
Instructor: Amol Deshpande
amol@cs.umd.edu

76 * Goetz Graefe

Parsing

L Query Validation

L View Resolution

L Optimization

L Plan Compilation

L Execution

Figure 2. Query processing steps.

plied in a second phase, a method called
deferred updates, or merged into the
search phase if there is no danger of
creating ambiguous update semantics. 1
The problem of ensuring ACID seman-

tics for updates—making updates
Atomic (all-or-nothing semantics), Con-
sistent (translating any consistent
database state into another consistent
database state), Isolated (from other
queries and requests), and Durable (per-
sistent across all failures)—is beyond the
scope of this paper; suitable techniques
have been described by many other au-
thors, e.g., Bernstein and Goodman
[1981], Bernstein et al. [1987], Gray and
Reuter [1991], and Haerder and Reuter
[1983].
Most research into providing ACID se-

mantics focuses on efficient techniques
for processing very large numbers of
relatively small requests. For example,
increasing the balance of one account and
decreasing the balance of another account
require exclusive access to only two
database records and writing some
information to an update log. Current
research and development efforts in
transaction processing target hundreds
and even thousands of small transactions
per second [Davis 1992; Serlin 1991].

.—
1A standard example for this danger is the “Hal-
loween” problem: Consider the request to “give all
employees with salaries greater than $30,000 a 3%
raise.” If (i) these employees are found using an
index on salaries, (ii) index entries are scanned in
increasing salary order, and (iii) the index is up-
dated immediately as index entries are found, then
each qualifying employee will get an infinite num-
ber of raises.

ACM Computing Surveys, Vol 25, No 2, June 1993

Query processing, on the other hand, fo-
cuses on extracting information from a
large amount of data without actually
changing the database. For example,
printing reports for each branch office
with average salaries of employees under
30 years old requires shared access to a
large number of records. Mixed requests
are also possible, e.g., for crediting
monthly earnings to a stock account by
combining information about a number
of sales transactions. The techniques dis-
cussed here apply to the search effort for
such a mixed request, e.g., for finding the
relevant sales transactions for each stock
account.
Embedded queries, i.e., database

queries that are contained in an applica-
tion program written in a standard pro-
gramming language such as Cobol, PL/1,
C, or Fortran, are also not addressed
specifically in this paper because all
techniques discussed here can be used
for interactive as well as embedded
queries. Embedded queries usually are
optimized when the program is compiled,
in order to avoid the optimization over-
head when the program runs. This
method was pioneered in System R, in-
cluding mechanisms for storing opti-
mized plans and invalidating stored plans
when they become infeasible, e.g., when
an index is dropped from the database
[Chamberlain et al. 1981b]. Of course, the
cut between compile-time and run-time
can be placed at any other point in the
sequence in Figure 2.
Recursive queries are omitted from this

survey, because the entire field of recur-
sive query processing—optimization
rules and heuristics, selectivity and cost

Update queries usually handled through “deferred updates” (use standard read-
only techniques to identify the modifications, and apply them afterwards.

} Logical algebra vs physical algebra
◦ Latter is system-specific, and refers to the specific implementations of

operators

◦ Mapping from logical to physical operators is often not one-to-one

� Most operator implementations usually handle subsequent selects and projects

� A single logical operator may be broken up into multiple physical ones (e.g.,
“sort” is done separately from “merge” for ”sort-merge join”)

� A “symmetric” logical operator may be implemented by an “asymmetric”
physical operator

Query Evaluation Techniques ● 79

Merge-Join (Intersect)

Intersection

/\

/\
sort sort

Set A Set B I I
File Scan A File Scan B

Figure 3. Logical and physical algebra expressions.

some operations that are permitted on
instances of such types, e.g., attribute
extraction, selection, insertion, deletion,
etc.
On the physical or representation level,

there is typically a smaller set of repre-
sentation types and structures, e.g., file,
record, record identifier (RID), and maybe
very large byte arrays [Carey et al. 1986].
For manipulation, the representation
types have their own operations, which
will be different from the operations on
logical types. Multiple logical types and
type constructors can be mapped to the
same physical concept. They may also be
situations in which one logical type con-
structor can be mapped to multiple phys-
ical concepts, e.g., a set depending on its
size. The mapping from logical types to
physical representation types and struc-
tures is called physical database design.
Query optimization is the mapping from
logical to physical operations, and the
query execution engine is the imple-
mentation of operations on physical rep-
resentation types and of mechanisms
for coordination and cooperation among
multiple such operations in complex que-
ries. The policies for using these mech-
anisms are part of the query optimizer.

Synchronization and data transfer be-
tween operators is the main issue to be
addressed in the architecture of the query
execution engine. Imagine a query with
two joins, and consider how the result of
the first join is passed to the second one.
The simplest method is to create (write)
and read a temporary file. The need for
temporary files, whether they are kept in
the buffer or not, is a direct result of
executing an operator’s input subplans
completely before starting the operator.
Alternatively, it is possible to create one

process for each operator and then to use
interprocess communication mechanisms
(e.g., pipes) to transfer data between op-
erators, leaving it to the operating sys-
tem to schedule and suspend operator
processes as pipes are full or empty.
While such data-driven execution re-
moves the need for temporary disk files,
it introduces another cost, that of operat-
ing system scheduling and interprocess
communication. In order to avoid both
temporary files and operating system
scheduling, Freytag and Goodman [1989]
proposed writing rule-based translation
programs that transform a plan repre-
sented as a tree structure into a single
iterative program with nested loops and
other control structures. However, the re-
quired rule set is not simple, in particu-
lar for algorithms with complex control
logic such as sorting, merge-join, or even
hybrid hash join (to be discussed later in
the section on matching).

The most practical alternative is to im-
plement all operators in such a way that
they schedule each other within a single
operating system process. The basic idea
is to define a granule, typically a single
record, and to iterate over all granules
comprising an intermediate query result.3
Each time an operator needs another
granule, it calls its input (operator) to
produce one. This call is a simple pro-

—-
3 It is possible to use multiple granule sizes within
a single query-processing system and to provide
special operators with the sole purpose of translat-
ing from one granule size to another. An example M
a query processing system that uses records as an
iteration granule except for the inputs of merge-join
(see later in the section on binary matching), for
which it uses “value packets,” i.e., groups of records
with equal join attribute values.

ACM Computmg Surveys, Vol. 25, No. 2, June 1993

} Materialization: Write out the results to a file, and the next operator reads it
from the file

} Pipelining: Have both (or more) operators running at the same time (e.g., in
different threads or processes), and use queues to transfer tuples
◦ Hard to make this work efficiently (e.g., OS may switch to an operator that has no inputs,

leading to wasted context switches)

} Iterator model: Have operators ”schedule” each other
◦ When an operator needs more inputs, it “calls” the child operator(s)

◦ No IPC needed – these are function calls

◦ For Query Processing, can separate the work of an operator into:

� initialization (init())

� produce the next tuple (next())

� clean up (close())

◦ Main drawback (as we discuss later): too many function calls for modern architectures

} In some older papers, left-deep and right-deep are switched
◦ Think of “left” as “outer” and “right” as “inner”
◦ “Right-deep plans have only recently received more interest and may actually turn out to be

very efficient, in particular in systems with ample memories” – refers to the ability to build
many hash indexes at once, and today makes sense for “left-deep” plans

} In general, may be a DAG (directed acyclic graph)
◦ In case of common subexpressions

Query Evaluation Techniques ● 81

Table 1. Examples of Iterator Functions

Iterator Open Next Close Local State

Print open input call next on input; close input
format the item on
screen

Scan open file read next item close file open file descriptor
Select open input call next on input close input

until an item
qualifies

Hash join allocate hash call next on probe
(without

close probe input; hash directory
directory; open left input until a match is deallocate hash

overflow “build” input; build found directory
resolution) hash table calling

next on build input;
close build input;
open right “probe”
input

Merge-Join open both inputs get next item from
(without

close both inputs
input with smaller

duplicates) key until a match is
found

Sort open input; build all determine next destroy remaining merge heap, open file
initial run files output item; read run files descriptors for run files
calling next on input; new item from the
close input; merge correct run file
run files untd only
one merge step is left

Join C-D Join A-B

Jo::@ :fi: ‘m:.-.
A B c D

Figure 4. Left-deep, bushy, and right-deep plans.

scan. Each plan fragment that is exe-
cuted as a unit is indeed a tree. The
alternative is a “split” iterator that can
deliver data to multiple consumers, i.e.,
that can be invoked as iterator by multi-
ple consumer iterators. The split iterator
paces its input subtree as fast as the
fastest consumer requires it and holds
items until the slowest consumer has
consumed them. If the consumers re-
quest data at about the same rate, the
split operator does not require a tempo-
rary spool file; such a file and its associ-
ated 1/0 cost are required only if the
data rate required by the consumers di-

verges above some predefine threshold.
Among the implementations of itera-

tors for query processing, one group can
be called “stored-set oriented and the
other “algebra oriented.” In System R, an
example for the first group, complex join
plans are constructed using binary join
iterators that “attach” one more set
(stored relation) to an existing intermedi-
ate result [Astrahan et al. 1976; Lorie
and Nilsson 1979], a design that sup-
ports only left-deep plans. This design
led to a significant simplification of the
System R optimizer which could be based
on dynamic programming techniques, but

ACM Computing Surveys, Vol. 25, No. 2, June 1993

} Volcano implementation:
◦ open() does most of the work

� If the input fits in memory, reads the
entire input and does a quick-sort

� If it doesn’t fit in memory, uses external
merge-sort except for the last merge

◦ next() simply produces the tuples in the
first case, and actually does the last
merge in the second case

◦ Probably better to do all the work in
“next()” (with special-case code for the
first call)

} Say main memory = M blocks (of b tuples each)
} Option 1: Read M blocks at a time, quick-sort, and write out the “sorted run” to

disk
◦ Generates runs of size M

} Option 2: Replacement selection
◦ Read M*b tuples in memory, and keep it (always) in sorted order
◦ Write out the first tuple to disk as the first sorted run
◦ Say the largest value written out so far is 1000
◦ Read the next tuple from the original relation

� If > 1000, add it to the same sorted run, and output the next tuple from that
� If not, start (or add to) a second sorted run in memory

◦ Keep doing this until the you the first sorted run in memory finishes is done (i.e., all
new tuples get added to the second run)
◦ Can use the Heap data structure to do this efficiently

From: https://www.youtube.com/watch?v=LTpFZAd0cbE

} Need a data structure that efficiently supports removal of the smallest entry
◦ The “heap” data structure works well

} Replacement selection results in larger runs è more efficient merge
◦ If the input is already sorted or almost sorted, there is only one run
◦ For random inputs, the runs are of size 2M

} But RS has more complex I/O patterns and there are other complications
◦ Need to balance against the benefits of having fewer runs

} Usually better when “equality matching” is required
} Basic idea:
◦ “Build” a hash table on one of the inputs on the equality attribute(s)
◦ “Probe” using the second input in any order

} What if the smaller input is too large?
◦ Partition both the inputs using some criteria on the equality attribute (could be another hash

function, or a range function)
◦ Do partition-by-partition join

} Usually better when “equality matching” is required
} Basic idea:
◦ “Build” a hash table on one of the inputs on the equality attribute(s)
◦ “Probe” using the second input in any order

} What if the smaller input is too large?
◦ Partition both the inputs using some criteria on the equality attribute (could be another hash

function, or a range function)
◦ Do partition-by-partition join

} May need to do this “recursively”
◦ Very unlikely to happen with today’s large memories

} Hybrid hash join
◦ Keep one of the partitions in memory when doing the initial partitioning
◦ Can be done in a reactive fashion
◦ Works very well when the smaller input is just larger than memory

} Most operators can be implemented using sorting or hashing
} Many papers written on which one is better
◦ Depends a lot on the specific computing architecture

} Lot of recent work on multi-core sorting and hashing, and in
shared-nothing settings

From Andy Pavlo’s course slides

} Sorting and Bitonic Merge Networks
◦ Fewer branches and more amenable to SIMD (vectorization)

3. PARALLELIZING SORT WITH SIMD
The dominant cost in sort-merge joins is sorting the input

relations. We thus now discuss strategies to implement sort-
ing in a hardware-conscious manner. Typically, sort-merge
joins use merge sort—a tribute to the latency/bandwidth
gap in modern system architectures. Both building blocks
of merge sort, (a) initial run generation and (b) the merging

of pre-sorted runs, benefit from SIMD.

3.1 Run Generation
For initial run generation, many chunks with a small num-

ber of tuples need to be sorted. This favors sorting al-
gorithms that can process multiple chunks in parallel over
ones that have a good asymptotic complexity with respect
to the tuple count. Sorting networks provide these char-
acteristics and fit well with the SIMD execution model of
modern CPUs [7, 10, 21].

3.1.1 Sorting Networks

6 9

3 6

5 5

9 35

9

3

6

3

6

5

9

5

6

Figure 1: Even-
odd network for
four inputs.

Figure 1 on the left illustrates, in the
notation of Knuth [17, Section 5.3.4], a
sorting network for four input items. A
set of four items h9, 5, 3, 6i enters the net-
work on the left and travels toward the
right through a series of comparators .
Every comparator emits the smaller of
its two input values at the top, the larger
on the bottom. After traversing the five
comparators, the data set is sorted.

The beauty of sorting networks is that comparators can be
implemented with help of min/max operators only. Specif-

e = min (a, b)

f = max (a, b)

g = min (c, d)

h = max (c, d)

i = max (e, g)

j = min (f, h)

w = min (e, g)

x = min (i, j)

y = max (i, j)

z = max (f, h)

ically, the five comparators in Figure 1 com-
pile into a sequence of ten min/max operations
as illustrated here on the right (input vari-
ables a, . . . , d and output variables w, . . . , z).
Limited data dependencies and the absence
of branching instructions make such code run
very e�ciently on modern hardware.

Sorting networks are also appealing be-
cause they can be accelerated through SIMD
instructions. When all variables in the code
on the right are instantiated with SIMD vec-
tors of  items and all min/max calls are replaced by SIMD
calls,  sets of items can be sorted in approximately the
same time that a single set would require in scalar mode
(suggesting a -fold speedup through SIMD).

3.1.2 Speedup Through SIMD
However, the strategy illustrated above will sort input

items across SIMD registers. That is, for each vector po-
sition i, the sequence wi, xi, yi, zi will be sorted, but not

the sequence of items within one vector (i.e., wi, . . . , w is
in undefined order). Only full SIMD vectors can be read or
written to memory consecutively. Before writing back initial
runs to main-memory, SIMD register contents must thus be
transposed, so items within each vector become sorted (i.e.,
w2 must be swapped with x1, w3 with y1, etc.).

Transposition can be achieved through SIMD shu✏e in-
structions that can be used to move individual values within
and across SIMD registers. A common configuration in the
context of join processing is to generate runs of four items
with  = 4. Eight shu✏e instructions are then needed
to transpose registers. That is, generating four runs of

a1

a2

a3

a4

b4

b3

b2

b1

out1

out2

out3

out4

out5

out6

out7

out8

so
rt
ed

so
rt
ed

sorted

Figure 2: Bitonic merge network.

four items each requires 10 min/max instructions, 8 shu✏es,
4 loads, and 4 stores. Shu✏e operations significantly reduce
the e↵ective SIMD speedup for run generation from optimal
 = 4 to about 2.7.

3.2 Merging Sorted Runs

3.2.1 Bitonic Merge Networks
Although sequential in nature, merging also benefits from

SIMD acceleration. The basic idea comes from Inoue et
al. [13] and has been used for sorting [7] and joins [15].
Looking back to the idea of sorting networks, larger net-

works can be built with help of merging networks that com-
bine two pre-sorted inputs into an overall sorted output.
Figure 2 shows a network that combines two input lists of
size four. The network in Figure 2 is a sequence of three
stages, each consisting of four comparator elements . Each
stage can thus be implemented using one max and one min

SIMD instruction (assuming  = 4). Shu✏e instructions
in-between stages bring vector elements into their proper
positions (for instance, if a and b are provided as one SIMD
register each, b must be reversed using shu✏es to prepare
for the first min/max instruction pair).
On current Intel hardware, for  = 4, implementing a

bitonic merge network for 2⇥ 4 input items requires 6 SIMD
min/max instructions and 7–10 shu✏es. The exact number of
shu✏es depends on the bit width of the input items and the
instruction set o↵ered by the hardware (SSE, AVX, AVX2).

3.2.2 Merging Larger Lists using Bitonic Merge
For larger input sizes, merge networks scale poorly [21]:

sorting networks for N input items require O
�
N log2 N

�

comparators—clearly inferior to alternative algorithms. But
small merge networks can be used as a kernel within a merg-
ing algorithm for larger lists [13]. The resulting merging al-
gorithm (Algorithm 1) uses a working set of 2⇥k data items
(variables a and b, both implemented as SIMD registers).
In each iteration of the algorithm’s loop body, that working
set is sorted (using the merge kernel bitonic_merge4 () and
knowing that a and b themselves are sorted already) and the
smaller k items are emitted to the merge result.
The emitted SIMD vector is then replaced by fresh data

from the input. As in the classical scalar merge algorithm,
the two head elements of the input runs are used to decide
which new data to load (line 5 in Algorithm 1). Unlike in
the classical algorithm, however, the decision is used to load
an entire vector into the working set. The rationale is that
the resulting working set still contains at least k items that
are smaller than the larger of the two head items, and only
k items will be emitted in the next loop iteration.
In terms of performance, the separation between control

flow and merge kernel operations in Algorithm 1 fits well

87

} Goal: Given a SQL query, find the best “physical operator” tree
to execute the query
◦ Large number of logically equivalent algebraic representations for a query
◦ Many operator trees for each algebraic expression

} For “cost-based” optimization, we need:
◦ A space of plans to search through (search space)
◦ Cost estimation techniques
◦ Enumeration/search algorithm

} Heuristic optimizers typically use “rules”
◦ e.g., push down selections as much as possible – typically a good idea but

not always

An Overview of Query Optimization in Relational Systems
Surajit Chaudhuri

Microsoft Research
One Microsoft Way

Redmond, WA 98052
+1-(425)-703-l 938

surajitc@ microsofkcom
1. OBJECTIVE
Them has been cxtensivc work in query optimization since the
enrly ‘70s. It is hard to capture the breadth and depth of this large
body of work in a short article. Therefore, I have decided to focus
primarily on the optimization of SQL queries in relational
dntnbasc systems and present my biased and incomplete view of
this licld, The goal of this article is not to be comprehensive, but
ratbcr to explain the foundations and present samplings of
significant work in this area. I would like to apologize to the many
contributors in this area whose work I have failed to explicitly
ncknowlcdge due to oversight or lack of space. I take the liberty of
trndlng tcchnicnl precision for ease of presentation.

Index Nested Loop
(A-x = C-x)

/\
Merge-Join
(A.x=B.x)

/\

Index Scan C

Sort Sort

I I
2. INTRODUCTION Table Scan A Table Scan B
Rclntional query languages provide a high-level “declarative”
lntcrfnce to access data stored in relational databases. Over time,
SQL [41] has emerged as the standard for relational query
languages, Two key components of the query evaluation
component of a SQL database system are the query optimizer and
the qrrery execrrtiort engine.

Figure 1. Operator Tree

The query cxccution engine implements a set of physical
operators, An operator takes as input one or more data streams
and produces an output data stream. Examples of physical
operators nrc (external) sort, sequential scan, index scan, nested-
loop join, nnd sort-merge join. I refer to such operators as
physical operators since they are not necessarily tied one-to-one
with relntionnl operators, The simplest way to think of physical
operntors is ns pieces of code that are used as building blocks to
mnkc possible the execution of SQL queries. An abstract
representation of such nn execution is a physical operator tree, as
lllustrntcd in Figure I. The edges in an operator tree represent the
data flow among the physical operators. We use the terms
physical operator tree and executbt plan (or, simply plan)
lnterchnngenbly. The execution engine is responsible for the
execution of the plan that results in generating answers to the
query. Therefore, the capabilities of the query execution engine
dctcrminc the structure of the operator trees that are feasible. We
rcfcr the reader to [20] for an overview of query evaluation
techniques,

The query optimizer is responsible for generating the input for the
execution engine. It takes a parsed representation of a SQL query
as input and is responsible for generating an eflcient execution
plan for the given SQL query from the space of possible execution
plans. The task of an optimizer is nontrivial since for a given SQL
query, there can be a large number of possible operator trees:
. The algebraic representation of the given query can be

transformed into many other logically equivalent algebraic
representations: e.g.,
Join(Join(A,B),C)= Join(Join(B,C),A)

. For a given algebraic representation, there may be many
operator trees that implement the algebraic expression, e.g.,
typically there are several join algorithms supported in a
database system.

Furthermore, the throughput or the response times for the
execution of these plans may be widely different. Therefore, a
judicious choice of an execution by the optimizer is of critical
importance. Thus, query optimization can be viewed as a difficult
search problem. In order to solve this problem, we need to
provide:
. A space of plans (search space).
. A cost estimation technique so that a cost may be assigned to

each plan in the search space. Intuitively, this is an
estimation of the resources needed for the execution of the
ph.

. An enumeration algorithm that can search through the
execution space.

34

} Focused on SPJ queries (select-project-join)

} Search space:
◦ Linear (left-deep) plans
◦ Each join can be nested loop or sort-merge (no hash joins)
◦ Each scan node either an index scan or a sequential scan

} Cost estimation done using:
◦ A set of statistics: #data pages for a relation, #distinct values in a column
◦ Formulas for estimating intermediate result sizes

� Relied on “magic” constants for anything not covered by the statistics
◦ Formulas for CPU and I/O cost for each operator

} Search algorithm: Bottom-up Dynamic Programming
◦ Insight: the best overall plan uses the best plan for any subexpression inside of it

The best overall plan should use the
“best” plan for (r1 join r2 join r3 join r4)
and the “best” plan for (r1 join r2 join r3)..

e.g., if the best plan for r1 – r2 – r3 was
to join r1 and r3 first and then join with
r2, we can just substitute that plan, and
get an overall better plan

Major caveat: the alternate plan should not miss any
“physical properties” that are important
e.g., if the original plan produce r1-r2-r3 in sorted
order by D, and the alternate doesn’t, the substitution
may change the cost of the next join (with r4)

Dynamic Programming Algo.

l Join R1, R2, R3, R4, R5

R1 R2 R3 R4 R5

R1 ⨝ R2
cost: 100
plan: HJ

R1 ⨝ R3
cost: 300
plan: SMJ

R1 ⨝ R4
….

R1 ⨝ R2 ⨝ R3

Options:
1. Join R1R2 with R3 using HJ

cost = 100 + cost of this join
2. Join R1R2 with R3 using SMJ

cost = 100 + cost of this join
3. Join R1R3 with R2 using HJ

cost = 300 + cost of this join
…

R4 ⨝ R5
cost: 300
plan: HJ

R1 ⨝ R2
cost: 100
plan: HJ

R1 ⨝ R3
cost: 300
plan: SMJ

R1 ⨝ R4
….

R4 ⨝ R5
cost: 300
plan: HJ

R1 ⨝ R2 ⨝ R3
cost: 400

plan: SMJ(R1R2, R3)

….

….

R1 ⨝ R2 ⨝ R3 ⨝ R4 ⨝ R5
cost: 1200

plan: HJ(R1R2R3, R4R5)

R1 ⨝ R2 ⨝ R3 ⨝ R4
cost: 700

plan: HJ(R1R2R3, R4)
….

R1 R2 R3 R4 R5

⨝

⨝

⨝

⨝

R5R4R3

R2R1

HJ

HJ

HJ

SMJ

} Interesting orders
◦ Sort orders is an important physical property for the query executor

(given the reliance on sort-merge joins)
◦ So keep track of the sort order in which results are generated
◦ Two plans for a subexpression are NOT comparable if the sort orders are

different
◦ è For each subexpression, more than one plan may be maintained with

different sort orders

} Can be generalized to handle “incomparable-ness” in general
◦ e.g., one subplan may have better CPU but worse Memory, and the other

subplans may have better Memory but worse CPU

} Intermediate representations
◦ Query graphs commonly used in research papers, but only capture a simple

subset
◦ QGM Structure used in Starburst (will cover later)
◦ Many others just use an “operator tree” or an “expression tree”

} Join ordering
◦ Bushy plans commonly considered today
◦ Significantly add to the search complexity
◦ Cartesian products may be allowed in some cases

} Outerjoins
◦ Only commute with joins in some cases (will cover later)
◦ e.g., Join(R, S LOJ T) = Join(R, S) LOJ T

output stream that is useful in the subsequent join. However, the
ncstcd-loop join does not have such ordering. Therefore, given a
query, System R identified ordering of tuples that are potentially
consequential to execution plans for the query (hence the name
interesting orders), Furthermore, in the System R optimizer, two
plans arc compared only if they represent the same expression as
well as have the same interesting order. The idea of interesting
order was later generalized to physical properties in [22] and is
used cxtensivcly in modem optimizers. Intuitively, a physical
property is any characteristic of a plan that is not shared by all
plans for the same logical expression, but can impact the cost of
subscqucnt operations. Finally, note that the System-R’s approach
of taking into account physical properties demonstrates a simple
mechanism to handle any violation of the principle of optimality.
not ncccssarily arising only from physical properties.
Despite the elegance of the System-R approach, the framework
cannot be easily extended to incorporate other logical
transformations (beyond join ordering) that expand the search
space, This led to the development of more extensible
optimization architectures. However, the use of cost-based
optimization, dynamic programming and interesting orders
strongly influenced subsequent developments in optimization.

4. SEARCH SPACE
As mentioned in Section 2, the search space for optimization
depends on the set of algebraic transformations that preserve
cquivalcnce and the set of physical operators supported in an
optimizer. In this section, I will discuss a few of the many
important algebraic transformations that have been discovered. It
should be noted that trunsfonnations do not necessarily reduce
cost arrd therefore mwt be applied in a cost-based manner by the
errwrtcrulior~ algorirhm to ensure a positive benejit.
The optimizer may use several representations of a query during
the llfccyclc of optimizing a query. The initial representation is
often the parse tree of the query and the final representation is an
operator tree. An intermediate representation that is also used is
that of logical operator trees (also called query trees) that captures
an algebraic expression. Figure 2 is an example of a query tree.
Often, nodes of the query trees are annotated with additional
Information.
Some systems also use a “calculus-oriented” representation for
analyzing the structure of the query. For SPJ queries, such a
structure is often captured by a qlrery graph where nodes
represent relations (correlation variables) and labeled edges
represent join predicates among the relations (see Figure 3).
Although conceptually simple, such a representation falls short of
rcprcsenting the structure of arbitrary SQL statements in a number
of ways. First, predicate graphs only represent a set of join
prcdlcatcs and cannot represent other algebraic operators, e.g.,
union. Next, unlike natural join, operators such as outerjoin are
asymmetric and arc sensitive to the order of evaluation. Finally,
such a representation does not capture the fact that SQL
statements may have nested query blocks. In the QGM structure
used in the Starburst system [26], the building block is an
cnhanccd query graph that is able to represent a simple SQL
statcmcnt that has no nesting (“single block” query). Multi block
qucrics are rcprcscntcd as a set of subgraphs with edges among
subgraphs that represent predicates (and quantifiers) across query
blocks, In contrast, Exodus [22] and its derivatives, uniformly use
query trees and operator trees for all phases of optimization.

E.Dept&D.Dept#
EMP

v

DEPT

E.Sal>&.S D.Mgr=&.Em

EMP Ez

Figure 3. Query

4.1 Commuting Between Operators
A large and important class of transformations exploits
commutativity among operators. In this section. we see examples
of such transformations.

4.1 .I Generalizing Join Sequencing
In many of the systems, the sequence of join operations is
syntactically restricted to limit search space. For example, in the
System R project, only linear sequences of join operations are
considered and Cartesian product among relations is deferred until
after all the joins.
Since join operations are commutative and associative, the
sequence of joins in an operator tree need not be linear, In
particular, the query consisting of join among relations
RI, R2, R3, Rq can be algebraically represented and evaluated as
Join(Join(A,B),Join(C,D)). Suchquerytrees arecalled
bushy, illustrated in Figure 2(b). Bushy join sequences require
materialization of intermediate relations. While bushy trees may
result in cheaper query plan, they expand the cost of enumerating
the search space considerably’. Although there has been some
studies of merits of exploring the bushy join sequences, by and
large most systems still focus on linear join sequences and only
restricted subsets of bushy join trees.
Deferring Cartesian products may also result in poor performance.
In many decision-support queries where the query graph forms a
star, it has been observed that a Cartesian product among
appropriate nodes (“dimensional” tables in OLAP terminology
[7]) results in a significant reduction in cost.
In an extensible system, the behavior of the join enumerator may
be adapted on a per query basis so as to restrict the “bushy’-ness
of the join trees and to allow or disallow Cartesian products [46].
However, it is nontrivial to determine a priori the effects of such
tuning on the quality and cost of the search.

4.1.2 Outerjoin and Join
One-sided outerjoin is an asymmetric operator in SQL that
preserves all of the tuples of one relation. Symmetric outerjoins
preserve both the operand relations. Thus, (R LOJ S). where LOJ
designates left outerjoin between R and S, preserves all tuples of
R. In addition to the tuples from natural join, the above operation
contains all remaining tuples in R that fail to join with S (padded
with NULLs for their S attributes). Unlike natural joins. a

’ It is not the cost of generating the syntactic join orders that is
most expensive. Rather, the task of choosing physical operators
and computing the cost of each alternative plan is
computationally intensive.

36

._ ‘__ -~- -_ .___

A dcsirabic optimizer is one where (1) the search space includes
plans that have low cosr (2) the costing technique is accurure (3)
the cnumcration algorithm is efjcienr. Each of these three tasks is
nontrivial and that is why building a good optimizer is an
enormous undertaking,
WC begin by discussing the System-R optimization framework
since this was a remarkably elegant approach that helped fuel
much of the subsequent work in optimization. In Section 4, we
will discuss the search space that is considered by optimizers.
This section will provide the forum for presentation of important
algebraic transformations that are incorporated in the search
space In Section 5, we address the problem of cost estimation. In
Section 6, WC take up the topic of enumerating the search space.
This completes the discussion of the basic optimization
framework, In Section 7, we discuss some of the recent
developments in query optimization.

3. AN EXAMPLE: SYSTEM-R OPTIMIZER
The System-R project significantly advanced the state of query
oplimization of relational systems. The ideas in [55] have been
Incorporated in many commercial optimizers continue to be
remarkably relevant. I will present a subset of those important
ideas hem in the context of Select-Project-Join (SPJ) queries. The
class of SPJ queries is closely related to and encapsulates
co~$rncrivc queries, which are widely studied in Database Theory.
The search space for the System-R optimizer in the context of a
SPJ query consists of operator trees that correspond to linear
scqucncc of join operations, e.g., the sequence
JOin (Join (Join (A, B) , C) , D) is illustrated in Figure
2w Such sequences are logically equivalent because of
associative and commutative properties of joins. A join operator
can USC either the nested loop or sort-merge implementation. Each
scan node can use either index scan (using a clustered or non-
clustered index) or sequential scan. Finally, predicates are
evaluated as early as possible.
The cost model assigns an estimated cost to any partial or
complete plan in the search space. It also determines the estimated
size of the data stream for output of every operator in the plan. It
relies on:
(4

(b>

(4

ThC

A set of statistics maintained on relations and indexes, e.g.,
number of data pages in a relation, number of pages in an
index, number of distinct values in a column
Formulas to estimate selectivity of predicates and to project
the size of the output data stream for every operator node.
For example, the size of the output of a join is estimated by
taking the product of the sizes of the two relations and then
applying the joint selectivity of all applicable predicates.
Formulas to estimate the CPU and 110 costs of query
execution for every operator. These formulas take into
account the statistical properties of its input data streams,
existing access methods over the input data streams, and any
available order on the data stream (e.g., if a data stream is
ordered, then the cost of a sort-merge join on that stream may
be significantly reduced). In addition, it is also checked if the
output data stream will have any order.
cost model uses (a)-(c) to compute and associate the

following information in a bottom-up fashion for operators in a
plan: (1) The size of the data stream represented by the output of

the operator node. (2) Any ordering of tuples created or sustained
by the output data stream of the operator node. (3) Estimated
execution cost for the operator (and the cumulative cost of the
partiaI plan so far).

Join(C,D)

Join(~;*i(*,B&.Dl

A C
A

A B A B C D

(a) W

I Figure 2. (a) Linear and (b) bushy join I
The enumeration algorithm for System-R optimizer demonstrates
two important techniques: use of dynamic programming and use
of interesting orders.
The essence of the dynamic programming approach is based on
the assumption that the cost model satisfies the principle of
optimality. Specifically, it assumes that in order to obtain an
optimal plan for a SPJ query Q consisting of k joins, it suffices to
consider only the optimal plans for subexpressions of Q that
consist of (k-l) joins and extend those plans with an additional
join. In other words, the suboptimal plans for subexpressions of Q
(also called subqueries) consisting of (k-l) joins do not need to be
considered further in determining the optimal plan for Q.
Accordingly, the dynamic programming based enumeration views
a SPJ query Q as a sef of relations (RI, . .R,) to be joined. The
enumeration algorithm proceeds bottom-up. At the end of the j-th
step, the algorithm produces the optimal plans for all subqueries
of size j. To obtain an optimal plan for a subquery consisting of
(j+l) relations, we consider all possible ways of constructing a
plan for the subquery by extending the plans constructed in the j-
th step. For example, the optimal plan for (RI, Rz, R3, R4) is
obtained by picking the plan with the cheapest cost from among
the optimal plans for: (1) Joint {RI, R2, R31, R4) (2)
Join(fRl,R2,%1,R3) (3) Join ((RlrR3,R41,R2) (4)
Join(CRz,Ra,%l, RI). The rest of the plans for
(RI, R2, Rx, &} may be discarded. The dynamic programming
approach is significantly faster than the ndive approach since
instead of O(n!) plans, only O(n2”“) plans need to be enumerated.
The second important aspect of System R optimizer is the
consideration of interesting orders. Let us now consider a query
that represents the join among (Rt , RZ , R3) with the predicates
RI _ a = R2 _ a = R3. a. Let us also assume that the cost of the
plans for the subquery (RI, Rz) are x and y for nested-loop and
sort-merge join respectively and x c y. In such a case, while
considering the plan for {RI, R2, R,), we will not consider the
plan where RI and Rz are joined using sort-merge. However, note
that if sort-merge is used to join RI and R2, the result ofthe join is
sorted on a. The sorted order may significantly reduce the cost of
the join with R3. Thus, pruning the plan that represents the sort-
merge join between RI and R2 can result in sub-optimality of the
global plan. The problem arises because the result of the sort-
merge join between RI and R2 has an ordering of tuples in the

35

} Group-By and Joins
◦ Pushing group by below a join results in significant reductions in tuples

being joined

scqucncc ofoutcrjoins and joins do not freely commute. However,
when the join predicate is between (R.S) and the outer-join
predicate is between (ST), the following identity holds:

Join(R, S LOJ T) = Join (R,S) LOJ T
If the above associative NIC can be repeatedly applied, we obtain
nn equivalent expression where evaluation of the “block of joins”
prcccdcs the “block of outerjoins”. Subsequently, the joins may be
I-WAY reordered among themselves, As with other
transformations, use of this identity needs to be cost-based. The
identities in [53] define a class of queries where joins and
outcrjoins may be reordered.

4,1,3 Group-By and Join

I Figure 4. Group By and Join I

In traditional execution of a SPJ query with group-by, the
evaluation of the SPJ component of the query precedes the group-
by, The set of transformations described in this section enable the
group by operation to precede a join. These transformations are
npplicablc to queries with SELECT DISTINCT since the latter is
a special case of group-by, Evaluation of a group-by operator can
potentially result in a significant reduction in the number of
tupics, since only one tuple is generated for every partition of the
relation induced by the group-by operator. Therefore, in some
cases, by tirst doing the group-by, the cost of the join may be
significantly reduced, Moreover, in the presence of an appropriate
index, a group-by operation may be evaluated inexpensively. A
dun1 of such transformations corresponds to the case where a
group-by operator may be pulled up past a join. These
trnnsformations arc described in [5,60,25,6] (see [4] for an
overview).
In thls section, we briefly discuss specific instances where the
transformation to do an early group-by prior to the join may be
npplicablc. Consider the query tree in Figure 4(a). Let the join
bctwccn RI and RZ be a foreign key join and let the aggregated
columns of G bc from columns in Rl and the set of group-by
columns be a superset of the foreign key columns of R1. For such
R query, Ict us consider the corresponding operator tree in Fig.
4(b), where Gl=G. In that tree, the final join with RZ can only
climinatc a set of potential partitions of Rl created by Gl but will
not affect the partitions nor the aggregates computed for the
partitions by G1 since every tuple in Rl will join with at fnost one
tuple in Rs. Therefore, we can push down the group-by, as shown
in Fig. 4(b) and preserve equivalence for arbifrury side-effect free
nggrcgatc functions, Fig. 4(c) illustrates an example where the
transformation irrfrohccs a group-by and represents a class of
useful cxnmplcs where the group-by operation is done in sruges.
For example, assume that in Fig. 4(a), where all the columns on

which aggregated functions are applied are from Rl. In these
cases, the introduced group-by operator Gl partitions the relation
on the projection columns of the RI node and computes the
aggregated values on those partitions. However, the true partitions
in Fig 4(a) may need to combine multiple partitions introduced by
G1 into a single partition (many to one mapping), The group-by
operator G ensures the above. Such staged computation may still
be useful in reducing the cost of the join because of the data
reduction effect of Gl. Such staged aggregation requires the
aggregating function to satisfy the property that Agg (S U S ’)
can be computed from Agg (Sl and Agg (S ‘ 1. For example, in
order to compute total sales for all products in each division, we
can use the transformation in Fig. 4(c) to do an early aggregation
and obtain the total sales for each product. We then need a
subsequent group-by that sums over all products that belong to
each division.

4.2 Reducing Mu&Block Queries to Single-
Block
The technique described in this section shows how under some
conditions, it is possible to collapse a multi-block SQL query into
a single block SQL query.

4.2.1 Merging Views
Let us consider a conjunctive query using SELECT ANY. If one
or more relations in the query are views, but each is defined
through a conjunctive query, then the view definitions can simply
be “unfolded” to obtain a single block SQL query. For example, if
aqueryQ = Join(R,V) andviewV = Join(S,T),thenthe
query Q can be unfolded to Join(R, Join(S,T)) and may be
freely reordered. Such a step may require some renaming of the
variables in the view definitions.
Unfortunately, this simple unfolding fails to work when the views
are more complex than simple SPJ queries. When one or more of
the views contain SELECT DISTINCT, transformations to move
or pull up DISTINCT need to be careful to preserve the number
of duplicates correctly, [49]. More generally, when the view
contains a group by operator, unfolding requires the ability to
pull-up the group-by operator and then to freely reorder not only
the joins but also the group-by operator to ensure optimality. In
particular, we are given a query such as the one in Fig. 4(b) and
we are trying to consider how we can transform it in a form such
as Fig. 4(a) so that R1 and RZ may be freely reordered. While the
transformations in Section 4.1.3 may be used in such cases, it
underscores the complexity of the problem [6].

4.2.2 Merging Nested Sabqueries
Consider the following example of a nested query from [I31
where Emp# and Depth are keys of the corresponding relations:
SELECT Emp . Name
FROM Emp
WEERE Emp.Dept# IN

SELECT Dept.Dept# FRON Dept
WHERE Dept.Loc=‘Denver’
AND Emp.Emp* = Dept.Mgr

If tuple iteration semantics are used to answer the query, then the
inner query is evaluated for each tuple of the Dept relation once.
An obvious optimization applies when the inner query block

37

select R1.A, sum(R1.B)
from R1, R2
where R1.A = R2.A
group by R1.A

equivalent to

select x.A, x.sumB
from R2, (select A, sum(R1.B) as sumB

from R1
group by A) x

where R2.A = x.A

only if: A is a primary key of R2

} Group-By and Joins
◦ Pushing group by below a join results in significant reductions in tuples

being joined

select R1.A, sum(R1.B)
from R1, R2
where R1.A = R2.A
group by R1.A

equivalent to

select R2.C, sum(x.sumB)
from R2, (select A, sum(R1.B) as sumB

from R1
group by A) x

where R2.A = x.A
group by R2.C

only if: in R2, A à C

scqucncc ofoutcrjoins and joins do not freely commute. However,
when the join predicate is between (R.S) and the outer-join
predicate is between (ST), the following identity holds:

Join(R, S LOJ T) = Join (R,S) LOJ T
If the above associative NIC can be repeatedly applied, we obtain
nn equivalent expression where evaluation of the “block of joins”
prcccdcs the “block of outerjoins”. Subsequently, the joins may be
I-WAY reordered among themselves, As with other
transformations, use of this identity needs to be cost-based. The
identities in [53] define a class of queries where joins and
outcrjoins may be reordered.

4,1,3 Group-By and Join

I Figure 4. Group By and Join I

In traditional execution of a SPJ query with group-by, the
evaluation of the SPJ component of the query precedes the group-
by, The set of transformations described in this section enable the
group by operation to precede a join. These transformations are
npplicablc to queries with SELECT DISTINCT since the latter is
a special case of group-by, Evaluation of a group-by operator can
potentially result in a significant reduction in the number of
tupics, since only one tuple is generated for every partition of the
relation induced by the group-by operator. Therefore, in some
cases, by tirst doing the group-by, the cost of the join may be
significantly reduced, Moreover, in the presence of an appropriate
index, a group-by operation may be evaluated inexpensively. A
dun1 of such transformations corresponds to the case where a
group-by operator may be pulled up past a join. These
trnnsformations arc described in [5,60,25,6] (see [4] for an
overview).
In thls section, we briefly discuss specific instances where the
transformation to do an early group-by prior to the join may be
npplicablc. Consider the query tree in Figure 4(a). Let the join
bctwccn RI and RZ be a foreign key join and let the aggregated
columns of G bc from columns in Rl and the set of group-by
columns be a superset of the foreign key columns of R1. For such
R query, Ict us consider the corresponding operator tree in Fig.
4(b), where Gl=G. In that tree, the final join with RZ can only
climinatc a set of potential partitions of Rl created by Gl but will
not affect the partitions nor the aggregates computed for the
partitions by G1 since every tuple in Rl will join with at fnost one
tuple in Rs. Therefore, we can push down the group-by, as shown
in Fig. 4(b) and preserve equivalence for arbifrury side-effect free
nggrcgatc functions, Fig. 4(c) illustrates an example where the
transformation irrfrohccs a group-by and represents a class of
useful cxnmplcs where the group-by operation is done in sruges.
For example, assume that in Fig. 4(a), where all the columns on

which aggregated functions are applied are from Rl. In these
cases, the introduced group-by operator Gl partitions the relation
on the projection columns of the RI node and computes the
aggregated values on those partitions. However, the true partitions
in Fig 4(a) may need to combine multiple partitions introduced by
G1 into a single partition (many to one mapping), The group-by
operator G ensures the above. Such staged computation may still
be useful in reducing the cost of the join because of the data
reduction effect of Gl. Such staged aggregation requires the
aggregating function to satisfy the property that Agg (S U S ’)
can be computed from Agg (Sl and Agg (S ‘ 1. For example, in
order to compute total sales for all products in each division, we
can use the transformation in Fig. 4(c) to do an early aggregation
and obtain the total sales for each product. We then need a
subsequent group-by that sums over all products that belong to
each division.

4.2 Reducing Mu&Block Queries to Single-
Block
The technique described in this section shows how under some
conditions, it is possible to collapse a multi-block SQL query into
a single block SQL query.

4.2.1 Merging Views
Let us consider a conjunctive query using SELECT ANY. If one
or more relations in the query are views, but each is defined
through a conjunctive query, then the view definitions can simply
be “unfolded” to obtain a single block SQL query. For example, if
aqueryQ = Join(R,V) andviewV = Join(S,T),thenthe
query Q can be unfolded to Join(R, Join(S,T)) and may be
freely reordered. Such a step may require some renaming of the
variables in the view definitions.
Unfortunately, this simple unfolding fails to work when the views
are more complex than simple SPJ queries. When one or more of
the views contain SELECT DISTINCT, transformations to move
or pull up DISTINCT need to be careful to preserve the number
of duplicates correctly, [49]. More generally, when the view
contains a group by operator, unfolding requires the ability to
pull-up the group-by operator and then to freely reorder not only
the joins but also the group-by operator to ensure optimality. In
particular, we are given a query such as the one in Fig. 4(b) and
we are trying to consider how we can transform it in a form such
as Fig. 4(a) so that R1 and RZ may be freely reordered. While the
transformations in Section 4.1.3 may be used in such cases, it
underscores the complexity of the problem [6].

4.2.2 Merging Nested Sabqueries
Consider the following example of a nested query from [I31
where Emp# and Depth are keys of the corresponding relations:
SELECT Emp . Name
FROM Emp
WEERE Emp.Dept# IN

SELECT Dept.Dept# FRON Dept
WHERE Dept.Loc=‘Denver’
AND Emp.Emp* = Dept.Mgr

If tuple iteration semantics are used to answer the query, then the
inner query is evaluated for each tuple of the Dept relation once.
An obvious optimization applies when the inner query block

37

} Collapsing nested subqueries results in more optimization
opportunities
◦ Need to be very careful: NULLs, Distincts, Aggregates, etc., cause

problems

scqucncc ofoutcrjoins and joins do not freely commute. However,
when the join predicate is between (R.S) and the outer-join
predicate is between (ST), the following identity holds:

Join(R, S LOJ T) = Join (R,S) LOJ T
If the above associative NIC can be repeatedly applied, we obtain
nn equivalent expression where evaluation of the “block of joins”
prcccdcs the “block of outerjoins”. Subsequently, the joins may be
I-WAY reordered among themselves, As with other
transformations, use of this identity needs to be cost-based. The
identities in [53] define a class of queries where joins and
outcrjoins may be reordered.

4,1,3 Group-By and Join

I Figure 4. Group By and Join I

In traditional execution of a SPJ query with group-by, the
evaluation of the SPJ component of the query precedes the group-
by, The set of transformations described in this section enable the
group by operation to precede a join. These transformations are
npplicablc to queries with SELECT DISTINCT since the latter is
a special case of group-by, Evaluation of a group-by operator can
potentially result in a significant reduction in the number of
tupics, since only one tuple is generated for every partition of the
relation induced by the group-by operator. Therefore, in some
cases, by tirst doing the group-by, the cost of the join may be
significantly reduced, Moreover, in the presence of an appropriate
index, a group-by operation may be evaluated inexpensively. A
dun1 of such transformations corresponds to the case where a
group-by operator may be pulled up past a join. These
trnnsformations arc described in [5,60,25,6] (see [4] for an
overview).
In thls section, we briefly discuss specific instances where the
transformation to do an early group-by prior to the join may be
npplicablc. Consider the query tree in Figure 4(a). Let the join
bctwccn RI and RZ be a foreign key join and let the aggregated
columns of G bc from columns in Rl and the set of group-by
columns be a superset of the foreign key columns of R1. For such
R query, Ict us consider the corresponding operator tree in Fig.
4(b), where Gl=G. In that tree, the final join with RZ can only
climinatc a set of potential partitions of Rl created by Gl but will
not affect the partitions nor the aggregates computed for the
partitions by G1 since every tuple in Rl will join with at fnost one
tuple in Rs. Therefore, we can push down the group-by, as shown
in Fig. 4(b) and preserve equivalence for arbifrury side-effect free
nggrcgatc functions, Fig. 4(c) illustrates an example where the
transformation irrfrohccs a group-by and represents a class of
useful cxnmplcs where the group-by operation is done in sruges.
For example, assume that in Fig. 4(a), where all the columns on

which aggregated functions are applied are from Rl. In these
cases, the introduced group-by operator Gl partitions the relation
on the projection columns of the RI node and computes the
aggregated values on those partitions. However, the true partitions
in Fig 4(a) may need to combine multiple partitions introduced by
G1 into a single partition (many to one mapping), The group-by
operator G ensures the above. Such staged computation may still
be useful in reducing the cost of the join because of the data
reduction effect of Gl. Such staged aggregation requires the
aggregating function to satisfy the property that Agg (S U S ’)
can be computed from Agg (Sl and Agg (S ‘ 1. For example, in
order to compute total sales for all products in each division, we
can use the transformation in Fig. 4(c) to do an early aggregation
and obtain the total sales for each product. We then need a
subsequent group-by that sums over all products that belong to
each division.

4.2 Reducing Mu&Block Queries to Single-
Block
The technique described in this section shows how under some
conditions, it is possible to collapse a multi-block SQL query into
a single block SQL query.

4.2.1 Merging Views
Let us consider a conjunctive query using SELECT ANY. If one
or more relations in the query are views, but each is defined
through a conjunctive query, then the view definitions can simply
be “unfolded” to obtain a single block SQL query. For example, if
aqueryQ = Join(R,V) andviewV = Join(S,T),thenthe
query Q can be unfolded to Join(R, Join(S,T)) and may be
freely reordered. Such a step may require some renaming of the
variables in the view definitions.
Unfortunately, this simple unfolding fails to work when the views
are more complex than simple SPJ queries. When one or more of
the views contain SELECT DISTINCT, transformations to move
or pull up DISTINCT need to be careful to preserve the number
of duplicates correctly, [49]. More generally, when the view
contains a group by operator, unfolding requires the ability to
pull-up the group-by operator and then to freely reorder not only
the joins but also the group-by operator to ensure optimality. In
particular, we are given a query such as the one in Fig. 4(b) and
we are trying to consider how we can transform it in a form such
as Fig. 4(a) so that R1 and RZ may be freely reordered. While the
transformations in Section 4.1.3 may be used in such cases, it
underscores the complexity of the problem [6].

4.2.2 Merging Nested Sabqueries
Consider the following example of a nested query from [I31
where Emp# and Depth are keys of the corresponding relations:
SELECT Emp . Name
FROM Emp
WEERE Emp.Dept# IN

SELECT Dept.Dept# FRON Dept
WHERE Dept.Loc=‘Denver’
AND Emp.Emp* = Dept.Mgr

If tuple iteration semantics are used to answer the query, then the
inner query is evaluated for each tuple of the Dept relation once.
An obvious optimization applies when the inner query block

37

contains no variables from the outer query block (uncorrelufed).
In such cases, the inner query block needs to be evaluated only
once I-lowcver, when there is indeed a variable from the outer
block, WC say that the query blocks are correlated. For example,
in the query above, Emp.Emp# acts as the correlated variable.
Kim [35] and subsequently others [16,13&j have identified
techniques to unnest a correlated nested SQL query and “flatten”
it to n single query. For example, the above nested query reduces
to: SELECT E *Name

FROM Emp E, Dept D
WHERE E.Dept# = D.Dept#
AND D.Loc = ‘Denver’ AND E.Emp# = D.Mgr

Dayal [131 was the first to offer an algebraic view of unnesting.
The complexity of the problem depends on the structure of the
nesting, i.e., whether the nested subquery has quantifiers (e.g.,
ALL, EXISTS), aggregates or neither. In the simplest case, of
which the above query is an example, [131 observed that the tuple
semantics ctm be modeled as Semijoin(Emp,Dept,
Emp, Dopull = Dept. Dept#)*. Once viewed this way, it is
not hard to see why the query may be merged since:
Somijoin(Emp,Dept,Emp.Dept# = Dept. Dept#) =
Project(Join(Emp,Dept), Emp.*)
Whcrc Join (Emp, Dept) is on the predicate Emp.Dept# =
Dopt . Dept# , The second argument of the Project opemto?
indicates that all columns of the relation Emp must be retained.
The problem is more complex when aggregates are present in the
ncslcd subquery, as in the example below from [44] since merging
query blocks now requires pulling up the aggregation without
violating the semantics of the nested query:
SELECT Dept. name
FRON Dept
WHERE Dept,num-of-machines 2
(SELECT coum (Emp . *) ~~01~ Emp
WHERE Dep t , name= Emp . Dep t-name)

It is especially tricky to preserve duplicates and nulls. To
nppreclate the subtlety, observe that if for a specific value of
Dopb .name (say d), there are no tuples with a matching
Emp,Dept:,name, i.e., even if the predicate Dept -name=
Emp. dept,name fails, then there is still an output tuple for the
Dept tuple d. However, if we were to adopt the transformation
used in the first query of this section, then there will be no output
tuplc for the dept d since the join predicate fails. Therefore, in
the presence of aggregation, we must preserve all the tuples of the
outer query block by a left metjoin. In particular, the above
query can be correctly transformed to:
SELECT Dept , name FROM Dept LEFT OUTER JOIN Emp
ON (Dcpt,name= Emp.dept,name)
GROUP BY Dept.name
HAVING Dept. num-of-machines c COUNT @rap.*)
Thus, for this class of queries the merged single block query has
outcrjoins. If the nesting structure among query blocks is linear,
then this approach is applicable and transformations produce a

’ Semijoin(A,B,P) stands for semijoin between A and B that
prcservcs attributes of A and where P is the semijoin predicate.

3 I assume that the operator does not remove duplicates.

single block query that consists of a linear sequence of joins and
outer-joins. It turns out that the sequence of joins and outer-joins is
such that we can use the associative rule described in Section
4.1.2 to compute all the joins first and then do all the outerjoins in
sequence. Another approach to unnesting subqueries is to
transform a query into one that uses table-expressions or views
(and therefore, not a single block query). This was the direction of
Kim’s work (3.51 and it was subsequently refined in [44].

4.3 Using Semijoin Like Techniques for
Optimizing Multi-Block Queries
In the previous section, I presented examples of how multi-block
queries may be collapsed in a single block. In this section, 1
discuss a complementary approach. The goal of the approach
described in this section is to exploit the selectivity of predicates
across blocks4 It is conceptually similar to the idea of using
semijoin to propagate from a site A to a remote site B information
on relevant values of A so that B sends to A no unnecessary
tuples. In the context of multi-block queries, A and B are in
different query blocks but are parts of the same query and
therefore the transmission cost is not an issue. Bather, the
information “received from A” is used to reduce the computation
needed in B as well as to ensure that the results produced by B are
relevant to A as well. This technique requires introducing new
table expressions and views. For example, consider the following
query from [56]:
CREATE VIEW DepAvgSal As (

SELECT E-did, Avg(E.Sal) AS avgsal
FROM Emp E
GROUP BY E-did)

SELECT E.eid, E-Sal
FROM Emp E, Dept D, DepAvgSal V
WHERE E-did = D-did AND E-did = V.did
AND E-age c 30 AND D-budget > 100k
AND E.sal > V.avgsal
The technique recognizes that we can create the set of relevant
E.did by doing only the join between E and D in the above
query and projecting the unique E. did. This set can be passed to
the view DepAvgSal to restrict its computation. This is
accomplished by the following three views.
CREATE VIEW partialresult AS
(SELECT E-id, E.sal, E-did
FROM Emp E, Dept D
WHERE E.did=D.did AND E-age c: 30
AND D-budget > lOOk)

CREATE VIEW Filter AS
(SELECT DISTINCT P-did FROM PartialResult P)
CREATE VIEW LimitedAvgSal AS
(SELECT E-did, Avg(E.Sal) AS avgsal
FROM Emp E, Filter F
WHERE E-did = F-did GROUP BY E.did)
The reformulated query on the next page exploits the above views
to restrict computation.

’ Although this technique historically developed as a derivative of
Magic Sets and sideways inforrnation passing [2], 1 find the
relationship to semijoin more intuitive and less magical.

38

} Collapsing nested subqueries results in more optimization
opportunities
◦ Need to be very careful: NULLs, Distincts, Aggregates, etc., cause

problems

contains no variables from the outer query block (uncorrelufed).
In such cases, the inner query block needs to be evaluated only
once I-lowcver, when there is indeed a variable from the outer
block, WC say that the query blocks are correlated. For example,
in the query above, Emp.Emp# acts as the correlated variable.
Kim [35] and subsequently others [16,13&j have identified
techniques to unnest a correlated nested SQL query and “flatten”
it to n single query. For example, the above nested query reduces
to: SELECT E *Name

FROM Emp E, Dept D
WHERE E.Dept# = D.Dept#
AND D.Loc = ‘Denver’ AND E.Emp# = D.Mgr

Dayal [131 was the first to offer an algebraic view of unnesting.
The complexity of the problem depends on the structure of the
nesting, i.e., whether the nested subquery has quantifiers (e.g.,
ALL, EXISTS), aggregates or neither. In the simplest case, of
which the above query is an example, [131 observed that the tuple
semantics ctm be modeled as Semijoin(Emp,Dept,
Emp, Dopull = Dept. Dept#)*. Once viewed this way, it is
not hard to see why the query may be merged since:
Somijoin(Emp,Dept,Emp.Dept# = Dept. Dept#) =
Project(Join(Emp,Dept), Emp.*)
Whcrc Join (Emp, Dept) is on the predicate Emp.Dept# =
Dopt . Dept# , The second argument of the Project opemto?
indicates that all columns of the relation Emp must be retained.
The problem is more complex when aggregates are present in the
ncslcd subquery, as in the example below from [44] since merging
query blocks now requires pulling up the aggregation without
violating the semantics of the nested query:
SELECT Dept. name
FRON Dept
WHERE Dept,num-of-machines 2
(SELECT coum (Emp . *) ~~01~ Emp
WHERE Dep t , name= Emp . Dep t-name)

It is especially tricky to preserve duplicates and nulls. To
nppreclate the subtlety, observe that if for a specific value of
Dopb .name (say d), there are no tuples with a matching
Emp,Dept:,name, i.e., even if the predicate Dept -name=
Emp. dept,name fails, then there is still an output tuple for the
Dept tuple d. However, if we were to adopt the transformation
used in the first query of this section, then there will be no output
tuplc for the dept d since the join predicate fails. Therefore, in
the presence of aggregation, we must preserve all the tuples of the
outer query block by a left metjoin. In particular, the above
query can be correctly transformed to:
SELECT Dept , name FROM Dept LEFT OUTER JOIN Emp
ON (Dcpt,name= Emp.dept,name)
GROUP BY Dept.name
HAVING Dept. num-of-machines c COUNT @rap.*)
Thus, for this class of queries the merged single block query has
outcrjoins. If the nesting structure among query blocks is linear,
then this approach is applicable and transformations produce a

’ Semijoin(A,B,P) stands for semijoin between A and B that
prcservcs attributes of A and where P is the semijoin predicate.

3 I assume that the operator does not remove duplicates.

single block query that consists of a linear sequence of joins and
outer-joins. It turns out that the sequence of joins and outer-joins is
such that we can use the associative rule described in Section
4.1.2 to compute all the joins first and then do all the outerjoins in
sequence. Another approach to unnesting subqueries is to
transform a query into one that uses table-expressions or views
(and therefore, not a single block query). This was the direction of
Kim’s work (3.51 and it was subsequently refined in [44].

4.3 Using Semijoin Like Techniques for
Optimizing Multi-Block Queries
In the previous section, I presented examples of how multi-block
queries may be collapsed in a single block. In this section, 1
discuss a complementary approach. The goal of the approach
described in this section is to exploit the selectivity of predicates
across blocks4 It is conceptually similar to the idea of using
semijoin to propagate from a site A to a remote site B information
on relevant values of A so that B sends to A no unnecessary
tuples. In the context of multi-block queries, A and B are in
different query blocks but are parts of the same query and
therefore the transmission cost is not an issue. Bather, the
information “received from A” is used to reduce the computation
needed in B as well as to ensure that the results produced by B are
relevant to A as well. This technique requires introducing new
table expressions and views. For example, consider the following
query from [56]:
CREATE VIEW DepAvgSal As (

SELECT E-did, Avg(E.Sal) AS avgsal
FROM Emp E
GROUP BY E-did)

SELECT E.eid, E-Sal
FROM Emp E, Dept D, DepAvgSal V
WHERE E-did = D-did AND E-did = V.did
AND E-age c 30 AND D-budget > 100k
AND E.sal > V.avgsal
The technique recognizes that we can create the set of relevant
E.did by doing only the join between E and D in the above
query and projecting the unique E. did. This set can be passed to
the view DepAvgSal to restrict its computation. This is
accomplished by the following three views.
CREATE VIEW partialresult AS
(SELECT E-id, E.sal, E-did
FROM Emp E, Dept D
WHERE E.did=D.did AND E-age c: 30
AND D-budget > lOOk)

CREATE VIEW Filter AS
(SELECT DISTINCT P-did FROM PartialResult P)
CREATE VIEW LimitedAvgSal AS
(SELECT E-did, Avg(E.Sal) AS avgsal
FROM Emp E, Filter F
WHERE E-did = F-did GROUP BY E.did)
The reformulated query on the next page exploits the above views
to restrict computation.

’ Although this technique historically developed as a derivative of
Magic Sets and sideways inforrnation passing [2], 1 find the
relationship to semijoin more intuitive and less magical.

38

contains no variables from the outer query block (uncorrelufed).
In such cases, the inner query block needs to be evaluated only
once I-lowcver, when there is indeed a variable from the outer
block, WC say that the query blocks are correlated. For example,
in the query above, Emp.Emp# acts as the correlated variable.
Kim [35] and subsequently others [16,13&j have identified
techniques to unnest a correlated nested SQL query and “flatten”
it to n single query. For example, the above nested query reduces
to: SELECT E *Name

FROM Emp E, Dept D
WHERE E.Dept# = D.Dept#
AND D.Loc = ‘Denver’ AND E.Emp# = D.Mgr

Dayal [131 was the first to offer an algebraic view of unnesting.
The complexity of the problem depends on the structure of the
nesting, i.e., whether the nested subquery has quantifiers (e.g.,
ALL, EXISTS), aggregates or neither. In the simplest case, of
which the above query is an example, [131 observed that the tuple
semantics ctm be modeled as Semijoin(Emp,Dept,
Emp, Dopull = Dept. Dept#)*. Once viewed this way, it is
not hard to see why the query may be merged since:
Somijoin(Emp,Dept,Emp.Dept# = Dept. Dept#) =
Project(Join(Emp,Dept), Emp.*)
Whcrc Join (Emp, Dept) is on the predicate Emp.Dept# =
Dopt . Dept# , The second argument of the Project opemto?
indicates that all columns of the relation Emp must be retained.
The problem is more complex when aggregates are present in the
ncslcd subquery, as in the example below from [44] since merging
query blocks now requires pulling up the aggregation without
violating the semantics of the nested query:
SELECT Dept. name
FRON Dept
WHERE Dept,num-of-machines 2
(SELECT coum (Emp . *) ~~01~ Emp
WHERE Dep t , name= Emp . Dep t-name)

It is especially tricky to preserve duplicates and nulls. To
nppreclate the subtlety, observe that if for a specific value of
Dopb .name (say d), there are no tuples with a matching
Emp,Dept:,name, i.e., even if the predicate Dept -name=
Emp. dept,name fails, then there is still an output tuple for the
Dept tuple d. However, if we were to adopt the transformation
used in the first query of this section, then there will be no output
tuplc for the dept d since the join predicate fails. Therefore, in
the presence of aggregation, we must preserve all the tuples of the
outer query block by a left metjoin. In particular, the above
query can be correctly transformed to:
SELECT Dept , name FROM Dept LEFT OUTER JOIN Emp
ON (Dcpt,name= Emp.dept,name)
GROUP BY Dept.name
HAVING Dept. num-of-machines c COUNT @rap.*)
Thus, for this class of queries the merged single block query has
outcrjoins. If the nesting structure among query blocks is linear,
then this approach is applicable and transformations produce a

’ Semijoin(A,B,P) stands for semijoin between A and B that
prcservcs attributes of A and where P is the semijoin predicate.

3 I assume that the operator does not remove duplicates.

single block query that consists of a linear sequence of joins and
outer-joins. It turns out that the sequence of joins and outer-joins is
such that we can use the associative rule described in Section
4.1.2 to compute all the joins first and then do all the outerjoins in
sequence. Another approach to unnesting subqueries is to
transform a query into one that uses table-expressions or views
(and therefore, not a single block query). This was the direction of
Kim’s work (3.51 and it was subsequently refined in [44].

4.3 Using Semijoin Like Techniques for
Optimizing Multi-Block Queries
In the previous section, I presented examples of how multi-block
queries may be collapsed in a single block. In this section, 1
discuss a complementary approach. The goal of the approach
described in this section is to exploit the selectivity of predicates
across blocks4 It is conceptually similar to the idea of using
semijoin to propagate from a site A to a remote site B information
on relevant values of A so that B sends to A no unnecessary
tuples. In the context of multi-block queries, A and B are in
different query blocks but are parts of the same query and
therefore the transmission cost is not an issue. Bather, the
information “received from A” is used to reduce the computation
needed in B as well as to ensure that the results produced by B are
relevant to A as well. This technique requires introducing new
table expressions and views. For example, consider the following
query from [56]:
CREATE VIEW DepAvgSal As (

SELECT E-did, Avg(E.Sal) AS avgsal
FROM Emp E
GROUP BY E-did)

SELECT E.eid, E-Sal
FROM Emp E, Dept D, DepAvgSal V
WHERE E-did = D-did AND E-did = V.did
AND E-age c 30 AND D-budget > 100k
AND E.sal > V.avgsal
The technique recognizes that we can create the set of relevant
E.did by doing only the join between E and D in the above
query and projecting the unique E. did. This set can be passed to
the view DepAvgSal to restrict its computation. This is
accomplished by the following three views.
CREATE VIEW partialresult AS
(SELECT E-id, E.sal, E-did
FROM Emp E, Dept D
WHERE E.did=D.did AND E-age c: 30
AND D-budget > lOOk)

CREATE VIEW Filter AS
(SELECT DISTINCT P-did FROM PartialResult P)
CREATE VIEW LimitedAvgSal AS
(SELECT E-did, Avg(E.Sal) AS avgsal
FROM Emp E, Filter F
WHERE E-did = F-did GROUP BY E.did)
The reformulated query on the next page exploits the above views
to restrict computation.

’ Although this technique historically developed as a derivative of
Magic Sets and sideways inforrnation passing [2], 1 find the
relationship to semijoin more intuitive and less magical.

38

LOJ is essential here
Otherwise will miss depts with no employees

} Say only a few departments (say 10) satisfy the join condition out of, say 10000
◦ Only need to compute the “view” tuples for those 10 departments

} So we are passing information “sideways” from the main block into the nested
block

contains no variables from the outer query block (uncorrelufed).
In such cases, the inner query block needs to be evaluated only
once I-lowcver, when there is indeed a variable from the outer
block, WC say that the query blocks are correlated. For example,
in the query above, Emp.Emp# acts as the correlated variable.
Kim [35] and subsequently others [16,13&j have identified
techniques to unnest a correlated nested SQL query and “flatten”
it to n single query. For example, the above nested query reduces
to: SELECT E *Name

FROM Emp E, Dept D
WHERE E.Dept# = D.Dept#
AND D.Loc = ‘Denver’ AND E.Emp# = D.Mgr

Dayal [131 was the first to offer an algebraic view of unnesting.
The complexity of the problem depends on the structure of the
nesting, i.e., whether the nested subquery has quantifiers (e.g.,
ALL, EXISTS), aggregates or neither. In the simplest case, of
which the above query is an example, [131 observed that the tuple
semantics ctm be modeled as Semijoin(Emp,Dept,
Emp, Dopull = Dept. Dept#)*. Once viewed this way, it is
not hard to see why the query may be merged since:
Somijoin(Emp,Dept,Emp.Dept# = Dept. Dept#) =
Project(Join(Emp,Dept), Emp.*)
Whcrc Join (Emp, Dept) is on the predicate Emp.Dept# =
Dopt . Dept# , The second argument of the Project opemto?
indicates that all columns of the relation Emp must be retained.
The problem is more complex when aggregates are present in the
ncslcd subquery, as in the example below from [44] since merging
query blocks now requires pulling up the aggregation without
violating the semantics of the nested query:
SELECT Dept. name
FRON Dept
WHERE Dept,num-of-machines 2
(SELECT coum (Emp . *) ~~01~ Emp
WHERE Dep t , name= Emp . Dep t-name)

It is especially tricky to preserve duplicates and nulls. To
nppreclate the subtlety, observe that if for a specific value of
Dopb .name (say d), there are no tuples with a matching
Emp,Dept:,name, i.e., even if the predicate Dept -name=
Emp. dept,name fails, then there is still an output tuple for the
Dept tuple d. However, if we were to adopt the transformation
used in the first query of this section, then there will be no output
tuplc for the dept d since the join predicate fails. Therefore, in
the presence of aggregation, we must preserve all the tuples of the
outer query block by a left metjoin. In particular, the above
query can be correctly transformed to:
SELECT Dept , name FROM Dept LEFT OUTER JOIN Emp
ON (Dcpt,name= Emp.dept,name)
GROUP BY Dept.name
HAVING Dept. num-of-machines c COUNT @rap.*)
Thus, for this class of queries the merged single block query has
outcrjoins. If the nesting structure among query blocks is linear,
then this approach is applicable and transformations produce a

’ Semijoin(A,B,P) stands for semijoin between A and B that
prcservcs attributes of A and where P is the semijoin predicate.

3 I assume that the operator does not remove duplicates.

single block query that consists of a linear sequence of joins and
outer-joins. It turns out that the sequence of joins and outer-joins is
such that we can use the associative rule described in Section
4.1.2 to compute all the joins first and then do all the outerjoins in
sequence. Another approach to unnesting subqueries is to
transform a query into one that uses table-expressions or views
(and therefore, not a single block query). This was the direction of
Kim’s work (3.51 and it was subsequently refined in [44].

4.3 Using Semijoin Like Techniques for
Optimizing Multi-Block Queries
In the previous section, I presented examples of how multi-block
queries may be collapsed in a single block. In this section, 1
discuss a complementary approach. The goal of the approach
described in this section is to exploit the selectivity of predicates
across blocks4 It is conceptually similar to the idea of using
semijoin to propagate from a site A to a remote site B information
on relevant values of A so that B sends to A no unnecessary
tuples. In the context of multi-block queries, A and B are in
different query blocks but are parts of the same query and
therefore the transmission cost is not an issue. Bather, the
information “received from A” is used to reduce the computation
needed in B as well as to ensure that the results produced by B are
relevant to A as well. This technique requires introducing new
table expressions and views. For example, consider the following
query from [56]:
CREATE VIEW DepAvgSal As (

SELECT E-did, Avg(E.Sal) AS avgsal
FROM Emp E
GROUP BY E-did)

SELECT E.eid, E-Sal
FROM Emp E, Dept D, DepAvgSal V
WHERE E-did = D-did AND E-did = V.did
AND E-age c 30 AND D-budget > 100k
AND E.sal > V.avgsal
The technique recognizes that we can create the set of relevant
E.did by doing only the join between E and D in the above
query and projecting the unique E. did. This set can be passed to
the view DepAvgSal to restrict its computation. This is
accomplished by the following three views.
CREATE VIEW partialresult AS
(SELECT E-id, E.sal, E-did
FROM Emp E, Dept D
WHERE E.did=D.did AND E-age c: 30
AND D-budget > lOOk)

CREATE VIEW Filter AS
(SELECT DISTINCT P-did FROM PartialResult P)
CREATE VIEW LimitedAvgSal AS
(SELECT E-did, Avg(E.Sal) AS avgsal
FROM Emp E, Filter F
WHERE E-did = F-did GROUP BY E.did)
The reformulated query on the next page exploits the above views
to restrict computation.

’ Although this technique historically developed as a derivative of
Magic Sets and sideways inforrnation passing [2], 1 find the
relationship to semijoin more intuitive and less magical.

38

contains no variables from the outer query block (uncorrelufed).
In such cases, the inner query block needs to be evaluated only
once I-lowcver, when there is indeed a variable from the outer
block, WC say that the query blocks are correlated. For example,
in the query above, Emp.Emp# acts as the correlated variable.
Kim [35] and subsequently others [16,13&j have identified
techniques to unnest a correlated nested SQL query and “flatten”
it to n single query. For example, the above nested query reduces
to: SELECT E *Name

FROM Emp E, Dept D
WHERE E.Dept# = D.Dept#
AND D.Loc = ‘Denver’ AND E.Emp# = D.Mgr

Dayal [131 was the first to offer an algebraic view of unnesting.
The complexity of the problem depends on the structure of the
nesting, i.e., whether the nested subquery has quantifiers (e.g.,
ALL, EXISTS), aggregates or neither. In the simplest case, of
which the above query is an example, [131 observed that the tuple
semantics ctm be modeled as Semijoin(Emp,Dept,
Emp, Dopull = Dept. Dept#)*. Once viewed this way, it is
not hard to see why the query may be merged since:
Somijoin(Emp,Dept,Emp.Dept# = Dept. Dept#) =
Project(Join(Emp,Dept), Emp.*)
Whcrc Join (Emp, Dept) is on the predicate Emp.Dept# =
Dopt . Dept# , The second argument of the Project opemto?
indicates that all columns of the relation Emp must be retained.
The problem is more complex when aggregates are present in the
ncslcd subquery, as in the example below from [44] since merging
query blocks now requires pulling up the aggregation without
violating the semantics of the nested query:
SELECT Dept. name
FRON Dept
WHERE Dept,num-of-machines 2
(SELECT coum (Emp . *) ~~01~ Emp
WHERE Dep t , name= Emp . Dep t-name)

It is especially tricky to preserve duplicates and nulls. To
nppreclate the subtlety, observe that if for a specific value of
Dopb .name (say d), there are no tuples with a matching
Emp,Dept:,name, i.e., even if the predicate Dept -name=
Emp. dept,name fails, then there is still an output tuple for the
Dept tuple d. However, if we were to adopt the transformation
used in the first query of this section, then there will be no output
tuplc for the dept d since the join predicate fails. Therefore, in
the presence of aggregation, we must preserve all the tuples of the
outer query block by a left metjoin. In particular, the above
query can be correctly transformed to:
SELECT Dept , name FROM Dept LEFT OUTER JOIN Emp
ON (Dcpt,name= Emp.dept,name)
GROUP BY Dept.name
HAVING Dept. num-of-machines c COUNT @rap.*)
Thus, for this class of queries the merged single block query has
outcrjoins. If the nesting structure among query blocks is linear,
then this approach is applicable and transformations produce a

’ Semijoin(A,B,P) stands for semijoin between A and B that
prcservcs attributes of A and where P is the semijoin predicate.

3 I assume that the operator does not remove duplicates.

single block query that consists of a linear sequence of joins and
outer-joins. It turns out that the sequence of joins and outer-joins is
such that we can use the associative rule described in Section
4.1.2 to compute all the joins first and then do all the outerjoins in
sequence. Another approach to unnesting subqueries is to
transform a query into one that uses table-expressions or views
(and therefore, not a single block query). This was the direction of
Kim’s work (3.51 and it was subsequently refined in [44].

4.3 Using Semijoin Like Techniques for
Optimizing Multi-Block Queries
In the previous section, I presented examples of how multi-block
queries may be collapsed in a single block. In this section, 1
discuss a complementary approach. The goal of the approach
described in this section is to exploit the selectivity of predicates
across blocks4 It is conceptually similar to the idea of using
semijoin to propagate from a site A to a remote site B information
on relevant values of A so that B sends to A no unnecessary
tuples. In the context of multi-block queries, A and B are in
different query blocks but are parts of the same query and
therefore the transmission cost is not an issue. Bather, the
information “received from A” is used to reduce the computation
needed in B as well as to ensure that the results produced by B are
relevant to A as well. This technique requires introducing new
table expressions and views. For example, consider the following
query from [56]:
CREATE VIEW DepAvgSal As (

SELECT E-did, Avg(E.Sal) AS avgsal
FROM Emp E
GROUP BY E-did)

SELECT E.eid, E-Sal
FROM Emp E, Dept D, DepAvgSal V
WHERE E-did = D-did AND E-did = V.did
AND E-age c 30 AND D-budget > 100k
AND E.sal > V.avgsal
The technique recognizes that we can create the set of relevant
E.did by doing only the join between E and D in the above
query and projecting the unique E. did. This set can be passed to
the view DepAvgSal to restrict its computation. This is
accomplished by the following three views.
CREATE VIEW partialresult AS
(SELECT E-id, E.sal, E-did
FROM Emp E, Dept D
WHERE E.did=D.did AND E-age c: 30
AND D-budget > lOOk)

CREATE VIEW Filter AS
(SELECT DISTINCT P-did FROM PartialResult P)
CREATE VIEW LimitedAvgSal AS
(SELECT E-did, Avg(E.Sal) AS avgsal
FROM Emp E, Filter F
WHERE E-did = F-did GROUP BY E.did)
The reformulated query on the next page exploits the above views
to restrict computation.

’ Although this technique historically developed as a derivative of
Magic Sets and sideways inforrnation passing [2], 1 find the
relationship to semijoin more intuitive and less magical.

38

SELECT P,ei.d, P.sal
FRO14 PartlalResult P, LimitedDepAvgSal V
V!HERE P,did = V.did AND P.sal > V.avgsal
The above technique can be used in a multi-block query
containing view (including recursive view) definitions or nested
subqueries [42,43,56,57]. In each case, the goal is to avoid
redundant computation in the views or the nested subqueries. It is
also important to recognize the tradeoff between the cost of
computing the views (the view PartialResult in the example
above) and USC of such views to reduce the cost of computation.
The formal relationship of the above transformation to semijoin
has rcccntiy been presented in [56] and may form the basis for
integration of this strategy in a cost-based optimizer. Note that a
dgcncratc application of this technique is passing the predicates
across query blocks instead of results of views. This simpler
technique has been used in distributed and heterogeneous
databases and generalized in [36].

5. STATISTICS AND COST ESTIMATION
Given a query, there arc many logically equivalent algebraic
cxprcssions and for each of the expressions, there are many ways
to impicment them as operators, Even if we ignore the
computational complexity of enumerating the space of
posdbilities, there remains the question of deciding which of the
operator trees consumes the least resources. Resources may be
CPU time, J/O cost, memory, communication bandwidth, or a
combination of these. Therefore, given an operator tree (partial or
complete) of a query, being able to accurately and efficiently
cvnluatc its cost is of fundamental importance. The cost
estimation must be accurate because optimizurion is only as good
as its cost cs~brrat~~~ Cost estimation must be efficient since it is
In the inner loop of query optimization and is repeatedly invoked.
The basic estimation framework is derived from the System-R
approach:
I, Collect statistical summaries of data that has been stored.
2, Given an operator and the statistical summary for each of its

input data streams, determine the:
(a) Statistical summary of the output data stream
(b) Estimated cost of executing the operation

Step 2 can be applied iteratively to an operator tree of arbitrary
depth to derive the costs for each of its operators. Once we have
the costs for each of the operator nodes, the cost for the plan may
bc obtained by combining the costs of each of the operator nodes
in the tree, In Section 5.1, we discuss the statistical parameters
for the stored data that are used in cost optimization and efficient
ways of obtaining such statistical information. We also discuss
how to propagate such statistical information. The issue of
estimating cost for physical operators is discussed in Section 5.2.
It is important to recognize the differences between the nature of
the statistical property and the cost of a plan. The statistical
property of the output data stream of a plan is the same as that of
any other plan for the same query, but its cost can be different
from other plans. In other words, statistical summary is a logical
property but the cost of a plan is a physical property.

5.1 Statistical Summaries of Data
51.1 Statistical Information on Base Data
For every tabIe, the necessary statistical information includes the
number of tuples in a data stream since this parameter determines
the cost of data scans, joins, and their memory requirements, In
addition to the number of tupIes, the number of physical pages
used by the table is important. Statistical information on columns
of the data stream is of interest since these statistics can be used to
estimate the selectivity of predicates on that column. Such
information is created for columns on which there are one or more
indexes, although it may be created on demand for any other
column as well.
In a large number of systems, information on the data distribution
on a column is provided by histograms. A histogram divides the
values on a column into k buckets. In many cases, k is a constant
and determines the degree of accuracy of the histogram. However,
k also determines the memory usage, since while optimizing a
query, relevant columns of the histogram are loaded in memory.
There are several choices for “bucketization” of values. In many
database systems, equi-depth (also called equi-height) histograms
are used to represent the data distribution on a column. If the table
has n records and the histogram has k buckets, then an equi-depth
histogram divides the set of values on that column into k ranges
such that each range has the same nrtmber of values, i.e., n/k.
Compressed histograms place frequently occurring values in
singleton buckets. The number of such singleton buckets may be
tuned. It has been shown in [52] that such histograms are effective
for either high or low skew data. One aspect of histograms
relevant to optimization is the assumption made about values
within a bucket. For example, in an equi-depth histogram, values
within the endpoints of a bucket may be assumed to occur with
uniform spread. A discussion of the above assumption as well as a
broad taxonomy of histograms and ramifications of the histogram
structures on accuracy appears in 1521. In the absence of
histograms, information such as the min and mar of the values in
a column may be used. However, in practice, the second lowest
and the second highest values are used since the min and mar
have a high probabitity of being outlying vaIues. Histogram
information is complemented by information on parameters such
as number of distinct values on that column
Although histograms provide information on a single column,
they do not provide information on the correfufions among
columns. In order to capture correlations, we need the joint
distribution of values. One option is to consider 2-dimensional
histograms [45,51]. UnfortunateIy. the space of possibilities is
quite large. In many systems, instead of providing detailed joint
distribution, only summary information such as the number of
distinct pairs of values is used. For example, the statistical
information associated with a multi-column index may consist of
a histogram on the leading column and the total count of distinct
combinations of column values present in the data.

5.1.2 Estimating Statistics on Base Data
Enterprise class databases often have large schema and also have
large volumes of data. Therefore, to have the flexibility of
obtaining statistics to improve accuracy, it is important to be able
to estimate the statistical parameters accurately and efficiently,
Sumphg data provides one possibIe approach. However, the
challenge is to limit the error in estimation. In [48]. Shapiro and
Connell show that for a given query, only a small sample is

} In general: more information about the data è better estimates
} Single-column statistics
◦ min, max, #distinct, #bytes, etc.
◦ Histograms for value distributions (e.g., to estimate #tuples satisfying “age < 20”)
◦ Many different types of histograms proposed over the years

} Multi-column statistics
◦ Correlations among attributes a major issue for estimates
◦ Queries of type: “SSN = 0123 and Name = ‘John Smith’” pretty common

� Independence assumption è huge underestimation of the result size
◦ Many proposals for capturing correlations, but hard to make work in practice

} Propagation of errors
◦ Even if estimates lower in the query plan are pretty good, estimates for more

complex subexpressions become erroneous very quickly

} Need the optimization algorithm to be “extensible”
◦ So it can handle new physical operators, new transformations, new cost estimation approaches,

easicly

} Starburst:
◦ Uses a rule engine and an intermediate representation called QGM to do query

rewrites/transformations
◦ Uses a somewhat generalized bottom-up query optimizer

} Volcano/Cascades:
◦ Transformation rules to map algebraic expressions
◦ Implementation rules to map algebraic expression into an operator tree
◦ Uses a “top-down” query optimizer

� Starts with the overall expression and tries to find all possible ways to get to it
� Uses “memoization” to keep avoid redoing work

◦ Formed the basis of the Microsoft database systems

} Distributed and Parallel Databases
◦ Much bigger search space (can place operators anywhere, and can partition them)
◦ What to optimize for? Communication cost? Total resources? Response time?
◦ Standard approach is to generate a single-machine query plan and then parallelize it (2-phase

optimization)

} User-defined Functions
◦ Need to consider the cost of executing those (can be hard to estimate)

} Materialized views
◦ Given a set of materialized views, hard to decide if those can be used in place of the original

relations (undecidable in general)

} …

} Query evaluation techniques for large databases

} Skew avoidance strategies

} Query compilation

} Vectorization

} Query Optimization: Overview

} How good are the query optimizers, really?

} Build using the IMDB dataset
◦ 21 tables, total of 3.6 GB in CSV format

} 113 SPJ queries – no aggregates or subqueries

} More realistic than the commonly used TPC-H/DS benchmarks (or synthetic
benchmarks)

are quite robust even in the presence of large cardinality estima-
tion errors. The more indexes are available, the harder the problem
becomes for the query optimizer resulting in runtimes that are far
away from the optimal query plan. Section 5 shows that with the
currently-used cardinality estimation techniques, the influence of
cost model errors is dwarfed by cardinality estimation errors and
that even quite simple cost models seem to be sufficient. Sec-
tion 6 investigates different plan enumeration algorithms and shows
that—despite large cardinality misestimates and sub-optimal cost
models—exhaustive join order enumeration improves performance
and that using heuristics leaves performance on the table. Finally,
after discussing related work in Section 7, we present our conclu-
sions and future work in Section 8.

2. BACKGROUND AND METHODOLOGY
Many query optimization papers ignore cardinality estimation

and only study search space exploration for join ordering with ran-
domly generated, synthetic queries (e.g., [32, 13]). Other papers
investigate only cardinality estimation in isolation either theoreti-
cally (e.g., [21]) or empirically (e.g., [43]). As important and in-
teresting both approaches are for understanding query optimizers,
they do not necessarily reflect real-world user experience.

The goal of this paper is to investigate the contribution of all rele-
vant query optimizer components to end-to-end query performance
in a realistic setting. We therefore perform our experiments using a
workload based on a real-world data set and the widely-used Post-
greSQL system. PostgreSQL is a relational database system with
a fairly traditional architecture making it a good subject for our
experiments. Furthermore, its open source nature allows one to in-
spect and change its internals. In this section we introduce the Join
Order Benchmark, describe all relevant aspects of PostgreSQL, and
present our methodology.

2.1 The IMDB Data Set
Many research papers on query processing and optimization use

standard benchmarks like TPC-H, TPC-DS, or the Star Schema
Benchmark (SSB). While these benchmarks have proven their value
for evaluating query engines, we argue that they are not good bench-
marks for the cardinality estimation component of query optimiz-
ers. The reason is that in order to easily be able to scale the bench-
mark data, the data generators are using the very same simplifying
assumptions (uniformity, independence, principle of inclusion) that
query optimizers make. Real-world data sets, in contrast, are full
of correlations and non-uniform data distributions, which makes
cardinality estimation much harder. Section 3.3 shows that Post-
greSQL’s simple cardinality estimator indeed works unrealistically
well for TPC-H.

Therefore, instead of using a synthetic data set, we chose the
Internet Movie Data Base

1
(IMDB). It contains a plethora of in-

formation about movies and related facts about actors, directors,
production companies, etc. The data is freely available2 for non-
commercial use as text files. In addition, we used the open-source
imdbpy

3 package to transform the text files into a relational database
with 21 tables. The data set allows one to answer queries like
“Which actors played in movies released between 2000 and 2005
with ratings above 8?”. Like most real-world data sets IMDB is full
of correlations and non-uniform data distributions, and is therefore
much more challenging than most synthetic data sets. Our snap-
shot is from May 2013 and occupies 3.6 GB when exported to CSV
1
http://www.imdb.com/

2
ftp://ftp.fu-berlin.de/pub/misc/movies/database/

3
https://bitbucket.org/alberanid/imdbpy/get/5.0.zip

movie_info_idx

movie_companies

title

info_type

company_type

company_name kind_type

movie_info

info_type

Figure 2: Typical query graph of our workload

files. The two largest tables, cast info and movie info have
36 M and 15 M rows, respectively.

2.2 The JOB Queries
Based on the IMDB database, we have constructed analytical

SQL queries. Since we focus on join ordering, which arguably is
the most important query optimization problem, we designed the
queries to have between 3 and 16 joins, with an average of 8 joins
per query. Query 13d, which finds the ratings and release dates for
all movies produced by US companies, is a typical example:

SELECT cn.name, mi.info, miidx.info

FROM company_name cn, company_type ct,

info_type it, info_type it2, title t,

kind_type kt, movie_companies mc,

movie_info mi, movie_info_idx miidx

WHERE cn.country_code =’[us]’

AND ct.kind = ’production companies’

AND it.info = ’rating’

AND it2.info = ’release dates’

AND kt.kind = ’movie’

AND ... -- (11 join predicates)

Each query consists of one select-project-join block4. The join
graph of the query is shown in Figure 2. The solid edges in the
graph represent key/foreign key edges (1 : n) with the arrow head
pointing to the primary key side. Dotted edges represent foreign
key/foreign key joins (n : m), which appear due to transitive join
predicates. Our query set consists of 33 query structures, each with
2-6 variants that differ in their selections only, resulting in a total
of 113 queries. Note that depending on the selectivities of the base
table predicates, the variants of the same query structure have dif-
ferent optimal query plans that yield widely differing (sometimes
by orders of magnitude) runtimes. Also, some queries have more
complex selection predicates than the example (e.g., disjunctions
or substring search using LIKE).

Our queries are “realistic” and “ad hoc” in the sense that they
answer questions that may reasonably have been asked by a movie
4Since in this paper we do not model or investigate aggregation,
we omitted GROUP BY from our queries. To avoid communica-
tion from becoming the performance bottleneck for queries with
large result sizes, we wrap all attributes in the projection clause
with MIN(...) expressions when executing (but not when es-
timating). This change has no effect on PostgreSQL’s join order
selection because its optimizer does not push down aggregations.

205

are quite robust even in the presence of large cardinality estima-
tion errors. The more indexes are available, the harder the problem
becomes for the query optimizer resulting in runtimes that are far
away from the optimal query plan. Section 5 shows that with the
currently-used cardinality estimation techniques, the influence of
cost model errors is dwarfed by cardinality estimation errors and
that even quite simple cost models seem to be sufficient. Sec-
tion 6 investigates different plan enumeration algorithms and shows
that—despite large cardinality misestimates and sub-optimal cost
models—exhaustive join order enumeration improves performance
and that using heuristics leaves performance on the table. Finally,
after discussing related work in Section 7, we present our conclu-
sions and future work in Section 8.

2. BACKGROUND AND METHODOLOGY
Many query optimization papers ignore cardinality estimation

and only study search space exploration for join ordering with ran-
domly generated, synthetic queries (e.g., [32, 13]). Other papers
investigate only cardinality estimation in isolation either theoreti-
cally (e.g., [21]) or empirically (e.g., [43]). As important and in-
teresting both approaches are for understanding query optimizers,
they do not necessarily reflect real-world user experience.

The goal of this paper is to investigate the contribution of all rele-
vant query optimizer components to end-to-end query performance
in a realistic setting. We therefore perform our experiments using a
workload based on a real-world data set and the widely-used Post-
greSQL system. PostgreSQL is a relational database system with
a fairly traditional architecture making it a good subject for our
experiments. Furthermore, its open source nature allows one to in-
spect and change its internals. In this section we introduce the Join
Order Benchmark, describe all relevant aspects of PostgreSQL, and
present our methodology.

2.1 The IMDB Data Set
Many research papers on query processing and optimization use

standard benchmarks like TPC-H, TPC-DS, or the Star Schema
Benchmark (SSB). While these benchmarks have proven their value
for evaluating query engines, we argue that they are not good bench-
marks for the cardinality estimation component of query optimiz-
ers. The reason is that in order to easily be able to scale the bench-
mark data, the data generators are using the very same simplifying
assumptions (uniformity, independence, principle of inclusion) that
query optimizers make. Real-world data sets, in contrast, are full
of correlations and non-uniform data distributions, which makes
cardinality estimation much harder. Section 3.3 shows that Post-
greSQL’s simple cardinality estimator indeed works unrealistically
well for TPC-H.

Therefore, instead of using a synthetic data set, we chose the
Internet Movie Data Base

1
(IMDB). It contains a plethora of in-

formation about movies and related facts about actors, directors,
production companies, etc. The data is freely available2 for non-
commercial use as text files. In addition, we used the open-source
imdbpy

3 package to transform the text files into a relational database
with 21 tables. The data set allows one to answer queries like
“Which actors played in movies released between 2000 and 2005
with ratings above 8?”. Like most real-world data sets IMDB is full
of correlations and non-uniform data distributions, and is therefore
much more challenging than most synthetic data sets. Our snap-
shot is from May 2013 and occupies 3.6 GB when exported to CSV
1
http://www.imdb.com/

2
ftp://ftp.fu-berlin.de/pub/misc/movies/database/

3
https://bitbucket.org/alberanid/imdbpy/get/5.0.zip

Figure 2: Typical query graph of our workload

files. The two largest tables, cast info and movie info have
36 M and 15 M rows, respectively.

2.2 The JOB Queries
Based on the IMDB database, we have constructed analytical

SQL queries. Since we focus on join ordering, which arguably is
the most important query optimization problem, we designed the
queries to have between 3 and 16 joins, with an average of 8 joins
per query. Query 13d, which finds the ratings and release dates for
all movies produced by US companies, is a typical example:

SELECT cn.name, mi.info, miidx.info

FROM company_name cn, company_type ct,

info_type it, info_type it2, title t,

kind_type kt, movie_companies mc,

movie_info mi, movie_info_idx miidx

WHERE cn.country_code =’[us]’

AND ct.kind = ’production companies’

AND it.info = ’rating’

AND it2.info = ’release dates’

AND kt.kind = ’movie’

AND ... -- (11 join predicates)

Each query consists of one select-project-join block4. The join
graph of the query is shown in Figure 2. The solid edges in the
graph represent key/foreign key edges (1 : n) with the arrow head
pointing to the primary key side. Dotted edges represent foreign
key/foreign key joins (n : m), which appear due to transitive join
predicates. Our query set consists of 33 query structures, each with
2-6 variants that differ in their selections only, resulting in a total
of 113 queries. Note that depending on the selectivities of the base
table predicates, the variants of the same query structure have dif-
ferent optimal query plans that yield widely differing (sometimes
by orders of magnitude) runtimes. Also, some queries have more
complex selection predicates than the example (e.g., disjunctions
or substring search using LIKE).

Our queries are “realistic” and “ad hoc” in the sense that they
answer questions that may reasonably have been asked by a movie
4Since in this paper we do not model or investigate aggregation,
we omitted GROUP BY from our queries. To avoid communica-
tion from becoming the performance bottleneck for queries with
large result sizes, we wrap all attributes in the projection clause
with MIN(...) expressions when executing (but not when es-
timating). This change has no effect on PostgreSQL’s join order
selection because its optimizer does not push down aggregations.

205

} Standard dynamic programming-based optimizer
◦ Includes bushy plans, but no Cartesian products

} Statistics: Single-column histograms, min, max, most frequent values, etc.
◦ Assume independence and uniformity outside of those

◦ Especially for conjunctive predicates (like A = 10 and B = 20)

} Modified for the purposes of this paper to accept “cardinality injection”
◦ i.e., use different cardinality estimates than the ones it computed

◦ e.g., true cardinalities, or cardinalities per another system

How Good Are Query Optimizers, Really?

Viktor Leis
TUM

leis@in.tum.de

Andrey Gubichev
TUM

gubichev@in.tum.de

Atanas Mirchev
TUM

mirchev@in.tum.de
Peter Boncz

CWI
p.boncz@cwi.nl

Alfons Kemper
TUM

kemper@in.tum.de

Thomas Neumann
TUM

neumann@in.tum.de

ABSTRACT
Finding a good join order is crucial for query performance. In this
paper, we introduce the Join Order Benchmark (JOB) and exper-
imentally revisit the main components in the classic query opti-
mizer architecture using a complex, real-world data set and realistic
multi-join queries. We investigate the quality of industrial-strength
cardinality estimators and find that all estimators routinely produce
large errors. We further show that while estimates are essential for
finding a good join order, query performance is unsatisfactory if
the query engine relies too heavily on these estimates. Using an-
other set of experiments that measure the impact of the cost model,
we find that it has much less influence on query performance than
the cardinality estimates. Finally, we investigate plan enumera-
tion techniques comparing exhaustive dynamic programming with
heuristic algorithms and find that exhaustive enumeration improves
performance despite the sub-optimal cardinality estimates.

1. INTRODUCTION
The problem of finding a good join order is one of the most stud-

ied problems in the database field. Figure 1 illustrates the classical,
cost-based approach, which dates back to System R [36]. To obtain
an efficient query plan, the query optimizer enumerates some subset
of the valid join orders, for example using dynamic programming.
Using cardinality estimates as its principal input, the cost model
then chooses the cheapest alternative from semantically equivalent
plan alternatives.

Theoretically, as long as the cardinality estimations and the cost
model are accurate, this architecture obtains the optimal query plan.
In reality, cardinality estimates are usually computed based on sim-
plifying assumptions like uniformity and independence. In real-
world data sets, these assumptions are frequently wrong, which
may lead to sub-optimal and sometimes disastrous plans.

In this experiments and analyses paper we investigate the three
main components of the classical query optimization architecture
in order to answer the following questions:

• How good are cardinality estimators and when do bad esti-
mates lead to slow queries?

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 9, No. 3
Copyright 2015 VLDB Endowment 2150-8097/15/11.

SELECT ...
FROM R,S,T
WHERE ...

v

B

B

R
S

T

HJ

INLcardinality
estimation

cost
model

plan space
enumeration

Figure 1: Traditional query optimizer architecture

• How important is an accurate cost model for the overall query
optimization process?

• How large does the enumerated plan space need to be?

To answer these questions, we use a novel methodology that allows
us to isolate the influence of the individual optimizer components
on query performance. Our experiments are conducted using a real-
world data set and 113 multi-join queries that provide a challeng-
ing, diverse, and realistic workload. Another novel aspect of this
paper is that it focuses on the increasingly common main-memory
scenario, where all data fits into RAM.

The main contributions of this paper are listed in the following:

• We design a challenging workload named Join Order Bench-

mark (JOB), which is based on the IMDB data set. The
benchmark is publicly available to facilitate further research.

• To the best of our knowledge, this paper presents the first
end-to-end study of the join ordering problem using a real-
world data set and realistic queries.

• By quantifying the contributions of cardinality estimation,
the cost model, and the plan enumeration algorithm on query
performance, we provide guidelines for the complete design
of a query optimizer. We also show that many disastrous
plans can easily be avoided.

The rest of this paper is organized as follows: We first discuss
important background and our new benchmark in Section 2. Sec-
tion 3 shows that the cardinality estimators of the major relational
database systems produce bad estimates for many realistic queries,
in particular for multi-join queries. The conditions under which
these bad estimates cause slow performance are analyzed in Sec-
tion 4. We show that it very much depends on how much the
query engine relies on these estimates and on how complex the
physical database design is, i.e., the number of indexes available.
Query engines that mainly rely on hash joins and full table scans,

204

} q-error: ratio of correct result and estimate
} Base tables: sampling (Hyper and A) works better than histograms
} Huge underestimation seen as #joins increases
◦ Underestimation generally worse – results in more aggressive plans (e.g., NL joins)

} Note: The experimental setup may naturally “select” for underestimates
◦ (Missing enough details to be sure)

PostgreSQL DBMS A DBMS B DBMS C HyPer

1e8

1e6

1e4

1e2

1

1e2

1e4

0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6
number of joins

�
un

de
re

st
im

at
io

n
[lo

g
sc

al
e]

 o
ve

re
st

im
at

io
n

�

95th percentile

5th percentile

median
75th percentile

25th percentile

Figure 3: Quality of cardinality estimates for multi-join queries in comparison with the true cardinalities. Each boxplot summarizes
the error distribution of all subexpressions with a particular size (over all queries in the workload)

median 90th 95th max
PostgreSQL 1.00 2.08 6.10 207
DBMS A 1.01 1.33 1.98 43.4
DBMS B 1.00 6.03 30.2 104000
DBMS C 1.06 1677 5367 20471
HyPer 1.02 4.47 8.00 2084

Table 1: Q-errors for base table selections

cardinality estimates are sometimes wrong by orders of magnitude,
and that such errors are usually the reason for slow queries. In this
section, we experimentally investigate the quality of cardinality es-
timates in relational database systems by comparing the estimates
with the true cardinalities.

3.1 Estimates for Base Tables
To measure the quality of base table cardinality estimates, we

use the q-error, which is the factor by which an estimate differs
from the true cardinality. For example, if the true cardinality of
an expression is 100, the estimates of 10 or 1000 both have a q-
error of 10. Using the ratio instead of an absolute or quadratic
difference captures the intuition that for making planning decisions
only relative differences matter. The q-error furthermore provides
a theoretical upper bound for the plan quality if the q-errors of a
query are bounded [30].

Table 1 shows the 50th, 90th, 95th, and 100th percentiles of the
q-errors for the 629 base table selections in our workload. The
median q-error is close to the optimal value of 1 for all systems,
indicating that the majority of all selections are estimated correctly.
However, all systems produce misestimates for some queries, and
the quality of the cardinality estimates differs strongly between the
different systems.

Looking at the individual selections, we found that DBMS A and
HyPer can usually predict even complex predicates like substring
search using LIKE very well. To estimate the selectivities for base

tables HyPer uses a random sample of 1000 rows per table and
applies the predicates on that sample. This allows one to get ac-

curate estimates for arbitrary base table predicates as long as the
selectivity is not too low. When we looked at the selections where
DBMS A and HyPer produce errors above 2, we found that most
of them have predicates with extremely low true selectivities (e.g.,
10�5 or 10�6). This routinely happens when the selection yields
zero tuples on the sample, and the system falls back on an ad-hoc
estimation method (“magic constants”). It therefore appears to be
likely that DBMS A also uses the sampling approach.

The estimates of the other systems are worse and seem to be
based on per-attribute histograms, which do not work well for many
predicates and cannot detect (anti-)correlations between attributes.
Note that we obtained all estimates using the default settings af-
ter running the respective statistics gathering tool. Some commer-
cial systems support the use of sampling for base table estimation,
multi-attribute histograms (“column group statistics”), or ex post
feedback from previous query runs [38]. However, these features
are either not enabled by default or are not fully automatic.

3.2 Estimates for Joins
Let us now turn our attention to the estimation of intermediate

results for joins, which are more challenging because sampling or
histograms do not work well. Figure 3 summarizes over 100,000
cardinality estimates in a single figure. For each intermediate re-
sult of our query set, we compute the factor by which the estimate
differs from the true cardinality, distinguishing between over- and
underestimation. The graph shows one “boxplot” (note the legend
in the bottom-left corner) for each intermediate result size, which
allows one to compare how the errors change as the number of joins
increases. The vertical axis uses a logarithmic scale to encompass
underestimates by a factor of 108 and overestimates by a factor of
104.

Despite the better base table estimates of DBMS A, the overall
variance of the join estimation errors, as indicated by the boxplot,
is similar for all systems with the exception of DBMS B. For all
systems we routinely observe misestimates by a factor of 1000 or
more. Furthermore, as witnessed by the increasing height of the
box plots, the errors grow exponentially (note the logarithmic scale)

207

} Used cardinality injection to use other systems’ estimates or the true
cardinalities

} Most bad plans boil down to NL joins
◦ Disabling improves performance but doesn’t fully solve the problem

4. WHEN DO BAD CARDINALITY ESTI-
MATES LEAD TO SLOW QUERIES?

While the large estimation errors shown in the previous section
are certainly sobering, large errors do not necessarily lead to slow
query plans. For example, the misestimated expression may be
cheap in comparison with other parts of the query, or the relevant
plan alternative may have been misestimated by a similar factor
thus “canceling out” the original error. In this section we investi-
gate the conditions under which bad cardinalities are likely to cause
slow queries.

One important observation is that query optimization is closely
intertwined with the physical database design: the type and number
of indexes heavily influence the plan search space, and therefore
affects how sensitive the system is to cardinality misestimates. We
therefore start this section with experiments using a relatively ro-
bust physical design with only primary key indexes and show that
in such a setup the impact of cardinality misestimates can largely be
mitigated. After that, we demonstrate that for more complex con-
figurations with many indexes, cardinality misestimation makes it
much more likely to miss the optimal plan by a large margin.

4.1 The Risk of Relying on Estimates
To measure the impact of cardinality misestimation on query per-

formance we injected the estimates of the different systems into
PostgreSQL and then executed the resulting plans. Using the same
query engine allows one to compare the cardinality estimation com-
ponents in isolation by (largely) abstracting away from the different
query execution engines. Additionally, we inject the true cardinali-
ties, which computes the—with respect to the cost model—optimal
plan. We group the runtimes based on their slowdown w.r.t. the op-
timal plan, and report the distribution in the following table, where
each column corresponds to a group:

<0.9 [0.9,1.1) [1.1,2) [2,10) [10,100) >100
PostgreSQL 1.8% 38% 25% 25% 5.3% 5.3%
DBMS A 2.7% 54% 21% 14% 0.9% 7.1%
DBMS B 0.9% 35% 18% 15% 7.1% 25%
DBMS C 1.8% 38% 35% 13% 7.1% 5.3%
HyPer 2.7% 37% 27% 19% 8.0% 6.2%

A small number of queries become slightly slower using the true
instead of the erroneous cardinalities. This effect is caused by cost
model errors, which we discuss in Section 5. However, as expected,
the vast majority of the queries are slower when estimates are used.
Using DBMS A’s estimates, 78% of the queries are less than 2⇥
slower than using the true cardinalities, while for DBMS B this is
the case for only 53% of the queries. This corroborates the findings
about the relative quality of cardinality estimates in the previous
section. Unfortunately, all estimators occasionally lead to plans
that take an unreasonable time and lead to a timeout. Surprisingly,
however, many of the observed slowdowns are easily avoidable de-
spite the bad estimates as we show in the following.

When looking at the queries that did not finish in a reasonable
time using the estimates, we found that most have one thing in
common: PostgreSQL’s optimizer decides to introduce a nested-
loop join (without an index lookup) because of a very low cardinal-
ity estimate, whereas in reality the true cardinality is larger. As we
saw in the previous section, systematic underestimation happens
very frequently, which occasionally results in the introduction of
nested-loop joins.

The underlying reason why PostgreSQL chooses nested-loop joins
is that it picks the join algorithm on a purely cost-based basis. For
example, if the cost estimate is 1,000,000 with the nested-loop

default + no nested-loop join + rehashing

(a) (b) (c)

0%

20%

40%

60%

[0.
3,0

.9)

[0.
9,1

.1)
[1.

1,2
)
[2,

10
)

[10
,10

0)
>1

00

[0.
3,0

.9)

[0.
9,1

.1)
[1.

1,2
)
[2,

10
)

[10
,10

0)
>1

00

[0.
3,0

.9)

[0.
9,1

.1)
[1.

1,2
)
[2,

10
)

[10
,10

0)
>1

00

Figure 6: Slowdown of queries using PostgreSQL estimates
w.r.t. using true cardinalities (primary key indexes only)

join algorithm and 1,000,001 with a hash join, PostgreSQL will
always prefer the nested-loop algorithm even if there is a equality
join predicate, which allows one to use hashing. Of course, given
the O(n2) complexity of nested-loop join and O(n) complexity of
hash join, and given the fact that underestimates are quite frequent,
this decision is extremely risky. And even if the estimates happen
to be correct, any potential performance advantage of a nested-loop
join in comparison with a hash join is very small, so taking this high

risk can only result in a very small payoff.
Therefore, we disabled nested-loop joins (but not index-nested-

loop joins) in all following experiments. As Figure 6b shows, when
rerunning all queries without these risky nested-loop joins, we ob-
served no more timeouts despite using PostgreSQL’s estimates.

Also, none of the queries performed slower than before despite
having less join algorithm options, confirming our hypothesis that
nested-loop joins (without indexes) seldom have any upside. How-
ever, this change does not solve all problems, as there are still a
number of queries that are more than a factor of 10 slower (cf., red
bars) in comparison with the true cardinalities.

When investigating the reason why the remaining queries still
did not perform as well as they could, we found that most of them
contain a hash join where the size of the build input is underesti-
mated. PostgreSQL up to and including version 9.4 chooses the
size of the in-memory hash table based on the cardinality estimate.
Underestimates can lead to undersized hash tables with very long
collisions chains and therefore bad performance. The upcoming
version 9.5 resizes the hash table at runtime based on the number
of rows actually stored in the hash table. We backported this patch
to our code base, which is based on 9.4, and enabled it for all re-
maining experiments. Figure 6c shows the effect of this change
in addition with disabled nested-loop joins. Less than 4% of the
queries are off by more than 2⇥ in comparison with the true cardi-
nalities.

To summarize, being “purely cost-based”, i.e., not taking into
account the inherent uncertainty of cardinality estimates and the
asymptotic complexities of different algorithm choices, can lead to
very bad query plans. Algorithms that seldom offer a large benefit
over more robust algorithms should not be chosen. Furthermore,
query processing algorithms should, if possible, automatically de-
termine their parameters at runtime instead of relying on cardinality
estimates.

4.2 Good Plans Despite Bad Cardinalities
The query runtimes of plans with different join orders often vary

by many orders of magnitude (cf. Section 6.1). Nevertheless, when

209

PK indexes PK + FK indexes

(a) (b)

0%

20%

40%

60%

[0.
3,0

.9)

[0.
9,1

.1)
[1.

1,2
)
[2,

10
)

[10
,10

0)
>1

00

[0.
3,0

.9)

[0.
9,1

.1)
[1.

1,2
)
[2,

10
)

[10
,10

0)
>1

00

Figure 7: Slowdown of queries using PostgreSQL estimates
w.r.t. using true cardinalities (different index configurations)

the database has only primary key indexes, as in all in experiments
so far, and once nested loop joins have been disabled and rehashing
has been enabled, the performance of most queries is close to the
one obtained using the true cardinalities. Given the bad quality
of the cardinality estimates, we consider this to be a surprisingly
positive result. It is worthwhile to reflect on why this is the case.

The main reason is that without foreign key indexes, most large
(“fact”) tables need to be scanned using full table scans, which
dampens the effect of different join orders. The join order still
matters, but the results indicate that the cardinality estimates are
usually good enough to rule out all disastrous join order decisions
like joining two large tables using an unselective join predicate.
Another important reason is that in main memory picking an index-
nested-loop join where a hash join would have been faster is never
disastrous. With all data and indexes fully cached, we measured
that the performance advantage of a hash join over an index-nested-
loop join is at most 5⇥ with PostgreSQL and 2⇥ with HyPer. Ob-
viously, when the index must be read from disk, random IO may
result in a much larger factor. Therefore, the main-memory setting
is much more forgiving.

4.3 Complex Access Paths
So far, all query executions were performed on a database with

indexes on primary key attributes only. To see if the query opti-
mization problem becomes harder when there are more indexes,
we additionally indexed all foreign key attributes. Figure 7b shows
the effect of additional foreign key indexes. We see large perfor-
mance differences with 40% of the queries being slower by a factor
of 2! Note that these results do not mean that adding more indexes
decreases performance (although this can occasionally happen). In-
deed overall performance generally increases significantly, but the
more indexes are available the harder the job of the query optimizer
becomes.

4.4 Join-Crossing Correlations
There is consensus in our community that estimation of interme-

diate result cardinalities in the presence of correlated query predi-
cates is a frontier in query optimization research. The JOB work-
load studied in this paper consists of real-world data and its queries
contain many correlated predicates. Our experiments that focus on
single-table subquery cardinality estimation quality (cf. Table 1)
show that systems that keep table samples (HyPer and presumably
DBMS A) can achieve almost perfect estimation results, even for
correlated predicates (inside the same table). As such, the cardinal-
ity estimation research challenge appears to lie in queries where the

correlated predicates involve columns from different tables, con-
nected by joins. These we call “join-crossing correlations”. Such
correlations frequently occur in the IMDB data set, e.g., actors born
in Paris are likely to play in French movies.

Given these join-crossing correlations one could wonder if there
exist complex access paths that allow to exploit these. One exam-
ple relevant here despite its original setting in XQuery processing
is ROX [22]. It studied runtime join order query optimization in
the context of DBLP co-authorship queries that count how many
Authors had published Papers in three particular venues, out of
many. These queries joining the author sets from different venues
clearly have join-crossing correlations, since authors who publish
in VLDB are typically database researchers, likely to also publish in
SIGMOD, but not—say—in Nature.

In the DBLP case, Authorship is a n : m relationship that
links the relation Authors with the relation Papers. The op-
timal query plans in [22] used an index-nested-loop join, look-
ing up each author into Authorship.author (the indexed pri-
mary key) followed by a filter restriction on Paper.venue, which
needs to be looked up with yet another join. This filter on venue
would normally have to be calculated after these two joins. How-
ever, the physical design of [22] stored Authorship partitioned by

Paper.venue.7 This partitioning has startling effects: instead of
one Authorship table and primary key index, one physically has
many, one for each venue partition. This means that by accessing
the right partition, the filter is implicitly enforced (for free), before

the join happens. This specific physical design therefore causes
the optimal plan to be as follows: first join the smallish authorship
set from SIGMOD with the large set for Nature producing almost
no result tuples, making the subsequent nested-loops index lookup
join into VLDB very cheap. If the tables would not have been parti-
tioned, index lookups from all SIGMOD authors into Authorships

would first find all co-authored papers, of which the great majority
is irrelevant because they are about database research, and were not
published in Nature. Without this partitioning, there is no way to
avoid this large intermediate result, and there is no query plan that
comes close to the partitioned case in efficiency: even if cardinality
estimation would be able to predict join-crossing correlations, there
would be no physical way to profit from this knowledge.

The lesson to draw from this example is that the effects of query
optimization are always gated by the available options in terms of
access paths. Having a partitioned index on a join-crossing predi-

cate as in [22] is a non-obvious physical design alternative which
even modifies the schema by bringing in a join-crossing column
(Paper.venue) as partitioning key of a table (Authorship). The
partitioned DBLP set-up is just one example of how one particu-
lar join-crossing correlation can be handled, rather than a generic
solution. Join-crossing correlations remain an open frontier for
database research involving the interplay of physical design, query
execution and query optimization. In our JOB experiments we do
not attempt to chart this mostly unknown space, but rather charac-
terize the impact of (join-crossing) correlations on the current state-
of-the-art of query processing, restricting ourselves to standard PK
and FK indexing.

5. COST MODELS
The cost model guides the selection of plans from the search

space. The cost models of contemporary systems are sophisticated
7In fact, rather than relational table partitioning, there was a sep-
arate XML document per venue, e.g., separate documents for
SIGMOD, VLDB, Nature and a few thousand more venues. Stor-
age in a separate XML document has roughly the same effect on
access paths as partitioned tables.

210

} PostgreSQL uses a disk-oriented cost model –
a weighted sum of I/O and CPU costs
◦ No easy way to set the parameters

} Plot predicted costs vs actual costs – a linear
line is the best outcome here

} Findings:
◦ Default estimates result in fairly poor fit –

predicted and actual costs quite different
◦ Most of the error goes away if the optimizer has

access to true cardinalities
◦ Tuning the cost model doesn’t really help that

much
◦ Using a much simpler cost model gives similar

results
� Just count the number of tuples being processed by

each operator

Computed estimated costs with true
cardinalities for 1000 random plans

Slowest or even median query plans
much worse than optimal (several
orders of magnitude in many cases)

Prior work from approx. 20 years ago
that does this in more depth

into available memory (admittedly, the core of PostgreSQL was
shaped decades ago when database servers only had few megabytes
of RAM). This does not eliminate the page access costs entirely
(due to buffer manager overhead), but significantly bridges the gap
between the I/O and CPU processing costs.

Arguably, the most important change that needs to be done in the
cost model for a main-memory workload is to decrease the propor-
tion between these two groups. We have done so by multiplying the
CPU cost parameters by a factor of 50. The results of the workload
run with improved parameters are plotted in the two middle subfig-
ures of Figure 8. Comparing Figure 8b with d, we see that tuning
does indeed improve the correlation between the cost and the run-
time. On the other hand, as is evident from comparing Figure 8c
and d, parameter tuning improvement is still overshadowed by the
difference between the estimated and the true cardinalities. Note
that Figure 8c features a set of outliers for which the optimizer has
accidentally discovered very good plans (runtimes around 1 ms)
without realizing it (hence very high costs). This is another sign of
“oscillation” in query planning caused by cardinality misestimates.

In addition, we measure the prediction error ✏ of the tuned cost
model, as defined in Section 5.2. We observe that tuning improves
the predictive power of the cost model: the median error decreases
from 38% to 30%.

5.4 Are Complex Cost Models Necessary?
As discussed above, the PostgreSQL cost model is quite com-

plex. Presumably, this complexity should reflect various factors
influencing query execution, such as the speed of a disk seek and
read, CPU processing costs, etc. In order to find out whether this
complexity is actually necessary in a main-memory setting, we will
contrast it with a very simple cost function Cmm. This cost func-
tion is tailored for the main-memory setting in that it does not model
I/O costs, but only counts the number of tuples that pass through
each operator during query execution:

Cmm(T) =

8
>>><

>>>:

⌧ · |R| if T = R _ T = �(R)

|T |+ Cmm(T1) + Cmm(T2) if T = T1 ./
HJ

T2

Cmm(T1)+ if T = T1 ./
INL

T2,

� · |T1| · max(|T1./R|
|T1|

, 1) (T2 = R _ T2 = �(R))

In the formula above R is a base relation, and ⌧  1 is a pa-
rameter that discounts the cost of a table scan in comparison with
joins. The cost function distinguishes between hash ./

HJ and index-
nested loop ./

INL joins: the latter scans T1 and performs index
lookups into an index on R, thus avoiding a full table scan of R.
A special case occurs when there is a selection on the right side of
the index-nested loop join, in which case we take into account the
number of tuple lookups in the base table index and essentially dis-
card the selection from the cost computation (hence the multiplier
max(|T1./R|

|T1|
, 1)). For index-nested loop joins we use the constant

� � 1 to approximate by how much an index lookup is more ex-
pensive than a hash table lookup. Specifically, we set � = 2 and
⌧ = 0.2. As in our previous experiments, we disable nested loop
joins when the inner relation is not an index lookup (i.e., non-index
nested loop joins).

The results of our workload run with Cmm as a cost function are
depicted in Figure 8e and f. We see that even our trivial cost model
is able to fairly accurately predict the query runtime using the true
cardinalities. To quantify this argument, we measure the improve-
ment in the runtime achieved by changing the cost model for true
cardinalities: In terms of the geometric mean over all queries, our
tuned cost model yields 41% faster runtimes than the standard Post-
greSQL model, but even a simple Cmm makes queries 34% faster

JOB 6a JOB 13a JOB 16d JOB 17b JOB 25c

no indexes
PK indexes

PK + FK indexes

1 1e2 1e3 1e4 1 1e2 1e3 1e4 1 1e2 1e3 1e4 1 1e2 1e3 1e4 1 1e2 1e3 1e4
cost relative to optimal FK plan [log scale]

Figure 9: Cost distributions for 5 queries and different index
configurations. The vertical green lines represent the cost of
the optimal plan

than the built-in cost function. This improvement is not insignifi-
cant, but on the other hand, it is dwarfed by improvement in query
runtime observed when we replace estimated cardinalities with the
real ones (cf. Figure 6b). This allows us to reiterate our main mes-
sage that cardinality estimation is much more crucial than the cost
model.

6. PLAN SPACE
Besides cardinality estimation and the cost model, the final im-

portant query optimization component is a plan enumeration algo-
rithm that explores the space of semantically equivalent join orders.
Many different algorithms, both exhaustive (e.g., [29, 12]) as well
as heuristic (e.g, [37, 32]) have been proposed. These algorithms
consider a different number of candidate solutions (that constitute
the search space) when picking the best plan. In this section we
investigate how large the search space needs to be in order to find a
good plan.

The experiments of this section use a standalone query optimizer,
which implements Dynamic Programming (DP) and a number of
heuristic join enumeration algorithms. Our optimizer allows the in-
jection of arbitrary cardinality estimates. In order to fully explore
the search space, we do not actually execute the query plans pro-
duced by the optimizer in this section, as that would be infeasible
due to the number of joins our queries have. Instead, we first run
the query optimizer using the estimates as input. Then, we recom-
pute the cost of the resulting plan with the true cardinalities, giving
us a very good approximation of the runtime the plan would have
in reality. We use the in-memory cost model from Section 5.4 and
assume that it perfectly predicts the query runtime, which, for our
purposes, is a reasonable assumption since the errors of the cost
model are negligible in comparison the cardinality errors. This ap-
proach allows us to compare a large number of plans without exe-
cuting all of them.

6.1 How Important Is the Join Order?
We use the Quickpick [40] algorithm to visualize the costs of

different join orders. Quickpick is a simple, randomized algorithm

212

} Bushy trees important to consider

} Exhaustive algorithms (DP or top-down) needed

PK indexes PK + FK indexes
PostgreSQL estimates true cardinalities PostgreSQL estimates true cardinalities
median 95% max median 95% max median 95% max median 95% max

Dynamic Programming 1.03 1.85 4.79 1.00 1.00 1.00 1.66 169 186367 1.00 1.00 1.00
Quickpick-1000 1.05 2.19 7.29 1.00 1.07 1.14 2.52 365 186367 1.02 4.72 32.3
Greedy Operator Ordering 1.19 2.29 2.36 1.19 1.64 1.97 2.35 169 186367 1.20 5.77 21.0

Table 3: Comparison of exhaustive dynamic programming with the Quickpick-1000 (best of 1000 random plans) and the Greedy
Operator Ordering heuristics. All costs are normalized by the optimal plan of that index configuration

certain correlations [19] to subsequently create multi-column his-
tograms [34] for these.

However, many of our JOB queries contain join-crossing cor-
relations, which single-table samples do not capture, and where
the current generation of systems still apply the independence as-
sumption. There is a body of existing research work to better esti-
mate result sizes of queries with join-crossing correlations, mainly
based on join samples [17], possibly enhanced against skew (end-
biased sampling [10], correlated samples [43]), using sketches [35]
or graphical models [39]. This work confirms that without ad-
dressing join-crossing correlations, cardinality estimates deterio-
rate strongly with more joins [21], leading to both the over- and
underestimation of result sizes (mostly the latter), so it would be
positive if some of these techniques would be adopted by systems.

Another way of learning about join-crossing correlations is by
exploiting query feedback, as in the LEO project [38], though there
it was noted that deriving cardinality estimations based on a mix of
exact knowledge and lack of knowledge needs a sound mathemat-
ical underpinning. For this, maximum entropy (MaxEnt [28, 23])
was defined, though the costs for applying maximum entropy are
high and have prevented its use in systems so far. We found that
the performance impact of estimation mistakes heavily depends on
the physical database design; in our experiments the largest impact
is in situations with the richest designs. From the ROX [22] dis-
cussion in Section 4.4 one might conjecture that to truly unlock
the potential of correctly predicting cardinalities for join-crossing
correlations, we also need new physical designs and access paths.

Another finding in this paper is that the adverse effects of cardi-
nality misestimations can be strongly reduced if systems would be
“hedging their bets” and not only choose the plan with the cheapest
expected cost, but take the probabilistic distribution of the estimate
into account, to avoid plans that are marginally faster than others
but bear a high risk of strong underestimation. There has been work
both on doing this for cardinality estimates purely [30], as well as
combining these with a cost model (cost distributions [2]).

The problem with fixed hash table sizes for PostgreSQL illus-
trates that cost misestimation can often be mitigated by making the
runtime behavior of the query engine more “performance robust”.
This links to a body of work to make systems adaptive to estima-
tion mistakes, e.g., dynamically switch sides in a join, or change
between hashing and sorting (GJoin [15]), switch between sequen-
tial scan and index lookup (smooth scan [4]), adaptively reordering
join pipelines during query execution [24], or change aggregation
strategies at runtime depending on the actual number of group-by
values [31] or partition-by values [3].

A radical approach is to move query optimization to runtime,
when actual value-distributions become available [33, 9]. However,
runtime techniques typically restrict the plan search space to limit
runtime plan exploration cost, and sometimes come with functional
restrictions such as to only consider (sampling through) operators
which have pre-created indexed access paths (e.g., ROX [22]).

Our experiments with the second query optimizer component be-
sides cardinality estimation, namely the cost model, suggest that
tuning cost models provides less benefits than improving cardi-
nality estimates, and in a main-memory setting even an extremely
simple cost-model can produce satisfactory results. This conclu-
sion resonates with some of the findings in [42] which sets out to
improve cost models but shows major improvements by refining
cardinality estimates with additional sampling.

For testing the final query optimizer component, plan enumera-
tion, we borrowed in our methodology from the Quickpick method
used in randomized query optimization [40] to characterize and vi-
sualize the search space. Another well-known search space visu-
alization method is Picasso [18], which visualizes query plans as
areas in a space where query parameters are the dimensions. Inter-
estingly, [40] claims in its characterization of the search space that
good query plans are easily found, but our tests indicate that the
richer the physical design and access path choices, the rarer good
query plans become.

Query optimization is a core database research topic with a huge
body of related work, that cannot be fully represented in this sec-
tion. After decades of work still having this problem far from re-
solved [26], some have even questioned it and argued for the need
of optimizer application hints [6]. This paper introduces the Join
Order Benchmark based on the highly correlated IMDB real-world
data set and a methodology for measuring the accuracy of cardinal-
ity estimation. Its integration in systems proposed for testing and
evaluating the quality of query optimizers [41, 16, 14, 27] is hoped
to spur further innovation in this important topic.

8. CONCLUSIONS AND FUTURE WORK
In this paper we have provided quantitative evidence for conven-

tional wisdom that has been accumulated in three decades of prac-
tical experience with query optimizers. We have shown that query
optimization is essential for efficient query processing and that ex-
haustive enumeration algorithms find better plans than heuristics.
We have also shown that relational database systems produce large
estimation errors that quickly grow as the number of joins increases,
and that these errors are usually the reason for bad plans. In con-
trast to cardinality estimation, the contribution of the cost model to
the overall query performance is limited.

Going forward, we see two main routes for improving the plan
quality in heavily-indexed settings. First, database systems can in-
corporate more advanced estimation algorithms that have been pro-
posed in the literature. The second route would be to increase the
interaction between the runtime and the query optimizer. We leave
the evaluation of both approaches for future work.

We encourage the community to use the Join Order Benchmark
as a test bed for further experiments, for example into the risk/re-
ward tradeoffs of complex access paths. Furthermore, it would be
interesting to investigate disk-resident and distributed databases,
which provide different challenges than our main-memory setting.

214

that picks joins edges at random until all joined relations are fully
connected. Each run produces a correct, but usually slow, query
plan. By running the algorithm 10,000 times per query and com-
puting the costs of the resulting plans, we obtain an approximate
distribution for the costs of random plans. Figure 9 shows density
plots for 5 representative example queries and for three physical
database designs: no indexes, primary key indexes only, and pri-
mary+foreign key indexes. The costs are normalized by the opti-
mal plan (with foreign key indexes), which we obtained by running
dynamic programming and the true cardinalities.

The graphs, which use a logarithmic scale on the horizontal cost
axis, clearly illustrate the importance of the join ordering problem:
The slowest or even median cost is generally multiple orders of
magnitude more expensive than the cheapest plan. The shapes of
the distributions are quite diverse. For some queries, there are many
good plans (e.g., 25c), for others few (e.g., 16d). The distribution
are sometimes wide (e.g., 16d) and sometimes narrow (e.g., 25c).
The plots for the “no indexes” and the “PK indexes” configurations
are very similar implying that for our workload primary key in-
dexes alone do not improve performance very much, since we do
not have selections on primary key columns. In many cases the
“PK+FK indexes” distributions have additional small peaks on the
left side of the plot, which means that the optimal plan in this index
configuration is much faster than in the other configurations.

We also analyzed the entire workload to confirm these visual ob-
servations: The percentage of plans that are at most 1.5⇥ more
expensive than the optimal plan is 44% without indexes, 39% with
primary key indexes, but only 4% with foreign key indexes. The
average fraction between the worst and the best plan, i.e., the width
of the distribution, is 101⇥ without indexes, 115⇥ with primary
key indexes, and 48120⇥ with foreign key indexes. These sum-
mary statistics highlight the dramatically different search spaces of
the three index configurations.

6.2 Are Bushy Trees Necessary?
Most join ordering algorithms do not enumerate all possible tree

shapes. Virtually all optimizers ignore join orders with cross prod-
ucts, which results in a dramatically reduced optimization time with
only negligible query performance impact. Oracle goes even fur-
ther by not considering bushy join trees [1]. In order to quantify
the effect of restricting the search space on query performance, we
modified our DP algorithm to only enumerate left-deep, right-deep,
or zig-zag trees.

Aside from the obvious tree shape restriction, each of these
classes implies constraints on the join method selection. We fol-
low the definition by Garcia-Molina et al.’s textbook, which is re-
verse from the one in Ramakrishnan and Gehrke’s book: Using
hash joins, right-deep trees are executed by first creating hash ta-
bles out of each relation except one before probing in all of these
hash tables in a pipelined fashion, whereas in left-deep trees, a new
hash table is built from the result of each join. In zig-zag trees,
which are a super set of all left- and right-deep trees, each join
operator must have at least one base relation as input. For index-
nested loop joins we additionally employ the following convention:
the left child of a join is a source of tuples that are looked up in the
index on the right child, which must be a base table.

Using the true cardinalities, we compute the cost of the optimal
plan for each of the three restricted tree shapes. We divide these
costs by the optimal tree (which may have any shape, including
“bushy”) thereby measuring how much performance is lost by re-
stricting the search space. The results in Table 2 show that zig-zag
trees offer decent performance in most cases, with the worst case
being 2.54⇥ more expensive than the best bushy plan. Left-deep

PK indexes PK + FK indexes
median 95% max median 95% max

zig-zag 1.00 1.06 1.33 1.00 1.60 2.54
left-deep 1.00 1.14 1.63 1.06 2.49 4.50
right-deep 1.87 4.97 6.80 47.2 30931 738349

Table 2: Slowdown for restricted tree shapes in comparison to
the optimal plan (true cardinalities)

trees are worse than zig-zag trees, as expected, but still result in
reasonable performance. Right-deep trees, on the other hand, per-
form much worse than the other tree shapes and thus should not be
used exclusively. The bad performance of right-deep trees is caused
by the large intermediate hash tables that need to be created from
each base relation and the fact that only the bottom-most join can
be done via index lookup.

6.3 Are Heuristics Good Enough?
So far in this paper, we have used the dynamic programming

algorithm, which computes the optimal join order. However, given
the bad quality of the cardinality estimates, one may reasonably ask
whether an exhaustive algorithm is even necessary. We therefore
compare dynamic programming with a randomized and a greedy
heuristics.

The “Quickpick-1000” heuristics is a randomized algorithm that
chooses the cheapest (based on the estimated cardinalities) 1000
random plans. Among all greedy heuristics, we pick Greedy Op-
erator Ordering (GOO) since it was shown to be superior to other
deterministic approximate algorithms [11]. GOO maintains a set
of join trees, each of which initially consists of one base relation.
The algorithm then combines the pair of join trees with the lowest
cost to a single join tree. Both Quickpick-1000 and GOO can pro-
duce bushy plans, but obviously only explore parts of the search
space. All algorithms in this experiment internally use the Post-
greSQL cardinality estimates to compute a query plan, for which
we compute the “true” cost using the true cardinalities.

Table 3 shows that it is worthwhile to fully examine the search
space using dynamic programming despite cardinality misestima-
tion. However, the errors introduced by estimation errors cause
larger performance losses than the heuristics. In contrast to some
other heuristics (e.g., [5]), GOO and Quickpick-1000 are not re-
ally aware of indexes. Therefore, GOO and Quickpick-1000 work
better when few indexes are available, which is also the case when
there are more good plans.

To summarize, our results indicate that enumerating all bushy
trees exhaustively offers moderate but not insignificant performance
benefits in comparison with algorithms that enumerate only a sub
set of the search space. The performance potential from good car-
dinality estimates is certainly much larger. However, given the ex-
istence of exhaustive enumeration algorithms that can find the opti-
mal solution for queries with dozens of relations very quickly (e.g.,
[29, 12]), there are few cases where resorting to heuristics or dis-
abling bushy trees should be necessary.

7. RELATED WORK
Our cardinality estimation experiments show that systems which

keep table samples for cardinality estimation predict single-table
result sizes considerably better than those which apply the inde-
pendence assumption and use single-column histograms [20]. We
think systems should be adopting table samples as a simple and ro-
bust technique, rather than earlier suggestions to explicitly detect

213

} Single-table (e.g., R.A and R.B are correlated, throwing off estimation of
R.A = 10 and R.B = 20)
◦ Handled by the “sampling” techniques
◦ Build multi-dimensional histograms (don’t really work well)
◦ Identify “soft” functional dependencies (i.e., very highly correlated columns)

� e.g., “car make” and “car model” are highly correlated
� Queries like: Make = Honda and Model = Accord are underestimated
� But not a functional dependency: Model à Make is false

} Join-crossing Correlations
select *
from actors JOIN movies
where actors.location = ‘Paris’ and movies.language = ‘French’

◦ Unclear how one can benefit from capturing this correlation (even if one could)
◦ Need a new operator or access method

} Query evaluation techniques for large databases

} Skew avoidance strategies

} Query compilation

} Vectorization

} Query Optimization: Overview

} How good are the query optimizers, really?

} Reordering for Outerjoins

} Query Rewriting
◦ Starburst

◦ Unnesting arbitrary queries

◦ APPLY (SQL Server)

} Many queries are written in a way that forces a procedural execution
◦ Use of WITH clause or Views to simplify

◦ Procedural code easier for users to write

◦ Modern frameworks/query languages often not that declarative

◦ Automated translation of other DSLs into SQL

◦ Program synthesis?

} Harder for optimizers to deal with
◦ Join order optimization usually goes block-by-block è significant benefits

in reducing the number of blocks

◦ Redundant DISTINCTs etc., lead to unnecessary work

} Merging of select blocks
◦ Different “blocks” get created because of:

� WITH, Views

� Table expressions in FROM (e.g., select * from R, (select S.A, max(S.B) from S group by S.A) X)…)

� Table expressions in WHERE/SELECT/HAVING etc. (e.g., where R.A in (select S.A from S))

� Scalar expressions in WHERE/SELECT/HAVING etc. (e.g., where R.A = (select max(S.A) from S)))

} Correlations Across Blocks
◦ When an ”lower” block refers to an “upper” block

◦ Forces a “dependent” ”nested-loops” execution

� For every tuple in the outer block, the inner block is executed

Correlated

R(A, B), and S(B, C)

R Natural Join S

ht = dict()
for r in R:

if r.B in ht:
ht[r.B].append(r)

else:
ht[r.B] = [r]

for s in S:
for r in ht.get(s.B, []):

yield (s, r)

S Semi Join R (build on R)

ht = set()
for r in R:

ht.add(r.B)
for s in S:

if s.B in ht:
yield s

R Semi Join S (build on R)

ht = dict()
for r in R:

if r.B not in ht:
ht[r.B].append(r)

else:
ht[r.B] = [r]

for s in S:
for r in ht[s.B]:

yield r
ht[s.B] = [] -- avoid

duplicates

Most other join operators built as
minor modifications (special cases)
of this basic code

R(A, B), and S(B, C)

R Natural Join S

ht = dict()
for r in R:

if r.B in ht:
ht[r.B].append(r)

else:
ht[r.B] = [r]

for s in S:
for r in ht.get(s.B, []):

yield (s, r)

S Anti Join R

ht = set()
for r in R:

ht.add(r.B)
for s in S:

if s.B not in ht:
yield s

R Anti Join S

ht = dict()
for r in R:

if r.B not in ht:
ht[r.B].append(r)

else:
ht[r.B] = [r]

for s in S:
ht[s.B] = [] --- remove r

for r in ht.values():
yield r

R(A, B), and S(B, C)

R Natural Join S

ht = dict()
for r in R:

if r.B in ht:
ht[r.B].append(r)

else:
ht[r.B] = [r]

for s in S:
for r in ht.get(s.B, []):

yield (s, r)

R Full Outer Join S

ht = dict()
found_set = set()
for r in R:

if r.B in ht:
ht[r.B].append(r)

else:
ht[r.B] = [r]

for s in S:
if s.B in ht:

found_set.add(s.B)
for r in ht[s.B]:

yield (s, r)
else:

yield (NULLS, s)

for x in ht:
if x not in found_set:

for r in ht[x]:
yield(r, NULLS)

