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Outline

» Part 1 Slides

> Query evaluation techniques for large databases, Skew Avoidance, Query
compilation/vectorization

> Query Optimization: Overview, How good are the query optimizers,
really?, Reordering for Outerjoins, Query Rewriting

» Adaptive Query Processing
o Eddies
° Progressive Query Optimization

o Compilation and adaptivity

» Worst case optimal joins

» Froid: Databases and UDFs




Traditional Optimization not Robust Enough

» In traditional settings:
° Queries over many tables
> Unreliability of traditional cost estimation
° Success, maturity make problems more apparent, critical
» In new environments:
° e.g.data integration, web services, streams, P2P...
> Unknown dynamic characteristics for data and runtime
° Increasingly aggressive sharing of resources and computation
° |Interactivity in query processing
» Note two distinct themes lead to the same conclusion:

> Unknowns: even static properties often unknown in new environments and often
unknowable a priori

> Dynamics: environment changes can be very high

» Motivates intra-query adaptivity

M



Some Related Topics

» Autonomic/self-tuning optimization
> Chen and Roussoupolous: Adaptive selectivity estimation [SIGMOD 1994]
° LEO (@IBM), SITS (@MSR): Learning from previous executions

» Robust/least-expected cost optimization

» Parametric optimization
> Choose a collection of plans, each optimal for a different setting of
parameters
> Select one at the beginning of execution

» Competitive optimization
o Start off multiple plans... kill all but one after a while

» Adaptive operators
More details in our survey: “Adaptive Query Processing”; FnT

2007




AQP: Overview/Summary

» Low-overhead, evolutionary approaches
> Typically apply to non-pipelined execution
> Late binding: Don’t instatntiate the entire plan at start
> Mid-query reoptimization: At “materialization” points, review
the remaining plan and possibly re-optimize
» Pipelined execution

> No materialization points, so the above doesn’t apply

> The operators may contain complex states, raising correctness
issues

> Eddies

- Always guarantee correct execution, but allows reordering during
execution

» Lot of work in 1998-2008 timeframe -- not much since




AQP: Overview/Summary

» We will start with a general overview of AQP as
presented in a later survey and tutorial

» Then go through the three papers (first two quickly,
and the last one in more detail)
> First two will be covered in the tutorial




Low-Overhead Adaptivity:
Non-pipelined Execution



Late Binding; Staged Execution

materialization lelJv
point \ MI C Normal execution: pipelines separated
—, @o» by materialization points
Csort> =
e.g., at a sort, GROUP BY, etc.
W,

Materialization points make natural decision points where
the next stage can be changed with little cost:

— Re-run optimizer at each point to get the next stage

— Choose among precomputed set of plans — parametric query
optimization [INSS'92, CG'94, ...]



Mid-query Reoptimization
[KD’98 MRS+04]

R

Choose checkpoints at which to monitor cardinalities /J Where?
Balance overhead and opportunities for switching plans

If actual cardinality is too different from estimated, A When?
Avoid unnecessary plan re-optimization (where the plan doesn’t change)

Re-optimize to switch to a new plan J How?

Try to maintain previous computation during plan switching

= Most widely studied technique:
-- Federated systems (InterViso 90, MOOD 96), Red Brick,
Query scrambling (96), Mid-query re-optimization (98),
Progressive Optimization (04), Proactive Reoptimization (05), ...



Mid-query Reoptimization

= At materialization points, re-evaluate the rest of the query
plan

= Example:
Initial query plan chosen

R1 " R2 R3

Estimated 0.05 0.1 0.2
selectivities |

A free opportunity to re-evaluate the rest of the query plan
- Exploit by gathering information about the materialized result




Mid-query Reoptimization

= At materialization points, re-evaluate the rest of the query
plan

= Example:
Initial query plan chosen

R1 [Materialize R2 R3
R —»—b R1:; build result
1-d hists

Estimated 0.05 0.1 0.2
selectivities |

A free opportunity to re-evaluate the rest of the query plan
- Exploit by gathering information about the materialized result




Mid-query Reoptimization

= At materialization points, re-evaluate the rest of the query
plan
= Example:

Initial query plan chosen
R1 |Materialize R2 R3
R —>—. R1; build |, _.
[ 1-d hists J
Estimated 0.05 Q.l (D

selectivities

Re-estimated Q.S @

selectivities

Significantly different = original plan probably sub-optimal

Reoptimize the remaining part of the query




Where to Place Checkpoints?

MJ . More checkpoints = more opportunities for
Puis AC.  gwitchina plan
Lazy . Switc gpas. T
B Overhead of (simple) monitoring is small
Ssort> [SLMK'01]
Eager ‘@
- | /A Consideration: itis easier to switch plans at

some checkpoints than others

Lazy checkpoints: placed above materialization points
— No work need be wasted if we switch plans here

Eager checkpoints: can be placed anywhere

— May have to discard some partially computed results
— Useful where optimizer estimates have high uncertainty



When to Re-optimize?

= Suppose actual cardinality is different from estimates:
how high a difference should trigger a re-optimization?

= |dea: do not re-optimize if current plan is still the best

1. Heuristics-based [KD’98]:
e.g., re-optimize < time to finish execution

2. Validity range [MRs+04]: precomputed range of a parameter
(e.g., a cardinality) within which plan is optimal
— Place eager checkpoints where the validity range is narrow

— Re-optimize if value falls outside this range
— Variation: bounding boxes [BBD'05]



Outline

» Query evaluation techniques for large databases, Skew
Avoidance, Query compilation/vectorization

» Query Optimization: Overview, How good are the query
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Overview

» Trigger re-optimization during query execution if errors too high
» Through use of CHECK operators inserted into the query plan
> Succeeds if the observed values within a range around the estimates

» If optimizer estimates accurate, the only overhead is the
“couting” done by CHECK

NLIN | ssssssmssss > NLJIN HSJIN

Add checkpoint R
0“
0”
/SN [ SN N
. o*
. R4
....l [T l““
Re-optimization

Figure 2. Adding CHECK to the outer of a NLJN




Overview

» Trigger re-optimization during query execution if errors too high

» Through use of CHECK operators inserted into the query plan

> Succeeds if the observed values within a range around the estimates

» If optimizer estimates accurate, the only overhead is the
“couting” done by CHECK

» If CHECK detects significant error, then “reoptimize”

o Partial results made available to the optimizer to use if it wants (in the form of a
materialized view)




Architecture

l. Initial run Il. Re-optimization
SQL Compiler SQL Compiler
Parser Parser
! ! _
Rewrite Rewrite | Possibly reuse
(rule based[ Add checkpoints to (rule based| ~ Previous
optimizer) plan optimizer) | intermediate
4 v results
Optimizer _J__,  Optimizer >/
(cost based) \ ! (cost based)
7 Perform check, I X 7
Code uion lj[al_lurelz . : _% Code
Generator - retain afready Xel Generator
computed results, ! )
1 2. trigger re 1 1
-optimization, | | Clean up
Runtime ! Runtime = |




Computing Validity Ranges

» Helps only re-optimize when necessary

» The general problem is that of “parametric” optimization

° i.e., find the best plan for each combination of parameters

°  Too expensive

» Instead:
> Consider P1 and P2 -- two identical plans except for the top operator
> Let cost(P1) < cost(P2) per the estimates = we would choose P1 over P2

o Let “x” denote an edge into the top operator, and let “result(x) = e” denote the result flowing
along “x”

o Figure out: at what value of |result(x)|, we would have chosen P2 instead

Cost

Cost(POpt)i

>
' Input Cardinality




Computing Validity Ranges

» Helps only re-optimize when necessary

» The general problem is that of “parametric” optimization
° i.e., find the best plan for each combination of parameters
°  Too expensive
» Instead:
> Consider P1 and P2 -- two identical plans except for the top operator
> Let cost(P1) < cost(P2) per the estimates = we would choose P1 over P2

o Let “x” denote an edge into the top operator, and let “result(x) = e” denote the result flowing
along “x”

o Figure out: at what value of |result(x)|, we would have chosen P2 instead

» Use numerical techniques to find these validity ranges

M



Reusing Partial Results

» Treat it as a materialized view, and let the optimizer decide

» If the plan under CHECK has a side-effect
plan (i.e., not redo that portion)

(e.g., update), then must reuse that

» In many cases, better not to use the partial result

NLJIN
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POINT

NLJIN

-
-
-
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\. Figure 6: Two alternatives considered in re-optimization



Lazy vs Eager Checking

v

If there is already a materialization point, can add CHECK there for free (lazy)

v

Can add explicit materialization along with a CHECK

° Extra overhead in doing that

v

Eager CHECKs don’t wait for materialization

v

ECWC (Eager without compensation)

> There is a materialization afterwards = no results will be output to the user

> So can easily reoptimize without worrying about compensation

(@ (b)
/2N VAN
13.2;/.(;7, T {-;Re‘;\(}:g' MATERIALIZATION

king R Eage POINT

MATERIALIZATION
POINT MATERIALIZATION 5
POINT 2
A CHECKPOINT

P

Figure 7: Lazy checking (LC) and eager checking without
compensation (ECWC)



Eager Checking

» With Buffering: Buffer results until you are sure things are okay

> Delays the pipeline for some time

IIIIIIIIIIIIIIII*

NLJN Eager checking NLJN

Figure 8: Eager checking with Buffering




Eager Checking

»  With Deferred Compensation

> Keep track of what tuples have already been output

> Check that side table before outputting new tuples after reoptimization

> Potentially a lot of repeated work

RETURN

ssnsssnnnnn

Eager checking

RETURN

INSERT

CHECK

)
e®
'Y
Illllllll-‘--

Re-optimization

RETURN

------
~

' | ANTI-JOIN

(not exists)

deferred compensation



Experiments

» Degradation in some cases -- sometimes two errors cancelled
each other out in the original plan
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Figure 16: Speedup and Regression of each Query




How to Reoptimize

Getting a better plan:

— Plug In actual cardinality information acquired during this
guery (as possibly histograms), and re-run the optimizer

Reusing work when switching to the better plan:

— Treat fully computed intermediate results as materialized
VIEWS

 Everything that is under a materialization point

— Note: It is optional for the optimizer to use these in the
new plan

» Other approaches are possible (e.g., query scrambling
[UFA'98])



Pipelined Execution



Adapting Pipelined Queries

Adapting pipelined execution is often necessary:
— Too few materializations in today’s systems
— Long-running queries
— Wide-area data sources
— Potentially endless data streams

The tricky Issues:
— Some results may have been delivered to the user
* Ensuring correctness non-trivial
— Database operators build up state

» Must reason about it during adaptation
* May need to manipulate state



Eddies [AH00]

Query processing as routing of tuples through operators

A traditional pipelined query plan

R1 R2 R3
e e o)

Pipelined query execution using an eddy

An eddy operator

* Intercepts tuples from sources
and output tuples from operators

« Executes query by routing source
tuples through operators

R ———| Eddy

Encapsulates all aspects of result

adaptivity in a “standard”
dataflow operator:
measure, model, plan and
actuate.




Eddies [AH00]

An R Tuple: rl

v
[(op

c

15 10 AnameA

result

o




Eddies [AH00]

An R Tuple: rl
Operator 1
a o] c e ready |\ done
15 10 AnameA . 111 0/0]0)
ready bit i :

1 -2 operator i can be applied
O =2 operator i can’t be applied

perator 2

\ result

R

\ 4

rl

Operator 3



Eddies [AH00]

An R Tuple: rl
Operator 1
a o] c e readyf| done
15 10 AnameA ... 111 0/0]0)
done bit i :

1 -2 operator i has been applied
O - operator i hasn’t been applied

perator 2

\ result

rl

Operator 3



Eddies [AH00]

An R Tuple: rl
Operator 1
a o] c e ready | done
15 10 AnameA .. | 111 | 000

e

Used to decide validity and need
of applying operators

perator 2

\ result

R

\ 4

rl

Operator 3



Eddies [AH00]

An R Tuple: rl
Operator 1
a b c e
15 10 AnameA ... 101 000

@not satisfied
Operator 2
R.b <20
rl

\ result
eddy looks at the rl
next tuple @

Operator 3

For a query with only selections,
= complement( )

R

A 4




Eddies [AH00]

An R Tuple: r2

Operator 1

Ic

a C

10 15 AnameA . @
Operator 2
R.b < 20
; (e
R

Edd
y
\ result

. Operator 3
satisfied

A 4



Eddies [AH00]

An R Tuple: r2
a o] c
10 15 AnameA (0]0]0) 111
i = 111,

send to output

R

A 4

r2

Operator 1

@
Operator 2
R.b <20

\ result
r2

. Operator 3
satisfied




Eddies [AH00]

Adapting order is easy
— Just change the operators to which tuples are sent
— Can be done on a per-tuple basis

— Can be done in the middle of tuple’s “pipeline”
How are the routing decisions made?

Using a routing policy

Operator 1

Operator 2

result

Operator 3



Routing Policies that Have Been Studied

Deterministic [DO3]
— Monitor costs & selectivities continuously

— Re-optimize periodically using rank ordering
(or A-Greedy for correlated predicates)

Lottery scheduling [AHOO]
— Each operator runs in thread with an input queue
— “Tickets” assigned according to tuples input / output

— Route tuple to next eligible operator with room in queue,
based on number of “tickets” and “backpressure”

Content-based routing [BBDWO5]
— Different routes for different plans based on attribute values



Routing Policy 3: Lottery Scheduling

= Originally suggested routing policy [AH 00]
= Applicable only if each operator runs in a separate thread

= Uses two easlily obtainable pieces of information for making
routing decisions: g

— Busyl/idle status of operators

Operator 1
— Tickets per operator
é / Operator 2

. A
\ result

Operator 3



Routing Policy 3: Lottery Scheduling

= Routing decisions based on busyl/idle status of operators

Rule:
|F operator busy,

THEN do not route more w g

tuples to it

Operator 1

Operator 2

Rationale:
Every thread gets equal time
SO IF an operator is busy,

THEN its cost is perhaps very
@




Routing Policy 3: Lottery Scheduling

= Routing decisions based on tickets

Rules:
1. Route a new tuple randomly :
weighted according to the tickets(O1) = 10

number of tickets tickets(O2) = 70
tickets(O3) = 20

é Operator 1

Operator 2

Operator 3

Will be routed to: r
01 wp. 0.1 ?
02 w.p. 0.7 @
03 w.p. 0.2 é



Routing Policy 3: Lottery Scheduling

= Routing decisions based on tickets

Rules:
1. Route a new tuple randomly
weighted according to the
number of tickets

tickets(O1) = 10
tickets(O2) = 70
tickets(O3) = 20

é Operator 1

Operator 2

é Operator 3



Routing Policy 3: Lottery Scheduling

= Routing decisions based on tickets

Rules:

1. Route a new tuple randomly
weighted according to the
number of tickets

2. route a tuple to an operator O,
tickets(O,) ++;

tickets(O1) = 11
tickets(O2) = 70
tickets(O3) = 20

é Operator 1

Operator 2

é Operator 3



Routing Policy 3: Lottery Scheduling

= Routing decisions based on tickets

Rules:

1. Route a new tuple randomly
weighted according to the
number of tickets

2. route a tuple to an operator O,
tickets(O,) ++;

3. O, returns a tuple to eddy
tickets(O;) --;

tickets(O1) = 11
tickets(O2) = 70
tickets(O3) = 20

—

|
-

é Operator 1

Operator 2

\ result

Operator 3

é



Routing Policy 3: Lottery Scheduling

= Routing decisions based on tickets

Rules:

1. Route a new tuple randomly
weighted according to the tickets(O1) = 10
number of tickets tickets(02) = 70

2. route a tuple to an operator O, tickets(O3) = 20

tickets(O,) ++; é Operator 1
3. O, returns a tuple to eddy @

tickets(O)) --; 2
Operator 2
\ result

—_—
Will be routed to: r
02 wp. 0.777 ?
03 w.p. 0.222 é

Operator 3



Routing Policy 3: Lottery Scheduling

= Routing decisions based on tickets

Rules:

1. Route a new tuple randomly
weighted according to the tickets(O1) = 10
number of tickets tickets(02) = 70

2. route a tuple to an operator O, tickets(03) = 20 g
tickets(O;) ++;

Operator 1
3. O, returns a tuple to eddy
tickets(O)) --; /
Operator 2

Rationale: '@

Tickets(O;) roughly corresponds to
(1 - selectivity(O))) \ result

So more tuples are routed to
highly selective operators % @

Operator 3



Routing Policy 3: Lottery Scheduling

= Effect of the combined lottery scheduling policy:
— Low cost operators get more tuples
— Highly selective operators get more tuples
— Some tuples are knowingly routed according to sub-optimal orders
* To explore
* Necessary to detect selectivity changes over time



Eddies: Post-Mortem

= Plan Space explored
— Allows arbitrary “horizontal partitioning”
— Not necessarily correlated with order of arrival

of
arrival

In a later paper, we looked at optimizing for horizontal partitioning directly



Pipelined Execution Part II:
Adaptive Join Processing



Adaptive Join Processing: Outline

= Single streaming relation
— Left-deep pipelined plans
= Multiple streaming relations
— Execution strategies for multi-way joins
— History-independent execution
— History-dependent execution



Left-Deep Pipelined Plans

- (®) (&) (®

B C

Simplest method of joining tables
— Pick a driver table (R). Call the rest driven tables
— Pick access methods (AMs) on the driven tables (scan, hash, or index)
— Order the driven tables
— Flow R tuples through the driven tables

Foreachr € R do:
look for matches for r in A;
for each match a do:
look for matches for <r,a> in B;



Adapting a Left-deep Pipelined Plan

- (®) (&) (®

B C

Simplest method of joining tables
— Pick a driver table (R). Call the rest driven tables
— Pick access methods (AMs) on the driven tables
— Order the driven tables }

— Flow R tuples through the driven tables —
Almost identical

to selection

Foreachr € R do: ordering

look for matches for r in A;
for each match a do:
look for matches for <r,a> in B;



Adapting a Left-deep Pipelined Plan

- (®) (&) (®

B C

Key issue: Duplicates
Adapting the choice of driver table
[L+07] Carefully use indexes to achieve this
Adapting the choice of access methods
— Static optimization: explore all possibilities and pick best

— Adaptive: Run multiple plans in parallel for a while,
and then pick one and discard the rest [Antoshenkov’ 96]

« Cannot easily explore combinatorial options



Overview

» Continuously “reorder” operators as the query is executing
> By changing the “order” in which tuples visit operators

° Obviate the need for selectivity estimation and optimization entirely

o Naturally handles situations where the selectivities change over time (for long-
running queries)

-




Eddies and Joins

» Selections are arbitrarily reorderable - An index lookup can be
treated as a “selection”
» What about joins? - Send an S tuple, get back

augmented tuples
- Note: decision to use the
index cannot be “adapted”

- These two are tricky
- Nested loops requires
iterating over all of inner
- Hash join requires building a *

hash table on inner \




Reorderability of Plans

» Synchronization Barriers

> Many operators explicitly enforce an order in which tuples must be read
from the inputs

° e.g., Sort-merge joins: at most points, the next tuple to read must be read
from a specific input

> Hash joins: need to read all of “inner” before outer tuples can be read
» Moments of Symmetry

° Sort-merge join is symmetric

> But Nested-loops is not

- However, can change the outer/inner at specific points

» Join operators with more moments of symmetric preferred

° e.g., Symmetric Hash Join Operator




Reorderability of Plans
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Figure 3: Tuples generated by block, index, and hash ripple jom. In block ripple, all tuples are generated by the join, but some may
be eliminated by the join predicate. The arrows for index and hash ripple join represent the logical portion of the cross-product
space checked so far; these joms only expend work on tuples satisfying the join predicate (black dots). In the hash ripple diagram,
one relation arrives 3 x faster than the other.




Eddies

» Implemented in the context of River project

» Eddy is a separate module that talks to all other operators
> Uses “ready” and “done” bitsets to direct traffic

» Lottery scheduling-based routing policy

> Promising initial results, but bunch of caveats




Outline

» Query evaluation techniques for large databases, Skew
Avoidance, Query compilation/vectorization

» Query Optimization: Overview, How good are the query
optimizers, really?, Reordering for Outerjoins, Query Rewriting

» Adaptive Query Processing
o Eddies

° Progressive Query Optimization

o Compilation and adaptivity




Motivation

» Adaptive query processing (POP-style) works well with
interpretable query plans, but not as well with compilation

o Compiling a new query plan too expensive

[ @ Static @ Optimal —V— Permutable (PCQ)]
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(a) Execution Time
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(b) Code-Generation Time
Figure 1: Reoptimizing Compiled Queries — PCQ enables near-
optimal execution through adaptivity with minimal compilation
overhead.




Permutable Compiled Queries (PCQ)

» Adaptive query processing (POP-style) works well with
interpretable query plans, but not as well with compilation

o Compiling a new query plan too expensive

» Instead:
> Precompile a bunch of different plans at optimization time itself

> Add indirections to the compiled code to make it easy to switch/permute
operators

> Add hooks for collecting runtime performance metrics

* To be used to decide whether to switch




Permutable Compiled Queries (PCQ)

Stage #1 - Translation Stage #2 - Compilation Stage #3 - Execution
SELECT * FROM foo TR Samples Anaysis
= = = fun a_eq_1
WHERE A=1 AND B=2 AND (=3 il T B e —
fun c_eq_30) { ... } Filters m
fun query() { ) Execution ©)
v Compiler query: Loop *

\4

|:> | Execute Policies

A

Optimizer

c_eq_
for (v in foo) {

filt .R
1} itters.Run(v) Bytecode

Transiator var filters = {I[ ) )
a_eq_1, 0x00 FilterInit
b_eq_2, 0x0c FilterInsert

Kl 0x14 RunFilters H

Physical
Plan TPL

Figure 2: System Overview — The DBMS translates the SQL query into a DSL that contains indirection layers to enable permutability. Next, the
system compiles the DSL into a compact bytecode representation. Lastly, an interpreter executes the bytecode. During execution, the DBMS
collects statistics for each predicate, analyzes this information, and permutes the ordering to improve performance.




Adaptive Filter Ordering

Vectorization effect???
The code suggests filters
applied to all tuples, so no
point in reordering

SELECT * FROM A WHERE coll * 3 = col2 + col3 AND col4 < 44

(a) Example Input SQL Query

Policies

1 fun query() {

2 var filters={[p1,p2l}
for (v in A) { [

pnm -l —

8 fun p2(v:xVec) {
9 for (t in v) { Profile

10 if (t.collx3 == Sel. | Cost
11 t.col2+t.col3){ 05 | 10
12 vit]=true}}} '

0.7 4

(b) Generated Code and Execution of Permutable Filter

Figure 3: Filter Reordering — The Translator converts the query in
(a) into the TPL on the left side of (b). This program uses a data struc-
ture template with query-specific filter logic for each filter clause.
The right side of (b) shows how the policy collects metrics and then
permutes the ordering.



Adaptive Aggregations

SELECT col1, COUNT(*) FROM A GROUP BY coli
(a) Example Input SQL Query

1 fun query() {
2 var aggregator = {[ —
3 ..., // Normal funcs Policies
4 aggregateHot,
5 aggregateMerge brofile
& B i o Hash —
7  for (v in foo) Count
[#Keys| =
Hot l v
——————— -
' Initialize Hot |
! |
| \ |
—— Aggregate Hot |
| v I
|

- l =
_______ l
I

(b) Generated Code and Execution of Adaptive Aggregation

Figure 4: Adaptive Aggregations — The input query in (a) is trans-
lated into TPL on the left side of (b). The right side of (b) steps
through one execution of PCQ aggregation.




Adaptive Joins

SELECT * FROM A
INNER JOIN B ON A.col1
INNER JOIN C ON A.col2

B.col1
C.col1

Alternate #1 Alternate #2

(a) Example Input SQL Query

S

(b) Possible Join Orderings

Policies
1 fun query() {
2 // HT on B, C built.
3 var joinExec = {I
4 {ht_B, joinB},
5 {ht_C,. ]XIHC}]} —» Hash — Probe

=]
pa—c]
#«

(c) Generated Code and Execution of Permutable Joins

Figure 5: Adaptive Joins — The DBMS translates the query in (a) to
the program in (c). The right side of (c) illustrates one execution of

a permutable join that includes a metric collection step.



Experimental Evaluation

[— Order-1 —— Order-2 —— Order-3 = Permutable 1
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Figure 6: Performance Over Time - Execution time of three static
filter orderings and our PCQ filter during a sequential table scan.
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Figure 12: Varying Number of Joins — Execution time to perform a
multi-step join while keeping the overall join selectivity at 10%.




Recap/Thoughts

» Not much work on adaptive query processing in the last 10
years

o SkinnerDB [2019] another relevant work

» More work on adapting the execution of a single operator

° e.g., changing things based on available resources

» Likely to re-emerge as an important topic in the next few years

> As QP in many systems becomes more mature...

> As SQL starts becoming more and more common as the query language
(e.g., in Spark, Pandas, etc).




Outline

» Query evaluation techniques for large databases, Skew
Avoidance, Query compilation/vectorization

» Query Optimization: Overview, How good are the query
optimizers, really?, Reordering for Outerjoins, Query Rewriting

» Adaptive Query Processing

» Worst-case Optimal Join Processing

» Froid: UDFs and Databases




Motivation

» Consider an "edges” relation with N edges, capturing an
“undirected” graph,

» And a query to find the number of "triangles”

source | target select count(*)/6

vl
v2
vl
v3
v2
v3

v2 from edges el, edges e2, edges e3
v where el.target = e2.source and
v3 e2.target = e3.source and

vl e3.target = el.source

v3

v2

Any “binary joins” plan will be “sub-optimal”
Worst case = O(N”2)

Mutput size bounded by O(N”1.5)
\M



Yannakakis Algorithm [1981]

Boolean Conjunctive Query

q0 - R(A, B), S(B, C), T(C, D) Answer is a True/False

A__[B B__C C__ D
al bl bl cl

cO dl

a2 b1 b1 c2 cO d?2

a3 b1 b1 c3 cO d3

a4 b1 cO d4

a5 bl b2 cO cO d5

a6 b1 b3 cO cO do6
1M tuples with B = bl 1M tuples with C =c0 1M tuples with C = c0

1M tuples with B = bl

- However: No results in the output



Yannakakis Algorithm [1981]

q() :- R(A, B), S(B, C), T(C, D)

A B _NB [cC Nc [p
al bl bl cl cO dl

a2
a3
a4
ab
ab

1M tuples with B = bl

b1
bl
b1
b1
bl

bl
bl
b2
b3

c2
c3
cO
cO

1M tuples with C = c0

. 1M tuples with B = bl

cO
cO
cO
cO
cO

1M tuples with C = c0

d2
d3
d4
d5
d6

No Binary Join Tree Works

R JOIN S == generates 1 trillion tuples
(none of which match T)

S JOIN T == generates 1T tuples

R JOIN T == cross product == 1T tuples



Yannakakis Algorithm [1981]

q() :- R(A, B), S(B, C), T(C, D)

A B _NB [cC Nc [p
al bl bl cl cO dl

a2
a3
a4
ab
ab

1M tuples with B = bl

b1
bl
b1
b1
bl

bl
bl
b2
b3

c2
c3
cO
cO

1M tuples with C = c0

. 1M tuples with B = bl

cO
cO
cO
cO
cO

1M tuples with C = c0

d2
d3
d4
d5
d6

First, do S SEMIJOIN R

B __C

bl cl
bl c2
bl c3

Removes tuples from S

that don’t contribute to the final
output

(e.g., (b2, cO) will never

join with anything from R)



Yannakakis Algorithm [1981]

g() :- R(A, B), S(B, C), T(C, D) First, do S SEMIJOIN R
B |C

A B Me |c HWc [D el

al bl bl cl c0 di

bl c2
a2 bl bl c2 c0 d2 bl c3
a3 bl b1 c3 cO d3
a4 bl cO d4
a5 bl b2 <0 0 ds Then: X1 =T SEMIJOIN

(S SEMIJOIN R)
C D |

a6 bl b3 cO cO d6

1M tuples with C = c0 To further “reduce” S by

1M tuples with B = bl removing tuples that don't join



Yannakakis Algorithm [1981]

q() :- R(A, B), S(B, C), T(C, D)

A B _NB [cC Nc [p
al bl bl cl cO dl

a2 bl b1 c2
a3 bl bl c3
a4 bl

a5 bl b2 cO
ab bl b3 cO

1M tuples with B = bl

1M tuples with C = c0

. 1M tuples with B = bl

cO
cO
cO
cO
cO

1M tuples with C = c0

d2
d3
d4
d5
d6

First, do S SEMIJOIN R

B __C

bl cl
bl c2
bl c3

Then: X1 =T SEMIJOIN
(S SEMIJOIN R)

C D
Then, do X2 = S SEMIJOIN X1

Finally, do X3 = R SEMIJOIN X2



Yannakakis Algorithm [1981]

» Called “semi-join reducer sequences”

o Basically get rid of tuples from each relation that don’t contribute to the
output

> Result EMPTY in our example, but in general, only relevant tuples will be
left

» Once this is done, you can do join in any order

o Guaranteed that the total time is “linear” in the total size of the inputs
and output

o Can’t avoid dependence on the output -- the join query may do a
Cartesian product

» Can be generalized to any “acyclic” query




Acyclic Queries?

» Conjunctive queries as “hypergraphs”

q() :- R1(A, B, C), R2(B, C, D), R3(C, D, E)

Each attribute == a vertex
Each relation == a “hyperedge”




Acyclic Queries?

» Conjunctive queries as “hypergraphs”

q() :- R1(A, B, C), R2(C, D, E), R3(A, E)

Each attribute == a vertex
Each relation == a “hyperedge”




Acyclic Queries?

» If all relations are 2 attributes, then the hypergraph is same as a
graph

q() :- R1(A, B), R2(B, C), R3(C, D), R4(D, A)

Acyclic queries in this case ==
the graph has no cycles, i.e., the
graph is a tree

More complex for hypergraphs

m



Structural Approaches

» For “acyclic” queries, can always find a semijoin reducer sequence

> Can be done in optimal time: linear in size of inputs + output

» What about non-acyclic queries?
> Try to define how “far” from acyclic-ness
o Captured as "width” of the hypergraph
* Width of acyclic hypergraphs =1

» AGM [FOCS, 2008] defined “fractional hypertree width”, and an
algorithm that runs in O(N*(fhw+1) log N)

» Several more practical algorithms since then, including one that
was implemented before it was proved optimal




Triangle Query

D a N
O, = R(A,B> > S(B, C) D T(A, C) /\ /\ /\
/\ /\ /\
R T R S oo T

R = {a()} X {bo,...,bm}u{ao,...,am} X {b()}

S = {bo} X {C() ..... Cm} U {b() ..... bm} X {C()}

T ={agp} x {co,...,cn} U lao,...,a,} X {co}

Each relation has: 2m + 1 tuples
Output=3m+ 1

Any pairwise join has size: m"2 + m
Projections/Semi-joins don'’t help



Triangle Query

Q. = R(A,B) = S(B,C) < T(A,C).

R = {Cl()} X {b(),..
S = {bo} X {C(),..
T = {(1()} X {C(),..

7bm} U {a(),"

°’CI71}U{bO’°'

°7cm} U{a0’°'

.>am} x {bo}

. b} X {co}

->am} X {co}

A |3 B [C
a0 b0 b0 cO a0 cO

a0
a0

a0
ab
al

bl
b2

b_m

b0
b0

cl
c2

c_m

cO

a0
a0

a0

al

cl
c2

c_m

cO

cO

output

A B |C
a0 b0 cO
a0 bl cO
a0 b_m c_0
a0 bhO c0
al b0 cO
a2 b0 cO
a_m b0 cO
a0 b0 €0
a0 b0 cl
a0 b0 c2
a0 b0 c_m



Algorithm 1: Power of Two Choices

Skew in the relations: a_0 generates a lot of intermediate
tuples, but not as many output tuples

On [ai] L= ﬂB,C(O'A:ai(QA))-

Call a_i heavy If:
Ta=a;(R=T)| = |Qnlai]l.

Two Choices for each a i: L
— If a_iis light

(i) Compute 0 q—q (R) X 04—, (T) and filter the results by probing against S or
(ii) Consider each tuple in (b, c) € S and check if (a;,b) € R and (a;,¢) € T.

If a_iis heavy

Can prove to run in : O(N”~1.5)



Algorithm 1: Power of Two Choices

Algorithm 1 Computing O, with power of two choices.
Input: R(A,B),S(B,C),T(A,C) in sorted order

I Qpn <= O R and T are in sorted order
2: L« ma(R) nma(T) Either build indexes, or do a variation of binary search

3: Foreachae L do

4. If |O'A:aR| . |O'A=aT| = |S| then

5: For each (b,c) € S do

6: < It (a,b) € Rand (a,c) € T then —
7: Add (a,b,c) to O,

8: else

9: For each b € ng(0p—4R) A ¢ € mc(0a=4T) do
10: If (b,c) € S then

11: Add (a,b,c) to Qu

12: Return Q




Algorithm 2: Delay Computation

For each value a_i, compute valid values of B that join with it:

np(0a=qR) N RS

For each value of b in the above result, compute valid values of C:

nc(op=pS) Nnmc(oa=a,T).

Can prove to run in : O(N) on our bad example
General worst-case complexity the same as the previous algorithm

&



Algorithm 2: Delay Computation

Algorithm 2 Computing Q, by delaying computation.

Input: R(A,B),S(B,C),T(A,C) in sorted order

Q-

2: Ly «— maR N mtpT

3: Foreachae L do

4 LaB<—7TBO'A:aRﬂ7TBS

5: For each b € L} do

6 Lccl.’b — TcOB=pS N AT A=aT
7 For cach c € L‘é’b do

8 Add (a,b,c) to Q

9

: Return Q

m



AGM Bound on Join Sizes

g0 - R1(A, B, C), R2(B, C, D), R3(C, D, E) Assign a weight to each of
R1, R2, and R3

Say:.

R1-> 0.5

R2 = 0.5

R3 2> 0.5

Total forB=05+05>=1
B is “covered”
C (1.5), and D (1) are covered

A and E are not covered.

A set of weights is called “fractional edge cover” if all

attributes are covered
m Infinite number of fractional edge covers



AGM Bound on Join Sizes

Examples, with some fractional edge covers




AGM Bound on Join Sizes

Why do we care?
Say we have “I” relations in a query q, with sizes N_j,j=1, ..., |

Let u denote any fractional edge cover -- so u_j is the weight for relation with size N_j

Then, the size of the result is bounded by:

¢

“.

gl <TIN’
j=1

m



AGM Bound on Join Sizes

Using the first cover, result size bounded by:

10s] < \IRI-[S]-|7].
If |R| = |S| = |T|, then the bound is N*1.5 -- which is tight

Butif [R| =|T| =1, and |S| = N, then the bound is sqrt(N)
-- Far from tight -- there can only be 1 triangle

Using the second cover, result size bounded by:
|Oal < |R[-|T|.
If |R| =|S| = |T|, then the bound is N*2 -- not great

Butif [R| =|T| =1, and |S| = N, then the bound is 1




A Generic Algorithm

Algorithm 1: Generic Worst-Case Optimal Join

given

input

1 function enumerate (4

that attribute
2 | ifi<n they S > Do an intersection across all the
// Relations participating in the cur Join relations for that attribute
3 Rijoin +— {R; € R |v; € ER, } ;

: A query hypergraph Hg = (V,£) with Process each attribute (variable)
attributes V = {vy,...,v,} and hyperedges at atime
E={FE,...,E,.}.

: The current attribute index

R ={Ri,...,Rm}.

4 ,{2/0 f:faf_m?;:?éagerz{i;?’éf_e} (:ummt Joun For eqc_:h value thgt_ IS present
! forv_iin all of R_join:
// Key values appearing in all joined ons - Select from each relation only
5 foreach ki € (N oz, ™ (R;) do those where v_i = k_i
// Select matching tuples - Recurse with those relations
6 Ruext + {0w, =k, (R;) | Rj € Rjoin} ; plus the rest of the relations
// Recursively enumerate matching tuples
7 enumerate (i + 1, Ruext U Rother) ;
8 else
// Produce result tuples
9 produce (XR_,,- cr Bid




Recap/Thoughts

» Quite a bit of work on this topic in the last 10 years

» Several implementations
o Often in the context of graph querying
o Usually require significant pre-computations and specialized indexes
* The “intersection” step in the previous slide is a key one

> Some recent work (VLDB 2020) on a more practical implementation using
hash indexes instead of sort-based tries

» Still not clear when to use them and when to use binary joins

» Open theoretical issues

» What about outerjoins, etc?




Outline

» Part 1 Slides

> Query evaluation techniques for large databases, Skew Avoidance, Query
compilation/vectorization

> Query Optimization: Overview, How good are the query optimizers,
really?, Reordering for Outerjoins, Query Rewriting

» Adaptive Query Processing
» Worst-case Optimal Join Processing

» Froid: UDFs and Databases
o Background
> Froid

M



User-defined Functions/Procedures

» Supported by database systems since late 80s

CREATE FUNCTION add(integer, integer) RETURNS integer
AS 'select $1 + $2;°
LANGUAGE SQL
IMMUTABLE
RETURNS NULL ON NULL INPUT;

CREATE OR REPLACE IUNCTION update_influencers_on_insert()
RETURNS TRIGGER
LANGUAGE PLPGSQL
AS
$$
declare
cnt integer;
username varchar;
BEGIN
select count(*) into cnt from follows where userid2 = NEW.userid2;
select max(name) into username from users where userid = NEW.userid2;
IF cnt = 11 THEN
insert into influencers values (NEW.userid2, username, cnt);
ELSIF cnt > 11 THEN
update influencers set num_followers = cnt where userid = NEW.userid2
END IF;
RETURN NEW;
END
$$;




User-defined Functions/Procedures

» Supported by database systems since late 80s

» Three main benefits:
> Modular code
o Easier to write some code in an imperative language (e.g., ML)
> Fewer round-trips between application and database

* Significant performance issues if done repeatedly (e.g., for every order)
Each of these is a
separate call from the

application to the
conn = psycopg2.connect("host=127.0.0.1 dbname=socialnetwork user=postgres password= server
postgres")
cur = conn.cursor()

cur.execute("drol table if exists influencers;")
cur.execute("create table influencers as select u.userid, u.name, count(userid
num_followers from users u join follows f on (u.userid = f.userid2) group
d, u.name having count(useridi) > 10;")

cur.execute("drop trigger if exists update_influencers_on_i on follows;")
cur.execute("drop table if exists friends_small;")
cur.execute("create table friends_small as select f.useridl, f.userid2 from friends
f, users ul, users u2 where f.useridl = ul.userid and f.userid2 = u2.userid and abs
extract(year from ul.birthdate) - extract(year from u2.birthdate)) < 5;")
conn.commit()



User-defined Functions/Procedures

» Supported by database systems since late 80s

» Three main benefits:
> Modular code
o Easier to write some code in an imperative language (e.g., ML)
> Fewer round-trips between application and database
* Significant performance issues if done repeatedly (e.g., for every order)
» Stonebraker notes the latter as the primary reason for adoption
of OR features (“what comes around goes around” paper)

o “Put differently, the major contribution of the OR efforts turned out to be
a better mechanism for stored procedures and user-defined access
methods.”

» Also called “stored procedures”, with some minor differences

SS syste ms

O




Terminology

» User-defined functions

> Scalar (return a single value) or Table Functions (return a relation)

> Can be used in queries (WHERE/SELECT/FROM, etc), depending on scalar
or table function

o UDFs typically not allowed to make changes to the database

» Stored procedures
o Similar, but can only be executed using a CALL or EXECUTE command
o Usually mutate the state of the database

» Triggers

> Something that happens because of an event (e.g., an insert in orders
results in an insert in another table)

o Similar to stored procedures for the actual action




UDF Challenges

» Optimization

o UDFs can be very expensive -- coverage() does image analysis of some
form

> Cost of UDFs is hard to estimate -- may depend on the inputs

> Selectivity of UDFs is hard to estimate -- statistics don’t really help

/* Find all maps from week 17 showing more than
1% snow cover. Channel 4 contains images
from the frequency range that interests us. */
retrieve (maps.name)
where maps.week = 17 and maps.channel = 4
and coverage(maps.picture) > 1

Example from: “Predicate Migration; Hellerstein and
Stonebraker; SIGMOD 1993

M



UDF Challenges

» Optimization

o UDFs can be very expensive -- coverage() does image analysis of some
form

> Cost of UDFs is hard to estimate -- may depend on the inputs

> Selectivity of UDFs is hard to estimate -- statistics don’t really help

» UDFs cannot be parallelized easily

o May result in single-threaded execution

v

Forces tuple-at-a-time execution

> Hard to use any of subquery decorrelation techniques

Often interpreted execution

v

Well-known issues resulting in bad performance in many
practical scenarios

v




Outline

» Part 1 Slides

> Query evaluation techniques for large databases, Skew Avoidance, Query
compilation/vectorization

> Query Optimization: Overview, How good are the query optimizers,
really?, Reordering for Outerjoins, Query Rewriting

» Adaptive Query Processing

» Worst-case Optimal Join Processing

» Froid: UDFs and Databases
> Background
° Froid




Background on T-SQL

» SQL Server supports: UDFs (cannot modify state), and Stored

Procedures (can modify state)

N R

create function total_price(@key int)
returns char(50) as
begin
declare @price float, @rate float;
declare @pref_currency char(3);
declare @default_currency char(3) = 'USD';
select @price = sum(o_totalprice) from orders
where o_custkey = @key;
select @pref_currency = currency
from customer_prefs
where custkey = @key;

if(@pref_currency <> @default_currency)

begin
select @rate =

xchg_rate(@default_currency,@pref_currency);

set @price = @price * @rate;

end

return str(@price) + @pref_currency;

end

create function xchg_rate(@from char(3), @to char(3))
returns float as
begin
return (select rate from dbo.xchg
where from_cur = @from and to_cur = @to);

end

I:l Conditional region

Ficure 1: Example T-SQI, User defined functions

|:| Sequential region

select c_name, dbo.total_price(c_custkey)
from customer ;



UDF Evaluation in SQL Server

» Steps

o Parsing, binding, normalization: scalar UDFs bound as a UDF operator, but
the definition not analyzed

> Cost-based optimization: Query plans (including for each statement in a
UDF) are cached

> Execution: For each tuple, scalar evaluation sub-system is called
* May make calls back to the relational execution engine

« Compilation for an UDF happens on the first call
» Drawbacks
° |terative invocations (one at a time) -- leads to repeated context switches

> No costing, Interpreted statement-by-statement (with caching of plans)

> No intra-query parallelism (as of 2017)




Froid Framework

» Inline the UDFs by analyzing the code

SQL Query with UDF calls

L

Parsing

Query tree ‘

FROID

Binding

UDF operator
encountered

Continue with
substituted
expression

UDF Algebrization

Parse UDF definition

Construct UDF Regions

Regions to relational
expressions

Combine expressions
using Apply operator

v

1

Bound
Query tree

Substitute UDF expression
(as sub-query) in Query tree

Figure 3: Overview of the Froid framework




Froid Framework

» Makes use of APPLY Operator

o Basically a “flatmap”

> For each tuple r of R, combine it with each output of E(r) to generate new
tuples

RAYE= | ({r} 2E(r))
r2R

> The “join” can be: cross product, left outer-join, left-semijoin, or left-
antijoin

» SQL Server already uses these extensively for subquery
decorrelation (as we saw earlier)




Froid Framework

» Supports imperative constructs in scalar UDFs

Table 1: Relational algebraic expressions for imperative statements (using standard T-SQL notation from [33])

Imperative Statement (T-SQL) Relational expression (T-SQL)
DECLARE {Quar data_type [= expr|}[,...n]; SELECT {expr|null AS var}|,...n];
SET {Quar = expr}|,...nl; SELECT {expr AS var}|,...n|;
SELECT {Quarl = prj_exprl}|,...n] FROM sql_expr; {SELECT prj_exprl AS varl FROM sql_expr}; [,...n]

SELECT CASE WHEN pred_expr THEN 1 ELSE 0 END AS pred_val;

IF (pred. t_stmt:[...n]} ELSE {f_stmt:[,...
(pred-expr) {t-stmt;|...n]} {f-stmis], - nl} ol BOT CASE WHEN pred_val = 1 THEN t_stmt ELSE f_stmt: }[...1]

RETURN expr; SELECT expr AS returnVal;




UDF Algebrization

» Construction of regions

o Basic sequential regions, condition regions (if-else), and loop regions
(loops)

° Hierarchical (regions can contain regions)

» Relational expressions for each region

> Variable declarations/assignments

set @default_currency = ‘USD’; » select ‘USD’ as default_currency.

(select sum(o_totalprice) from orders
where o_custkey = @key) as price,

» select (select sum(o_totalprice) from orders

Mere o_custkey = @key) as price
M



UDF Algebrization

» Relational expressions for each region
> Variable declarations/assignments

o Conditional statements

if (@total > 1000)
set @Qual = ‘high’;
else

» select (case when total > 1000 then ‘high’
set @Qual = ‘low’;

else ‘low’ end ) as wval.

° Return statements
* Code may have multiple return points
Modeled as a “jump” to the end of the codeblock

Implemented through use of “probe” and “pass-through” of APPLY




UDF Algebrization

» Combining expressions for multiple statements

> For each statement: compute a “read-set” and a “write-set”

create function total_price(@key int)
returns char(58) as
begin

declare @price float, @rate float;

declare @pref_currency char(3);

declare @default_currency char(3) = 'USD';

select @price = sum(o_totalprice) from orders
where o_custkey = @key;
select @pref_currency = currency
from customer_prefs
where custkey = @key;

if(@pref_currency <> @default_currency)

begin
select @rate =

xchg_rate(@default_currency,@pref_currency);

set @price = @price * @rate;

end

return str(@price) + @pref_currency;

end

create function xchg_rate(@from char(3), @to char(3))
returns float as
begin
return (select rate from dbo.xchg
where from_cur = @from and to_cur = @to);

end

DSequential region DConditionaI region

Figure 1: Example T-SQL User defined functions

Table 2: Derived tables for regions in function total_price.

Region | Write-sets (Derived table schema)

R1 DT1 (price float, rate float,

default _currency char(3), pref_currency char(3))

R2 DT2 (price float, rate float)

R3 DT3 (returnVal char(50))

Use these as the “schemas” of derived tables
to be computed

select DT3.returnval from

R1

(select 'USD' as default_ currency, |
(select sum(o_totalprice) from orders :
where o_custkey = @key) as price,
(select currency from customer_prefs
where custkey = @key) as pref_currency) DT1

R2

(select I
case when DT1.pref_currency <> DT1.default_currency,
then DT1l.price * xchg_rate(DT1l.default_currency, |
DT1.pref_currency)

else DT1l.price end as price) DT2 !

R3

Figure 4: Relational expression for UDF total_price




UDF Algebrization

» Combining expressions for multiple statements

o For each statement: compute a “read-set” and a “write-set”

o Use these as schemas of derived tables

o Connect the regions using APPLY (with pass-through in case of multiple return
statements)

» Correctness?

o Each individual transformation correct by itself

o All derived tables contain a single tuple

o Quter apply preserves the semantics of combined execution

» Note: Doesn’t handle loops -- may be trickier to model




Substitution and optimization

» Replace the scalar UDF with the relational expression (not as SQL, but rather
operators)

» Let the optimizer de-correlate and optimize

» Resulting plan looks complex, but decorrelates as desired

- > ol m
= = e £
L e o =7 Paralleli: = sted Loop
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ol — ke | R ; »
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Figure 5: Plan for inlined UDF total_price of Figure 1



Compiler Optimizations

» Dynamic slicing: use compile-time constants to simplify queries
» Constant folding and propagation: already done by SQL server

» Dead code elimination: optimizer handles these during project pushdown

create function getVal(@x int)

returns char(18) as (i) Dynamic slicing for getVal(56@0) (i) Constant propagation & folding (iii) Dead code elimination
begin begin begin
declare @val char(1@); declare @val char(10); - declare @val char(1e); begin
if(@x > 1008) set @val = 'high'; set @val = 'high'; return 'high value';
set @val = "high'; return @val + ' value’; return 'high value’; end
else set (@val = "low'; end end
return @val + ' value';
end {a) Input UDF (b) Common optimizations done by an imperative language compiler
select returnVal from select returnvVal from
(select case when @x > 1000 - (select 'high' as val) DT1 select returnVal from
then "high' else 'low' end as val) DT1 outer apply =) (select 'high value' mp select 'high value';
outer apply (select DT1.val + ' value' as returnVal) DT1
(select DT1l.val + ' value’ as returnVal) DT2
as returnVal) DT2
(c) Output of FROID's Algebrization (d) How FROID achieves the same end result as Figure 5(b) using relational algebraic transformations

Figure 5: Compiler optimizations as relational transformations. For ease of presentation, (c¢) and (d) are shown in SQL;
these are actually transformations on the relational query tree representation.



Design and Implementation

Should this inlining be done in a cost-based manner?

v

> Influences whether it takes place during binding or during query optimization

> Experiments showed it is almost always beneficial + hard to modify optimizers =»
do it in the binding phase

v

Constraints

° Put a constraint on the maximum size of UDFs that can be algebrized

Froid is extensible -- could handle other languages as well

v

Security and permissions

v

° A user may not have permission on the UDF but on the tables, and vice versa

o Need to be careful with caches as well




Evaluation

» Applicability
> Used top 100 customer workloads from Azure SQL - 85329 scalar UDFs

> Froid could handle 60% or so

create function dbo.VersiomAsFloat(@v nvarchar(96))
returns float as
begin

if @v is null return null

declare @first int, @second int;

declare @major nvarchar(6), @minor nvarchar(10);

create function dbo.F1(@pl int, @p2 int)
returns bit as
begin
if EXISTS
(SELECT 1 FROM Viewl WHERE coll = 0
AND col2 = @pl
AND ((col2 = 2) DR (col3 = 2))
AND dbo.F2(co0l4,@p2,0)=1 AND dbo.F2(col5,@p2,0)=1
AND dbo.F2(col6,@p2,0)=1 AND dbo.F2(col7,@p2,0)=1
AND dbo.F2(co0l8,@p2,0)=1 AND dbo.F2(co0l9,@p2,0)=1
AND dbo.F2(c0110,@p2,0)=1 AND dbo.F2(col11,@p2,0)=1
AND dbo.F2(co0l12,@p2,0)=1 AND dbo.F2(coll3,@p2,0)=1
AND dbo.F2(co0l14,@p2,0)=1 AND dbo.F2(col15,@p2,0)=1
return 1
return 0
end

set @first = charindex(’.”, @v, 0);
if @first = 0
return CONVERT (float, @Qv);

set @major = SUBSTRING(@v, 0, @first);
set @second = charindex(’.’, @v, @first + 1);
if @second = 0
set @minor=SUBSTRING(@v, @first+1, len(@v)-@first)
else
set @minor=SUBSTRING(@v, @first+1, @second-@first-1);

)

set @minor = CAST(CAST(@minor AS int) AS varchar);
return CONVERT(float, @major + ’.’ + @minor);
end

CREATE FUNCTION dbo.RptBracket(@MyDiff int, @NDays int)
RETURNS nvarchar(10) AS
BEGIN
if (@MyDiff >= 5*@NDays)
begin
RETURN ( Cast(5 * @NDays as nvarchar(5)) + N’+’)
end

RETURN ( Cast(Floor (@MyDiff / @NDays) * @NDays as nvarchar(5))
+ N -
+ Cast(Floor (@MyDiff / @NDays + 1) * @NDays - 1 as nvarchar(5)))
END




Evaluation
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Aggify: Handling Cursor Loops [2020]

--Query:
SELECT p_partkey, minCostSupp(p_partkey) FROM PART

UDF definition:

create function minCostSupp(@pkey int, @lb int =-1)

N

O 00 N

10

12

13

Figure 1: Query invoking a UDF that has a cursor loop.

returns char(25) as

begin
declare @pCost decimal(15,2);
declare @minCost decimal(15,2) = 100000;
declare @sName char(25), @suppName char(25);

if (@b = -1)
set @1lb = getLowerBound(@pkey);

declare c1 cursor for
(SELECT ps_supplycost, s_name
FROM PARTSUPP, SUPPLIER
WHERE ps_partkey = @pkey
AND ps_suppkey = s_suppkey);
fetch next from cl into @pCost, @sName;
while (@@FETCH_STATUS = @)
if (@pCost < @minCost and @pCost > @lb)
set @minCost = @pCost;
set @suppName = @sName;
fetch next from cl into @pCost, @sName;
end
return @suppName;
end

D

create function minCostSupp(@pkey int, @lb int =-1)
returns char(25) as
begin

declare @minCost decimal(15,2) = 100000;

declare @suppName char(25);

if (@b = -1)
set @lb = getLowerBound(@pkey);

set @suppName = (
SELECT MinCostSuppAgg(Q.ps_supplycost,
Q.s_name, @minCost, @1b)
FROM (SELECT ps_supplycost, s_name
FROM PARTSUPP, SUPPLIER
WHERE ps_partkey = @pkey
AND ps_suppkey = s_suppkey) Q );
return @suppName;
end

Figure 7: The UDF in Figure 1 rewritten using Aggify.

public class MinCostSuppAgg {
double minCost; string suppName;
int 1b; bool isInitialized;

void Init() { isInitialized = false; }

void Accumulate(double pCost, string sName,
double pMinCost, int pLb) {
if (!isInitialized) {
minCost = pMinCost;
1b = pLb;
isInitialized = true;
}
if (pCost < minCost && pCost > 1lb) {
minCost = pCost;
suppName = sName;
}
}
string Terminate() { return suppName; }

}
Figure 5: Custom aggregate for the loop in Figure 1.
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