizers, really?, Reordering for Outerjoins, Query Rewriting

 Adaptive Query Processing

◦ Eddies

◦ Progressive Query Optimization

◦ Compilation and adaptivity

 Adaptive query processing (POP-style) works well with
interpretable query plans, but not as well with compilation

◦ Compiling a new query plan too expensive

 Adaptive query processing (POP-style) works well with
interpretable query plans, but not as well with compilation

◦ Compiling a new query plan too expensive

 Instead:

◦ Precompile a bunch of different plans at optimization time itself

◦ Add indirections to the compiled code to make it easy to switch/permute
operators

◦ Add hooks for collecting runtime performance metrics

 To be used to decide whether to switch

Vectorization effect???

The code suggests filters
applied to all tuples, so no
point in reordering

 Not much work on adaptive query processing in the last 10
years

◦ SkinnerDB [2019] another relevant work

 More work on adapting the execution of a single operator

◦ e.g., changing things based on available resources

 Likely to re-emerge as an important topic in the next few years

◦ As QP in many systems becomes more mature…

◦ As SQL starts becoming more and more common as the query language
(e.g., in Spark, Pandas, etc).

 Query evaluation techniques for large databases, Skew
Avoidance, Query compilation/vectorization

 Query Optimization: Overview, How good are the query
optimizers, really?, Reordering for Outerjoins, Query Rewriting

 Adaptive Query Processing

 Worst-case Optimal Join Processing

 Froid: UDFs and Databases

 Consider an ”edges” relation with N edges, capturing an
“undirected” graph,

 And a query to find the number of ”triangles”

source target

v1 v2

v2 v1

v1 v3

v3 v1

v2 v3

v3 v2

select count(*)/6
from edges e1, edges e2, edges e3
where e1.target = e2.source and
 e2.target = e3.source and
 e3.target = e1.source

Any “binary joins” plan will be “sub-optimal”
Worst case = O(N^2)
However, output size bounded by O(N^1.5)

A B

a1 b1

a2 b1

a3 b1

a4 b1

a5 b1

a6 b1

… …

q() :- R(A, B), S(B, C), T(C, D)

B C

b1 c1

b1 c2

b1 c3

… …

b2 c0

b3 c0

… …

C D

c0 d1

c0 d2

c0 d3

c0 d4

c0 d5

c0 d6

… …

1M tuples with B = b1 1M tuples with C = c01M tuples with C = c0

1M tuples with B = b1

However: No results in the output

Boolean Conjunctive Query

Answer is a True/False

A B

a1 b1

a2 b1

a3 b1

a4 b1

a5 b1

a6 b1

… …

q() :- R(A, B), S(B, C), T(C, D)

B C

b1 c1

b1 c2

b1 c3

… …

b2 c0

b3 c0

… …

C D

c0 d1

c0 d2

c0 d3

c0 d4

c0 d5

c0 d6

… …

1M tuples with B = b1 1M tuples with C = c0

1M tuples with C = c0

1M tuples with B = b1

No Binary Join Tree Works

R JOIN S == generates 1 trillion tuples

 (none of which match T)

S JOIN T == generates 1T tuples

R JOIN T == cross product == 1T tuples

A B

a1 b1

a2 b1

a3 b1

a4 b1

a5 b1

a6 b1

… …

q() :- R(A, B), S(B, C), T(C, D)

B C

b1 c1

b1 c2

b1 c3

… …

b2 c0

b3 c0

… …

C D

c0 d1

c0 d2

c0 d3

c0 d4

c0 d5

c0 d6

… …

1M tuples with B = b1 1M tuples with C = c0

1M tuples with C = c0

1M tuples with B = b1

B C

b1 c1

b1 c2

b1 c3

… …

First, do S SEMIJOIN R

Removes tuples from S

that don’t contribute to the final

output

(e.g., (b2, c0) will never

join with anything from R)

A B

a1 b1

a2 b1

a3 b1

a4 b1

a5 b1

a6 b1

… …

q() :- R(A, B), S(B, C), T(C, D)

B C

b1 c1

b1 c2

b1 c3

… …

b2 c0

b3 c0

… …

C D

c0 d1

c0 d2

c0 d3

c0 d4

c0 d5

c0 d6

… …

1M tuples with B = b1 1M tuples with C = c0

1M tuples with C = c0

1M tuples with B = b1

B C

b1 c1

b1 c2

b1 c3

… …

First, do S SEMIJOIN R

Then: X1 = T SEMIJOIN

 (S SEMIJOIN R)

C D

Then, do X2 = S SEMIJOIN X1

To further “reduce” S by

removing tuples that don’t join

with anything from T

A B

a1 b1

a2 b1

a3 b1

a4 b1

a5 b1

a6 b1

… …

q() :- R(A, B), S(B, C), T(C, D)

B C

b1 c1

b1 c2

b1 c3

… …

b2 c0

b3 c0

… …

C D

c0 d1

c0 d2

c0 d3

c0 d4

c0 d5

c0 d6

… …

1M tuples with B = b1 1M tuples with C = c0

1M tuples with C = c0

1M tuples with B = b1

B C

b1 c1

b1 c2

b1 c3

… …

First, do S SEMIJOIN R

Then: X1 = T SEMIJOIN

 (S SEMIJOIN R)

C D

Then, do X2 = S SEMIJOIN X1

Finally, do X3 = R SEMIJOIN X2

 Called “semi-join reducer sequences”

◦ Basically get rid of tuples from each relation that don’t contribute to the
output

◦ Result EMPTY in our example, but in general, only relevant tuples will be
left

 Once this is done, you can do join in any order

◦ Guaranteed that the total time is “linear” in the total size of the inputs
and output

◦ Can’t avoid dependence on the output -- the join query may do a
Cartesian product

 Can be generalized to any “acyclic” query

 Conjunctive queries as “hypergraphs”

q() :- R1(A, B, C), R2(B, C, D), R3(C, D, E)

A

B

C

D

E

Each attribute == a vertex

Each relation == a “hyperedge”

 Conjunctive queries as “hypergraphs”

q() :- R1(A, B, C), R2(C, D, E), R3(A, E)

A

B

C

D

E

Each attribute == a vertex

Each relation == a “hyperedge”

 If all relations are 2 attributes, then the hypergraph is same as a
graph

q() :- R1(A, B), R2(B, C), R3(C, D), R4(D, A)

A

B

C

D

Acyclic queries in this case ==

the graph has no cycles, i.e., the

graph is a tree

More complex for hypergraphs

 For “acyclic” queries, can always find a semijoin reducer sequence

◦ Can be done in optimal time: linear in size of inputs + output

 What about non-acyclic queries?

◦ Try to define how “far” from acyclic-ness

◦ Captured as ”width” of the hypergraph

 Width of acyclic hypergraphs = 1

 AGM [FOCS, 2008] defined “fractional hypertree width”, and an
algorithm that runs in O(N^(fhw+1) log N)

 Several more practical algorithms since then, including one that
was implemented before it was proved optimal

Each relation has: 2m + 1 tuples

Output = 3m + 1

Any pairwise join has size: m^2 + m

Projections/Semi-joins don’t help

A B

a0 b0

a0 b1

a0 b2

.. ..

a0 b_m

a0 b0

a1 b0

… ..

a_m b0

B C

b0 c0

b0 c1

b0 c2

.. ..

b0 c_m

b0 c0

b1 c0

… ..

b_m c0

A C

a0 c0

a0 c1

a0 c2

.. ..

a0 c_m

a0 c0

a1 c0

… ..

a_m c0

A B C

a0 b0 c0

a0 b1 c0

…

a0 b_m c_0

a0 b0 c0

a1 b0 c0

a2 b0 c0

… ..

a_m b0 c0

a0 b0 c0

a0 b0 c1

a0 b0 c2

..

a0 b0 c_m

output

Skew in the relations: a_0 generates a lot of intermediate

tuples, but not as many output tuples

Call a_i heavy if:

Two Choices for each a_i:
If a_i is light

If a_i is heavy

Can prove to run in : O(N^1.5)

R and T are in sorted order

Either build indexes, or do a variation of binary search

For each value a_i, compute valid values of B that join with it:

For each value of b in the above result, compute valid values of C:

Can prove to run in : O(N) on our bad example

General worst-case complexity the same as the previous algorithm

q() :- R1(A, B, C), R2(B, C, D), R3(C, D, E)

A

B

C

D

E

Assign a weight to each of

R1, R2, and R3

Say:

R1 → 0.5

R2 → 0.5
R3 → 0.5

Total for B = 0.5 + 0.5 >= 1

 B is “covered”

C (1.5), and D (1) are covered

A and E are not covered.

A set of weights is called “fractional edge cover” if all

attributes are covered

Infinite number of fractional edge covers

Examples, with some fractional edge covers

Why do we care?

Say we have “l” relations in a query q, with sizes N_j, j = 1, …, l

Let u denote any fractional edge cover -- so u_j is the weight for relation with size N_j

Then, the size of the result is bounded by:

Using the first cover, result size bounded by:

If |R| = |S| = |T|, then the bound is N^1.5 -- which is tight

But if |R| = |T| = 1, and |S| = N, then the bound is sqrt(N)
 -- Far from tight -- there can only be 1 triangle

Using the second cover, result size bounded by:

If |R| = |S| = |T|, then the bound is N^2 -- not great

But if |R| = |T| = 1, and |S| = N, then the bound is 1

Process each attribute (variable)

at a time

Find all relations that contain

that attribute

Do an intersection across all the

relations for that attribute

For each value that is present

for v_i in all of R_join:
- Select from each relation only

those where v_i = k_i

- Recurse with those relations
plus the rest of the relations

 Quite a bit of work on this topic in the last 10 years

 Several implementations

◦ Often in the context of graph querying

◦ Usually require significant pre-computations and specialized indexes

 The “intersection” step in the previous slide is a key one

◦ Some recent work (VLDB 2020) on a more practical implementation using
hash indexes instead of sort-based tries

 Still not clear when to use them and when to use binary joins

 Open theoretical issues

 What about outerjoins, etc?

 Part 1 Slides

◦ Query evaluation techniques for large databases, Skew Avoidance, Query
compilation/vectorization

◦ Query Optimization: Overview, How good are the query optimizers,
really?, Reordering for Outerjoins, Query Rewriting

 Adaptive Query Processing

 Worst-case Optimal Join Processing

 Froid: UDFs and Databases

◦ Background

◦ Froid

 Supported by database systems since late 80s

 Supported by database systems since late 80s

 Three main benefits:

◦ Modular code

◦ Easier to write some code in an imperative language (e.g., ML)

◦ Fewer round-trips between application and database

 Significant performance issues if done repeatedly (e.g., for every order)
Each of these is a

separate call from the
application to the
server

 Supported by database systems since late 80s

 Three main benefits:

◦ Modular code

◦ Easier to write some code in an imperative language (e.g., ML)

◦ Fewer round-trips between application and database

 Significant performance issues if done repeatedly (e.g., for every order)

 Stonebraker notes the latter as the primary reason for adoption
of OR features (”what comes around goes around” paper)

◦ “Put differently, the major contribution of the OR efforts turned out to be
a better mechanism for stored procedures and user-defined access
methods.”

 Also called “stored procedures”, with some minor differences
across systems

 User-defined functions

◦ Scalar (return a single value) or Table Functions (return a relation)

◦ Can be used in queries (WHERE/SELECT/FROM, etc), depending on scalar
or table function

◦ UDFs typically not allowed to make changes to the database

 Stored procedures

◦ Similar, but can only be executed using a CALL or EXECUTE command

◦ Usually mutate the state of the database

 Triggers

◦ Something that happens because of an event (e.g., an insert in orders
results in an insert in another table)

◦ Similar to stored procedures for the actual action

Procedural Extensions of SQL; VLDB 2021

 Optimization

◦ UDFs can be very expensive -- coverage() does image analysis of some
form

◦ Cost of UDFs is hard to estimate -- may depend on the inputs

◦ Selectivity of UDFs is hard to estimate -- statistics don’t really help

Example from: “Predicate Migration; Hellerstein and

Stonebraker; SIGMOD 1993

 Optimization

◦ UDFs can be very expensive -- coverage() does image analysis of some
form

◦ Cost of UDFs is hard to estimate -- may depend on the inputs

◦ Selectivity of UDFs is hard to estimate -- statistics don’t really help

 UDFs cannot be parallelized easily

◦ May result in single-threaded execution

 Forces tuple-at-a-time execution

◦ Hard to use any of subquery decorrelation techniques

 Often interpreted execution

 Well-known issues resulting in bad performance in many
practical scenarios

 Part 1 Slides

◦ Query evaluation techniques for large databases, Skew Avoidance, Query
compilation/vectorization

◦ Query Optimization: Overview, How good are the query optimizers,
really?, Reordering for Outerjoins, Query Rewriting

 Adaptive Query Processing

 Worst-case Optimal Join Processing

 Froid: UDFs and Databases

◦ Background

◦ Froid

 SQL Server supports: UDFs (cannot modify state), and Stored
Procedures (can modify state)

achieves this goal using a novel technique to automat ically

convert imperat ive programs into equivalent relat ional alge-
braic forms whenever possible. Froid models blocks of im-

perat ive code as relat ional expressions, and systemat ically
combines them into a single expression using the Apply [14]

operator, thereby enabling the query opt imizer to choose
efficient set -oriented, parallel query plans.

Further, we demonstrate how Froid’s relat ional algebraic

t ransformat ions can be used to arrive at the same result
as that of applying compiler opt imizat ions (such as dead

code eliminat ion, program slicing and constant folding) to
imperat ive code. Although Froid’s current focus is T-SQL

UDFs, the underlying technique is language-agnost ic, and
therefore extending it to other imperat ive languages is quite

st raight forward, as we show in this paper.
There have been some recent works that aim to convert

fragments of database applicat ion code into SQL in order
to improve performance [12, 4]. However, to the best of our

knowledge, Froid is the first framework that can opt imize
imperat ive programs in a relat ional database by t ransform-

ing them into relat ional expressions. While Froid is built
into Microsoft SQL Server, its underlying techniques can be

integrated into any RDBMS.
We make the following cont ribut ions in this paper.

1. We describe the unique challenges in opt imizat ion of
imperat ive code execut ing in relat ional databases, and

analyze the reasons for their poor performance.

2. We describe the novel techniques underlying Froid, an

extensible framework to opt imize UDFs in Microsoft
SQL Server. We show how Froid integrates with the

query processing lifecycle and leverages exist ing sub-
query opt imizat ion techniques to t ransform inefficient ,
iterat ive, serial UDF execut ion st rategies into highly

efficient , set -oriented, parallel plans.

3. We show how several compiler opt imizat ions such as

dead code eliminat ion, dynamic slicing, constant prop-
agat ion and folding can be expressed as relat ional al-

gebraic t ransformat ions and simplificat ions that arrive
at the same end result . Thereby, Froid brings these

addit ional benefits to UDFs with no ext ra e↵ort .

4. We discuss the design and implementat ion of Froid,

and present an experimental evaluat ion on several real
world customer workloads, showing significant benefits

in performance and resource ut ilizat ion.

The rest of the paper is organized as follows. Sect ion 2

gives the background. Sect ions 3, 4, 5 and 6 describe Froid
and its techniques. Design details are discussed in Sect ion 7
followed by an evaluat ion in Sect ion 8. We discuss related
work in Sect ion 9 and conclude in Sect ion 10.

2. BACKGROUND
In this sect ion, we provide some background regarding

the way imperat ive code is current ly evaluated in Microsoft

SQL Server and analyze the reasons for their poor perfor-
mance. SQL Server primarily supports imperat ive code in

two forms: UDFs and Stored Procedures (SPs). UDFs can-
not modify the database state whereas SPs can. UDFs and

SPs can be implemented in either T-SQL or Common Lan-
guage Runt ime (CLR). T-SQL expands on the SQL stan-

dard to include imperat ive const ructs, various ut ility func-
t ions, etc. CLR integrat ion allows UDFs and SPs to be

create function total_price(@key int)
returns char(50) as
begin
declare @price float, @rate float;
declare @pref_currency char(3);
declare @default_currency char(3) = 'USD';

select @price = sum(o_totalprice) from orders
where o_custkey = @key;

select @pref_currency = currency
from customer_prefs
where custkey = @key;

if(@pref_currency <> @default_currency)
begin
select @rate =

xchg_rate(@default_currency,@pref_currency);
set @price = @price * @rate;

end
return str(@price) + @pref_currency;

end

create function xchg_rate(@from char(3), @to char(3))
returns float as
begin
return (select rate from dbo.xchg

where from_cur = @from and to_cur = @to);
end

1
2
3

4

5

6

7

8

9

1

Sequential region Conditional region

Figur e 1: Example T-SQL User defined funct ions

writ ten in any .NET framework language such as C# [5].
UDFs can be further classified into two types. Funct ions

that return a single value are referred to as scalar UDFs,
and those that return a set of rows are referred to as Table

Valued Funct ions (TVFs). SQL Server also supports inline
TVFs, which are single-statement TVFs analogous to pa-

rameterized views [13]. In this paper we focus primarily on
Scalar T-SQL UDFs. Extensions to support other impera-

t ive languages are discussed in Sect ion 7.3.

2.1 Scalar UDF Example
In SQL Server, UDFs are created using the CREATE

FUNCTION statement [13] as shown in Figure 1. The func-
t ion total price accepts a customer key, and returns the total

price of all the orders made by that customer. It computes
the price in the preferred currency of the customer by look-

ing up the currency code from the customer prefs table and
performs currency conversion if necessary. It calls another

UDF xchg rate, that ret rieves the exchange rate between the
two currencies. Finally it converts the price to a string, ap-

pends the currency code and returns it . Consider a simple
query that invokes this UDF.

select c name, dbo.total pr i ce(c custkey)
fr om customer ;

For each customer, the above query displays the name,
and the total price of all orders made by that customer. We

will use this simple query and the UDFs in Figure 1 as an
example to illust rate our techniques in this paper.

2.2 UDF Evaluation in SQL Server
We now describe the life cycle of an SQL query that in-

cludes a UDF. At the outset we note that this is a simplified

descript ion with a focus on how UDFs are evaluated cur-
rent ly. We refer the reader to [8, 2, 14] for details.

Parsing, B inding and N ormalizat ion: The query first
goes through syntact ic validat ion, and is parsed into a t ree

433

 Steps

◦ Parsing, binding, normalization: scalar UDFs bound as a UDF operator, but
the definition not analyzed

◦ Cost-based optimization: Query plans (including for each statement in a
UDF) are cached

◦ Execution: For each tuple, scalar evaluation sub-system is called

 May make calls back to the relational execution engine

 Compilation for an UDF happens on the first call

 Drawbacks

◦ Iterative invocations (one at a time) -- leads to repeated context switches

◦ No costing, Interpreted statement-by-statement (with caching of plans)

◦ No intra-query parallelism (as of 2017)

 Inline the UDFs by analyzing the code

 Makes use of APPLY Operator

◦ Basically a “flatmap”

◦ For each tuple r of R, combine it with each output of E(r) to generate new
tuples

◦ The “join” can be: cross product, left outer-join, left-semijoin, or left-
antijoin

 SQL Server already uses these extensively for subquery
decorrelation (as we saw earlier)

SQL Query with UDF calls

Parsing

FROID

UDF Algebrization

Parse UDF definition

Construct UDF Regions

Regions to relational
expressions

Combine expressions
using Apply operator

Substitute UDF expression
(as sub-query) in Query tree

Continue with
substituted
expression

Query tree

Binding

UDF operator
encountered

…
Bound

Query tree

Figur e 3: Overview of the Froid framework

Given these observat ions, the intuit ion behind Froid can
be succint ly stated as follows. I f the entire body of an imper-

ative UDF can be expressed as a single relational expression
R, then any query that invokes this UDF can be transformed

into a query with R as a nested sub-query in place of the
UDF. We term this semant ics-preserving t ransformat ion as

unnesting or inlining of the UDF into the calling query.
Once we perform this t ransformat ion, we can leverage ex-

ist ing sub-query opt imizat ion techniques to get bet ter plans
for queries with UDFs. This t ransformat ion forms the crux

of Froid. Note that although we use the term inlining to de-
note this t ransformat ion, it is fundamentally di↵erent com-

pared to inlining in imperat ive programming languages.

3.2 TheAPPLY operator
Froid makes use of the Apply operator while building a

relat ional expression for UDFs. Specifically, it is used to

combine mult iple relat ional expressions into a single expres-
sion. The Apply operator (A) was originally designed to

model correlated execut ion of sub-queries algebraically in
SQL Server [14, 10]. It accepts a relat ional input R and

a parameterized relat ional expression E (r). For each row
r 2 R, it evaluates E (r) and emits tuples as a join between
r and E (r). More formally, it is defined as follows [14]:

R A
⌦

E =
[

r 2 R

({ r } ⌦E (r))

where ⌦, known as the join type, is either cross product ,

left outer-join, left semijoin or left ant ijoin. SQL Server’s
query opt imizer has a suite of t ransformat ion rules for sub-

query decorrelat ion, which remove the Apply operator and
enable the use of set -oriented relat ional operat ions whenever

possible. Details with examples can be found in [14, 10, 31].

3.3 Overview of Approach
For a UDF with a single RETURN statement in its body,

such as the funct ion xchg rate in Figure 1, the t ransforma-

t ion is st raight forward. The body of such a UDF is already
a single relat ional expression, and therefore it can be subst i-

tuted easily into the calling context , like view subst itut ion.
Expressing the body of a mult i-statement UDF (such as

the funct ion total price in Figure 1) as a single relat ional ex-
pression is a non-t rivial task. Mult i-statement UDFs typi-
cally use imperat iveconst ructssuch as variabledeclarat ions,

assignments, condit ional branching, and loops. Froid mod-

els individual imperat ive const ructs as relat ional expressions
and systemat ically combines them to form one expression.

Figure 3 depicts the high-level approach of Froid, consist -
ing of two phases: UDF algebrizat ion followed by subst i-

tut ion. As a part of binding, the query t ree is t raversed
and each node is bound, as described in Sect ion 2.2. Dur-

ing binding, if a UDF operator is encountered, the cont rol
is t ransferred to Froid, and UDF algebrizat ion is init iated.

UDF algebrizat ion involves parsing the statements of the
UDF and const ruct ing an equivalent relat ional expression

for the ent ire UDF body (described in Sect ion 4). This re-
sult ing expression is then subst ituted, or embedded in the

query t ree of the calling query in place of the UDF operator
(described in Sect ion 5). This query t ree with the subst i-

tuted UDF expression is bound using the regular binding
process. If references to other (nested) UDF operators are

encountered, the same process is repeated. This t ransfor-
mat ion finally results in a bound query t ree, which forms

the input to normalizat ion and opt imizat ion.

3.4 Supported UDFsand queries
Froid current ly supports the following imperat ive con-

st ructs in scalar UDFs.

• D ECLA RE, SET : Variabledeclarat ion and assignments.

• SELECT : SQL query with mult iplevariableassignments.
• I F / EL SE: Branching with arbit rary levels of nest ing.

• R ET U R N : Single or mult iple return statements.
• U D F: Nested/ recursive funct ion calls.

• Ot her s: Relat ional operat ions such as EXISTS, ISNULL.

Table 1 (column 1) shows the supported const ructs more
formally. In Table1, @var and @var 1 denotevariablenames,

expr is any valid T-SQL expression including a scalar sub-
query; pr j expr represents a projected column/ expression;
sql expr is any SQL query; pr ed expr is a boolean expres-

sion; t stmt and f stmt are T-SQL statements [33].
Froid’s techniques do not impose any limitat ions on the

size or depths of UDFs and complexity of queries that invoke
them. The only precondit ion for our t ransformat ions is that

the UDF has to use the supported const ructs. However, in
pract ice, there are certain special cases where we part ially

rest rict the applicat ion of our t ransformat ions; they are dis-
cussed in Sect ion 7.2.

4. UDF ALGEBRIZATION
We now describe the first phase of Froid in detail. The

goal here is to build a single relat ional expression which is

semant ically equivalent to the UDF. This involves t rans-
forming imperat ive const ructs into equivalent relat ional ex-

pressions and combining them in a way that st rict ly adheres
to the procedural intent of the UDF. UDF algebrizat ion con-

sists of the following three steps.

4.1 Construction of Regions
First , each statement in the UDF is parsed and the body

of the UDF is divided into a hierarchy of program regions.
Regions represent st ructured fragments of programs such as

basic blocks, if-else blocks and loops [17]. Basic blocks are
referred to as sequent ial regions, if-else blocks are referred

to as condit ional regions, and loops are referred to as loop
regions. Regions by definit ion contain other regions; the
UDF as a whole is also a region.

435

 Supports imperative constructs in scalar UDFs

 Construction of regions

◦ Basic sequential regions, condition regions (if-else), and loop regions
(loops)

◦ Hierarchical (regions can contain regions)

 Relational expressions for each region

◦ Variable declarations/assignments

 Relational expressions for each region

◦ Variable declarations/assignments

◦ Conditional statements

◦ Return statements

 Code may have multiple return points

 Modeled as a “jump” to the end of the codeblock

 Implemented through use of “probe” and “pass-through” of APPLY

 Combining expressions for multiple statements

◦ For each statement: compute a “read-set” and a “write-set”

Table 2: Derived tables for regions in funct ion total pr ice.

R egion W r i t e-set s (D er ived t ab le schem a)

R1 DT 1 (price float, rate float,
default currency char (3) , pref currency char (3))

R2 DT 2 (price float, rate float)

R3 DT 3 (returnVal char (50))

again invoked for the nested UDF, thereby inlining it . Some

special cases with deeply nested/ recursive funct ions, where
we choose not to opt imize are discussed in Sect ion 7.2.

Ot her s: Relat ional operat ions such as EXISTS, NOT EX-
ISTS, ISNULL etc. can appear in imperat ive const ructs

such as the predicate of an IF-ELSE block. Froid simply
uses the corresponding relat ional operators in these cases.
In addit ion to the above const ructs, we have prototyped al-

gebrizat ion of cursor loops. However, from our analysis of
many real world workloads, we found that scalar UDFs with

loops are quite rare (see Sect ion 8). Therefore, we have cur-
rent ly disabled support for loops and may enable it in future.

4.2.2 Derived table representation

We now show how expressions for individual statements
are combined into a single expression for a region using de-

rived tables. A derived table is a statement -local temporary
table created by a sub-query. Derived tables can be aliased

and referenced just like normal tables. Froid const ructs the
expression of each region as a derived table as follows.

Every statement in an imperat ive program has a read-set
and a write-set, represent ing sets of variables that are read

from and writ ten to within that statement respect ively. Sim-
ilarly, every region R can be seen as a compound statement
that has a read-set and a write-set. Informally, the read-set

of region R is the union of the read-set s of all statements
within R. The write-set of R is the union of the write-set of

all statements within R.
A relat ional expression that captures the semant ics of a

region R has to expose the write-set of R to its subsequent
regions. This is because the variables writ ten to in region R

would be read/ modified in subsequent regions of the UDF.
The write-set of region R is therefore used to define the

schema of the relat ional expression for R. The schema is
defined by t reat ing every variable in the write-set of R as

an at t ribute. The implicit variable returnVal appears in the
write-set of all regions that have a RETURN statement .

The write-set s of all the regions in funct ion total pr ice
of Figure 1 are given in Table 2. Using the schema, along

with the relat ional expressions for each statement , we can
const ruct a relat ional expression for the ent ire region R. A

single ConstantScan followed by ComputeScalar operators,
one per variable, results in a derived table with a single tu-

ple. This derived table represents the values of all variables
writ ten to in R. The derived table aliases for regions R1, R2
and R3 are shown as DT1, DT2, and DT3 in Table 2.

4.3 Combining expressions using APPLY
Once we have a relat ional expression per region, we now

proceed to create a single expression for the ent ire funct ion.

The relat ional expression for a region R uses at t ributes from
its prior regions, and exposes its at t ributes to subsequent

regions. Therefore, weneed a mechanism to connect variable
definit ions to their uses and (re-)definit ions.

select DT3.returnVal from
(select 'USD' as default_currency,
(select sum(o_totalprice) from orders

where o_custkey = @key) as price,
(select currency from customer_prefs

where custkey = @key) as pref_currency) DT1
outer apply
(select

case when DT1.pref_currency <> DT1.default_currency
then DT1.price * xchg_rate(DT1.default_currency,

DT1.pref_currency)
else DT1.price end as price) DT2

outer apply
(select str(DT2.price) + DT1.pref_currency

as returnVal) DT3

R1

R2

R3

Figur e 4: Relat ional expression for UDF total price

Froid makes use of the relat ional Apply operator to sys-
temat ically combine region expressions. The derived tables

of each region are combined depending upon the type of the
parent region. For a region R, we denote the corresponding

relat ional expression as E (R). For the total pr ice funct ion
in Figure 1, E (R1) = D T1, E (R2) = D T2, E (R3) = D T3.

Figure 4 shows the relat ional expression for the ent ire
UDF. The dashed boxes in Figure 4 indicate relat ional ex-

pressions for individual regions R1, R2 and R3. Note that
Froid’s t ransformat ionsareperformed on the relat ional query

t ree st ructure and not at the SQL language layer. Figure 4
shows an SQL representat ion for ease of presentat ion.

The relat ional expression for a sequent ial region such as

R0 is const ructed using a sequence of Apply operators be-
tween its consecut ive sub-regions i.e.,

E (R0) = (E (R1) A
o

E (R2)) A
o

E (R3)

The SQL form of this equat ion can be seen in Figure 4. The
Apply operators make the values in DT 1 available for use

in DT2, the values in DT1 and DT2 available for DT3, and
so on. We use the outer join type for these Apply operators

(A o). In the presence of mult iple return statements, we
make use of Apply with probe (which internally uses left

semijoin) and pass-through (outer join) [10].
Consider the variable @pref currency as an example. It is

first computed in R1, and hence is an at t ributeof thederived
table DT1 (as shown in Figure 4). R2 uses this variable, but

does not modify it . Therefore @pref currency is not in the
schema of DT2. All the uses of @pref currency in R2 now re-

fer to it as DT1.pref currency. R3 also uses @pref currency
but does not modify it . The value of @pref currency that
R3 uses comes from R1. Therefore R3 also makes use of

DT1.pref currency in its computat ion of returnVal.
Observe that the expression in Figure 4 has no reference

to the intermediate variable @rate. As a simplificat ion, we
generate expressions for variables only when they are first

assigned a value, and we expose only those variables that are
live at the end of the region (i.e., used subsequent ly). The

@rate variable gets eliminated due to these simplificat ions.
Finally, observe that the only at t ribute exposed by R0 (the

ent ire funct ion) is the returnVal at t ribute. This expression
shown in Figure 4, is a relat ional expression that returns a

value equal to the return value of the funct ion total pr ice.

4.4 Correctness and Semantics Preservation
We now reason about the correctness of our t ransforma-

t ions, and describe how they preserve the procedural seman-
t ics of UDFs. As described earlier, Froid first const ructs

437

Use these as the “schemas” of derived tables

to be computed

 Combining expressions for multiple statements

◦ For each statement: compute a “read-set” and a “write-set”

◦ Use these as schemas of derived tables

◦ Connect the regions using APPLY (with pass-through in case of multiple return
statements)

 Correctness?

◦ Each individual transformation correct by itself

◦ All derived tables contain a single tuple

◦ Outer apply preserves the semantics of combined execution

 Note: Doesn’t handle loops -- may be trickier to model

 Replace the scalar UDF with the relational expression (not as SQL, but rather
operators)

 Let the optimizer de-correlate and optimize

 Resulting plan looks complex, but decorrelates as desired

 Dynamic slicing: use compile-time constants to simplify queries

 Constant folding and propagation: already done by SQL server

 Dead code elimination: optimizer handles these during project pushdown

 Should this inlining be done in a cost-based manner?

◦ Influences whether it takes place during binding or during query optimization

◦ Experiments showed it is almost always beneficial + hard to modify optimizers ➔
do it in the binding phase

 Constraints

◦ Put a constraint on the maximum size of UDFs that can be algebrized

 Froid is extensible -- could handle other languages as well

 Security and permissions

◦ A user may not have permission on the UDF but on the tables, and vice versa

◦ Need to be careful with caches as well

 Applicability

◦ Used top 100 customer workloads from Azure SQL → 85329 scalar UDFs

◦ Froid could handle 60% or so

	Slide 1: CMSC 724: Database Management Systems Query Processing and Optimization
	Slide 2: Outline
	Slide 3: Traditional Optimization not Robust Enough
	Slide 4: Some Related Topics
	Slide 5: AQP: Overview/Summary
	Slide 6: AQP: Overview/Summary
	Slide 7: Low-Overhead Adaptivity: Non-pipelined Execution
	Slide 8: Late Binding; Staged Execution
	Slide 9: Mid-query Reoptimization [KD’98,MRS+04]
	Slide 10: Mid-query Reoptimization
	Slide 11: Mid-query Reoptimization
	Slide 12: Mid-query Reoptimization
	Slide 13: Where to Place Checkpoints?
	Slide 14: When to Re-optimize?
	Slide 15: Outline
	Slide 16: Overview
	Slide 17: Overview
	Slide 18: Architecture
	Slide 19: Computing Validity Ranges
	Slide 20: Computing Validity Ranges
	Slide 21: Reusing Partial Results
	Slide 22: Lazy vs Eager Checking
	Slide 23: Eager Checking
	Slide 24: Eager Checking
	Slide 25: Experiments
	Slide 26: How to Reoptimize
	Slide 27: Pipelined Execution
	Slide 28: Adapting Pipelined Queries
	Slide 29: Eddies [AH’00]
	Slide 30: Eddies [AH’00]
	Slide 31: Eddies [AH’00]
	Slide 32: Eddies [AH’00]
	Slide 33: Eddies [AH’00]
	Slide 34: Eddies [AH’00]
	Slide 35: Eddies [AH’00]
	Slide 36: Eddies [AH’00]
	Slide 37: Eddies [AH’00]
	Slide 38: Routing Policies that Have Been Studied
	Slide 39: Routing Policy 3: Lottery Scheduling
	Slide 40: Routing Policy 3: Lottery Scheduling
	Slide 41: Routing Policy 3: Lottery Scheduling
	Slide 42: Routing Policy 3: Lottery Scheduling
	Slide 43: Routing Policy 3: Lottery Scheduling
	Slide 44: Routing Policy 3: Lottery Scheduling
	Slide 45: Routing Policy 3: Lottery Scheduling
	Slide 46: Routing Policy 3: Lottery Scheduling
	Slide 47: Routing Policy 3: Lottery Scheduling
	Slide 48: Eddies: Post-Mortem
	Slide 49: Pipelined Execution Part II: Adaptive Join Processing
	Slide 50: Adaptive Join Processing: Outline
	Slide 51: Left-Deep Pipelined Plans
	Slide 52: Adapting a Left-deep Pipelined Plan
	Slide 53: Adapting a Left-deep Pipelined Plan
	Slide 54: Overview
	Slide 55: Eddies and Joins
	Slide 56: Reorderability of Plans
	Slide 57: Reorderability of Plans
	Slide 58: Eddies
	Slide 59: Outline
	Slide 60: Motivation
	Slide 61: Permutable Compiled Queries (PCQ)
	Slide 62: Permutable Compiled Queries (PCQ)
	Slide 63: Adaptive Filter Ordering
	Slide 64: Adaptive Aggregations
	Slide 65: Adaptive Joins
	Slide 66: Experimental Evaluation
	Slide 67: Recap/Thoughts
	Slide 68: Outline
	Slide 69: Motivation
	Slide 70: Yannakakis Algorithm [1981]
	Slide 71: Yannakakis Algorithm [1981]
	Slide 72: Yannakakis Algorithm [1981]
	Slide 73: Yannakakis Algorithm [1981]
	Slide 74: Yannakakis Algorithm [1981]
	Slide 75: Yannakakis Algorithm [1981]
	Slide 76: Acyclic Queries?
	Slide 77: Acyclic Queries?
	Slide 78: Acyclic Queries?
	Slide 79: Structural Approaches
	Slide 80: Triangle Query
	Slide 81: Triangle Query
	Slide 82: Algorithm 1: Power of Two Choices
	Slide 83: Algorithm 1: Power of Two Choices
	Slide 84: Algorithm 2: Delay Computation
	Slide 85: Algorithm 2: Delay Computation
	Slide 86: AGM Bound on Join Sizes
	Slide 87: AGM Bound on Join Sizes
	Slide 88: AGM Bound on Join Sizes
	Slide 89: AGM Bound on Join Sizes
	Slide 90: A Generic Algorithm
	Slide 91: Recap/Thoughts
	Slide 92: Outline
	Slide 93: User-defined Functions/Procedures
	Slide 94: User-defined Functions/Procedures
	Slide 95: User-defined Functions/Procedures
	Slide 96: Terminology
	Slide 97: UDF Challenges
	Slide 98: UDF Challenges
	Slide 99: Outline
	Slide 100: Background on T-SQL
	Slide 101: UDF Evaluation in SQL Server
	Slide 102: Froid Framework
	Slide 103: Froid Framework
	Slide 104: Froid Framework
	Slide 105: UDF Algebrization
	Slide 106: UDF Algebrization
	Slide 107: UDF Algebrization
	Slide 108: UDF Algebrization
	Slide 109: Substitution and optimization
	Slide 110: Compiler Optimizations
	Slide 111: Design and Implementation
	Slide 112: Evaluation
	Slide 113: Evaluation
	Slide 114: Aggify: Handling Cursor Loops [2020]

