CMSC 724: Database Management Systems
Query Processing and Optimization

Instructor: Amol Deshpande

amol@cs.umd.edu

Basics of Query Processing

Parsing
|—> Query Validation
View Resolution
L—> Optimization
I—— Plan Compilation

I——-» Execution

Figure 2. Query processing steps.

Update queries usually handled through “deferred updates” (use standard read-
only techniques to identify the modifications, and apply them afterwards.

Architectural Issues

» Logical algebra vs physical algebra

o Latter is system-specific, and refers to the specific implementations of
operators

> Mapping from logical to physical operators is often not one-to-one
* Most operator implementations usually handle subsequent selects and projects

* Asingle logical operator may be broken up into multiple physical ones (e.g.,
“sort” is done separately from “merge” for “sort-merge join”)

* A “symmetric” logical operator may be implemented by an “asymmetric”
physical operator

Merge-Join (Intersect)

Intersection / \
NG Sort Sort
Set A Set B | 1
File Scan A File Scan B

Figure 3. Logical and physical algebra expressions.

How to pass tuples between operators

» Materialization: Write out the results to a file, and the next operator reads it
from the file

» Pipelining: Have both (or more) operators running at the same time (e.g., in
different threads or processes), and use queues to transfer tuples

> Hard to make this work efficiently (e.g., OS may switch to an operator that has no inputs,
leading to wasted context switches)

» lterator model: Have operators “schedule” each other
> When an operator needs more inputs, it “calls” the child operator(s)
> No IPC needed — these are function calls
> For Query Processing, can separate the work of an operator into:
initialization (init())
produce the next tuple (next())
clean up (close())

> Main drawback (as we discuss later): too many function calls for modern architectures

Types of Query Plans

» In some older papers, left-deep and right-deep are switched
> Think of “left” as “outer” and “right” as “inner”

o

“Right-deep plans have only recently received more interest and may actually turn out to be
very efficient, in particular in systems with ample memories” — refers to the ability to build
many hash indexes at once, and today makes sense for “left-deep” plans

Join C-D Join A-B
Join B-C

£ Join B-C

Join C-D

Figure 4. Left-deep, bushy, and right-deep plans.

» In general, may be a DAG (directed acyclic graph)

> In case of common subexpressions

Sorting

» Volcano implementation:

> open() does most of the work

19

If the input fits in memory, reads the 31
entire input and does a quick-sort 24

If it doesn’t fit in memory, uses external
merge-sort except for the last merge 14

> next() simply produces the tuples in the 33
first case, and actually does the last 16
merge in the second case

> Probably better to do all the work in 21

“next()” (with special-case code for the 3
first call)

16

14
d|{ 7

L p| 2
initial sorted

= o Boqmg_.p_.g_.ncrmm

relation runs output
create merge merge
runs pass—1 pass—2

Sorting: Creating the initial runs

» Say main memory = M blocks (of b tuples each)

» Option 1: Read M blocks at a time, quick-sort, and write out the “sorted run” to
disk

o @enerates runs of size M

» Option 2: Replacement selection

(e]

(e]

(e]

(e]

Read M*b tuples in memory, and keep it (always) in sorted order
Write out the first tuple to disk as the first sorted run
Say the largest value written out so far is 1000
Read the next tuple from the original relation
If > 1000, add it to the same sorted run, and output the next tuple from that
If not, start (or add to) a second sorted run in memory

Keep doing this until the you the first sorted run in memory finishes is done (i.e., all
new tuples get added to the second run)

Can use the Heap data structure to do this efficiently

Replacement Selection Example

Input

33,18,24, 58,14, 17,7,21,67,12,5,47, 16
—Front of input string

(Heap sort!)

Remaining input Memory(P=3) Output run(A)
33.18,24,58,14,17,7,21,67,12 5 47 16 5
33,18, 24,58, 14,17, 7, 21, 67 12 47 16
33, 18, 24, 58, 14, 17, 7, 21 67 47 16 12,5
33,18,24,58,14, 17,7 57 47 21 16,12,5
33, 18, 24, 58, 14, 17 a7 (7) 21,16,12,5
33,18,24,58, 14 ———

6 (7)(7) 5 47,21,16,12.5

— \———"/ -~ /:

From: https://www.youtube.com/watch?v=LTpFZAdOcbE

Replacement Selection

» Need a data structure that efficiently supports removal of the smallest entry
> The “heap” data structure works well

» Replacement selection results in larger runs =» more efficient merge
o If the input is already sorted or almost sorted, there is only one run
° For random inputs, the runs are of size 2M

» But RS has more complex /O patterns and there are other complications
> Need to balance against the benefits of having fewer runs

Hashing

» Usually better when “equality matching” is required

» Basic idea:
o “Build” a hash table on one of the inputs on the equality attribute(s)
> “Probe” using the second input in any order

» What if the smaller input is too large?

o Partition both the inputs using some criteria on the equality attribute (could be another hash
function, or a range function)

° Do partition-by-partition join

A
Y

A
Y
Y

A
Y
N

A
Y
(O8]

il
-

4 1

Y

parﬁons partitions
of r of s

Hashing

» Usually better when “equality matching” is required

» Basic idea:
o “Build” a hash table on one of the inputs on the equality attribute(s)
> “Probe” using the second input in any order

» What if the smaller input is too large?

o Partition both the inputs using some criteria on the equality attribute (could be another hash
function, or a range function)

> Do partition-by-partition join
» May need to do this “recursively”
> Very unlikely to happen with today’s large memories
» Hybrid hash join
> Keep one of the partitions in memory when doing the initial partitioning
> Can be done in a reactive fashion
> Works very well when the smaller input is just larger than memory

Sorting vs Hashing

» Most operators can be implemented using sorting or hashing
» Many papers written on which one is better

° Depends a lot on the specific computing architecture
» Lot of recent work on multi-core sorting and hashing, and in
shared-nothing settings

30IN IMBLEMENTATION ON ' o ' Enﬁh%fﬁRg%"g@é@gg’e"o%ﬁ%'é" @WISCONSIN
MO DERN MULTI-CORE CPUS (intel) EOR MULTI-
— Hashing is faster than Sort-Merge. — Trade-offs between partitioning &
— Sort-Merge is faster w/ wider SIMD. non-partitioning Hash-Join.
~— | MASSIVELY PARALLEL SORT-MERGE A MASSIVELY PARALLEL NUMA-AWARE A
CORE DATABASE SYSTEMS HyPer HASH JOINS HyPer
— Sort-Merge is already faster than — Ignore what we said last year.
Hashing, even without SIMD. — You really want to use Hashing!
MAIN-MEMORY HASH JOINS ON | AN EXPERIMENTAL COMPARISON OF ©® UNIVERSITAT
MULTI-GORE CPUS: TUNING TO THE THIRTEEN RELATIONAL EQUI-JOINS "hlluuuw DES
UNDERLYING HARDWARE IN MAIN MEMORY N ciiaraioes
ICDE 2013 $ystemse Bz SIGMOD 2016
— New optimizations and results for — Hold up everyone! Let's look at
Radix Hash Join. everything more carefully!

From Andy Pavlo’s course slides

Multi-core: Sorting and Hashing

» Sorting and Bitonic Merge Networks
> Fewer branches and more amenable to SIMD (vectorization)

3 b Jimmm
3
9 T P g e——
|| {
W -
4 £ Jrmmmmet e
1 4
g I —— A — 4
—| a1 ¢ T I outq
S| a2 o a outo
§ as l I outs |,
v a4 —e ¢ outs |Q
d
<1 b4 ¢ o I outs @
&| bs o T ouls
é‘ bo . l- I outr
b1 o outs ~

Query Optimization

» Goal: Given a SQL query, find the best “physical operator” tree
to execute the query

> Large number of logically equivalent algebraic representations for a query
> Many operator trees for each algebraic expression

Index Nested Loop

oo e
» For “cost-based” optimization, we need: / \d e
> A space of plans to search through (search space) (}K
> Cost estimation techniques i e
> Enumeration/search algorithm Table Scan A Taml Scan B

Figure 1. Operator Tree

» Heuristic optimizers typically use “rules”

° e.g., push down selections as much as possible — typically a good idea but
not always

System R Query Optimizer (1979)

» Focused on SPJ queries (select-project-join)

» Search space:
° Linear (left-deep) plans
> Each join can be nested loop or sort-merge (no hash joins)
> Each scan node either an index scan or a sequential scan

» Cost estimation done using:
o A set of statistics: #data pages for a relation, #distinct values in a column
° Formulas for estimating intermediate result sizes
* Relied on “magic” constants for anything not covered by the statistics
> Formulas for CPU and I/O cost for each operator

System R Query Optimizer (1979)

» Search algorithm: Bottom-up Dynamic Programming

> Insight: the best overall plan uses the best plan for any subexpression inside of it

The best overall plan should use the
“best” plan for (r1 join r2 join r3 join r4)
and the “best” plan for (r1 join r2 join r3)..

e.g., if the best plan for r1 —r2 — r3 was
to join r1 and r3 first and then join with
r2, we can just substitute that plan, and

X r4
get an overall better plan
D<1/ \;3
VRN
rl r2

Major caveat: the alternate plan should not miss any
“physical properties” that are important
e.g., if the original plan produce r1-r2-r3 in sorted

order by D, and the alternate doesn'’t, the substitution
\\\\. may change the cost of the next join (with r4)

Dynamic Programming Algo.
e Join R1, R2, R3, R4, R5

Options:
1. Join R1R2 with R3 using HJ

cost = 100 + cost of this join

2. Join R1R2 with R3 using SMJ

cost = 100 + cost of this join
3. Join R1R3 with R2 using HJ
cost = 300 + cost of this join

R1 <1 R2 <1 R3
R1 <1 R2 R1 > R3
cost: 100 cost: 300
plan: HJ plan: SMJ

R1 <1 R4

R4 <1 R5
cost: 300
plan: HJ

=] [

R1 <1 R2 <1 R3 <1 R4 <1 R5
cost: 1200
plan: HJ(R1R2R3, R4R5)

R1 <1 R2 <1 R3 <1 R4
cost: 700
plan: HJ(R1R2R3, R4)

R1 <1 R2 <1 R3
cost: 400
plan: SMJ(R1R2, R3)

R1 <1 R2 R1 > R3
cost: 100 cost: 300
plan: HJ plan: SMJ

=] [

R1 <1 R4

R4 <1 R5
cost: 300
plan: HJ

System R Query Optimizer (1979)

» Interesting orders
o Sort orders is an important physical property for the query executor
(given the reliance on sort-merge joins)
> So keep track of the sort order in which results are generated

> Two plans for a subexpression are NOT comparable if the sort orders are
different

> =% For each subexpression, more than one plan may be maintained with
different sort orders

» Can be generalized to handle “incomparable-ness” in general

° e.g., one subplan may have better CPU but worse Memory, and the other
subplans may have better Memory but worse CPU

E.Dept#=D.Dept#

Search Space: Reordering \/m

EMPE,

» Intermediate representations
° Query graphs commonly used in research papers, but only capture a simple
subset
° QGM Structure used in Starburst (will cover later)
o Many others just use an “operator tree” or an “expression tree”

Join(C,D) Join(B,C)

» Join ordering B . e
o Bushy plans commonly considered today Join(A.B) Join(A.B)

o Significantly add to the search complexity " s N c b
o Cartesian products may be allowed in some cases @ ®

» QOuterjoins

> Only commute with joins in some cases (will cover later)
° e.g., Join(R,SLOJT)=Join(R,S)LOJ T

Search Space: Reordering

» Group-By and Joins

> Pushing group by below a join results in significant reductions in tuples
being joined

select R1.A, sum(R1.B)
from R1, R2
where R1.A=R2.A

group by R1.A | /\

Join
equivalent to PN C'|' Ra
R, R,
select x.A, x.sumB (a) R ()
from R2, (select A, sum(R1.B) as sumB
from R1

group by A) x
where R2.A = x.A

only if: Alis a primary key of R2

e

Search Space: Reordering

» Group-By and Joins
> Pushing group by below a join results in significant reductions in tuples

being joined
select R1.A, sum(R1.B)
from R1, R2
where R1.A=R2.A
e e G group by R1.A
T |
2N equivalent to
Join
= G‘/\R
R, R, select R2.C, sum(x.sumB)

from R2, (select A, sum(R1.B) as sumB
from R1
group by A) x

where R2.A = x.A

group by R2.C

onlyif:inR2,A-> C

Search Space: Subqueries

» Collapsing nested subqueries results in more optimization
opportunities

> Need to be very careful: NULLs, Distincts, Aggregates, etc., cause
problems

SELECT Emp.Name
SELECT E.Name

FROM Em
P FROM Emp E, Dept D
WHERE Emp.Dept# IN ‘ WHERE E.Dept# = D.Dept#
SELECT Dept.Dept# FROM Dept AND D,Lo¢ = ‘Denver’ AND E.Emp# = D.Mgr

WHERE Dept.Loc=‘Denverxr’
AND Emp.Emp# = Dept.Mgr

Search Space: Subqueries

» Collapsing nested subqueries results in more optimization

opportunities
> Need to be very careful: NULLs, Distincts, Aggregates, etc., cause

problems

SELECT Dept.name

FROM Dept SELECT Dept,.name FROM Dept LEFT OUTER JOIN Emp
WHERE Dept,num-of~machines 2 - ON (Dept.name= Emp.dept_name)

(SELECT COUNT (Emp.*) FROM Emp GROUP BY Dept.name

WHERE Dept,name= Emp.Dept_name) HAVING Dept. num-of-machines < COUNT (Emp.*)

LOJ is essential here
Otherwise will miss depts with no employees

Search Space: Semijoins for Optimizing

CREATE VIEW partialresult AS
(SELECT E.id, E.sal, E.did

CREATE VIEW DepAvgSal As (FROM Emp E, Dept D
gggg?gmpEédid, Avg(E.Sal) AS avgsal WHERE E.did=D.did AND E.age < 30
GROUP BY E.did) AND D.budget > 100k)
SELECT E.eid, E.sal wemmm) CREATE VIEW Filter AS
FROM Emp E, Dept D, DepAvgSal V (SELECT DISTINCT P.did FROM PartialResult P)
WHERE E.did_ = D.did AND E.did = V.did CREATE VIEW LimitedAvgSal AS
AND E.age < 30 AND D.budget > 100k (SELECT E.did, Avg(E.Sal) AS avgsal
AND E.sal > V.avgsal FROM Emp E, Filter F

WHERE E.did = F.did GROUP BY E.did)

SELECT P,eid, P.sal
FROM PartialResult P, LimitedDepAvgSal V
WHERE P.did = V.did AND P.sal > V.avgsal

» Say only a few departments (say 10) satisfy the join condition out of, say 10000
> Only need to compute the “view” tuples for those 10 departments

» So we are passing information “sideways” from the main block into the nested
block

Statistics and Cost Estimation

» In general: more information about the data = better estimates

» Single-column statistics
° min, max, #distinct, #bytes, etc.
> Histograms for value distributions (e.g., to estimate #tuples satisfying “age < 20”)
o Many different types of histograms proposed over the years

» Multi-column statistics

o Correlations among attributes a major issue for estimates
° Queries of type: “SSN = 0123 and Name = ‘John Smith’” pretty common

* Independence assumption = huge underestimation of the result size
° Many proposals for capturing correlations, but hard to make work in practice
» Propagation of errors

o Even if estimates lower in the query plan are pretty good, estimates for more
complex subexpressions become erroneous very quickly

Enumeration Architectures

» Need the optimization algorithm to be “extensible”

> So it can handle new physical operators, new transformations, new cost estimation approaches,
easicly

» Starburst:

o Uses arule engine and an intermediate representation called QGM to do query
rewrites/transformations

o Uses a somewhat generalized bottom-up query optimizer

» Volcano/Cascades:
> Transformation rules to map algebraic expressions

o

Implementation rules to map algebraic expression into an operator tree

o

Uses a “top-down” query optimizer
Starts with the overall expression and tries to find all possible ways to get to it
Uses “memoization” to keep avoid redoing work

Formed the basis of the Microsoft database systems

o

More...

» Distributed and Parallel Databases

> Much bigger search space (can place operators anywhere, and can partition them)
> What to optimize for? Communication cost? Total resources? Response time?

o Standard approach is to generate a single-machine query plan and then parallelize it (2-phase
optimization)

» User-defined Functions

> Need to consider the cost of executing those (can be hard to estimate)

» Materialized views

o @Given a set of materialized views, hard to decide if those can be used in place of the original
relations (undecidable in general)

Outline

v

Query evaluation techniques for large databases

v

Skew avoidance strategies

v

Query compilation

Vectorization

v

v

Query Optimization: Overview

>

How good are the query optimizers, really?

JOB Benchmark

» Build using the IMDB dataset
o 21 tables, total of 3.6 GB in CSV format

» 113 SPJ queries — no aggregates or subqueries

» More realistic than the commonly used TPC-H/DS benchmarks (or synthetic
benchmarks)

SELECT cn.name, mi.info, miidx.info

FROM company_name cn, company_type ct,
info_type it, info_type it2, title t,
kind_type kt, movie_companies mc,
movie_info mi, movie_info_idx miidx

WHERE cn.country_code =’ [us]’

company_type

]) AND ct.kind = 'production companies’
movie_companies] . .
AND i1it.info = ’"rating’
AND it2.info = ’'release dates’
<::::f::::> AND kt.kind = 'movie’
company_name . ,
AND ... —— (11 join predicates)

Figure 2: Typical query graph of our workload

PostgreSQL Query Optimizer

» Standard dynamic programming-based optimizer

> Includes bushy plans, but no Cartesian products

» Statistics: Single-column histograms, min, max, most frequent values, etc.
> Assume independence and uniformity outside of those

> Especially for conjunctive predicates (like A =10 and B = 20)

HJ
cardinality cost N/INL N
SELECT ... || estimation model PN
FROM R,S,T 7 s
WHERE ... plan space R
enumeration

» Modified for the purposes of this paper to accept “cardinality injection”

° i.e., use different cardinality estimates than the ones it computed

° e.g., true cardinalities, or cardinalities per another system

1109 SCdle] overestimation —

<« unaerestimation

Results: Cardinality Estimation

» g-error: ratio of correct result and estimate
» Base tables: sampling (Hyper and A) works better than histograms

» Huge underestimation seen as #joins increases
o Underestimation generally worse — results in more aggressive plans (e.g., NL joins)

» Note: The experimental setup may naturally “select” for underestimates
(Missing enough details to be sure)

o

PostgreSQL DBMS A DBMS B DBMS C HyPer
T] 1 0 T T 7 T T T T H T T H H
1e4 - I . | ! : ; i i | i : :
O T T | ¢ !
' 1 H H i v $! s
i l ! i ' H H : :
te24 1 i i — i '
o . ' *

.:i:. 1Tt 4 i:k:'__" Il _-;-_lj T , i _:LL [

—_
1

i

b 1 L] |r _"-_l J =+ ! L _l f— | J
i L i] ' T |
: i ' :
; I 1 5 |
12 ! T T :
N : T } . | |
: o t T :
: 1 1 I g . i ! -+
. ! T
1e4 - - T ! : " ‘
It H] 1 ! —_—]
- = LI+ 17 |
95th percentile i | : H g] i -
1 ee -1 75th percentile I : 3
median E T) i
25th percentile - 1 1 2 H
5th percentile . :

1e8

L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L]] T
0 1 2 3 4 5 &6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0o 1 2 3
number of joins

Results: What if we used “correct”
estimates

» Used cardinality injection to use other systems’ estimates or the true
cardinalities

» Most bad plans boil down to NL joins
> Disabling improves performance but doesn’t fully solve the problem

default + no nested-loop join + rehashing PK indexes PK + FK indexes

60% - (a) (b) (C) 50% (a) (b)

40% = 40% -

N II
[- 0% = = [[— lI .-

20% =

- 1]
T T T T T T T T T T T T '\ '\ '\ '\ '\ IQ \ \ \ \ \ Q
N N QS O
TN, o \\\ \q> @\Q@ S AN DO SPRORAFRNCIES SN
SNPGRS \('L\Q« - KEICRENS Q/\Qﬂ TR Q\Qq Bl NG Cb Q \ ‘b QQ» QY \@
SN N RSN N AN S e Q € € N
Figure 6: Slowdown of queries using PostgreSQL estimates Figure 7: Slowdown of queries using PostgreSQL estimates

w.r.t. using true cardinalities (primary key indexes only) w.r.t. using true cardinalities (different index configurations)

Results: Cost Models

» PostgreSQL uses a disk-oriented cost model —
a weighted sum of I/O and CPU costs
> No easy way to set the parameters

» Plot predicted costs vs actual costs — a linear
line is the best outcome here

» Findings:
o Default estimates result in fairly poor fit —

predicted and actual costs quite different

° Most of the error goes away if the optimizer has
access to true cardinalities

° Tuning the cost model doesn’t really help that
much

o Using a much simpler cost model gives similar
results

* Just count the number of tuples being processed by
each operator

runsme [ms) [log scale)

PosipreSCL estmates true cardnaltios
H
. a
.‘ %
1 (a)|: (b)
144 = L
5
le2 = ﬁ
g
T B = r
;'.f 1:-.. '.: ‘I
102 .-.!. ;
| (e)| - (f)
les05 Jov7 1es03 10408 les07
cost [log scale)

Figure 8: Predicted cost vs. runtime for different cost models

Results: Join Orders

Computed estimated costs with true
cardinalities for 1000 random plans

Slowest or even median query plans
much worse than optimal (several
orders of magnitude in many cases)

Prior work from approx. 20 years ago
that does this in more depth

JOB 6a JOB 13a JOB 16d JOB 17b JOB 25¢
>
o
=
o
[0
x
[
n
|
o
~
=
o
[©)
x
[
n
o
~
+
M
7
=
o
[0
x
()
‘ JA...L 3
T T T T 1771 T T T 1T 11 1T 71T 71771
1 1e2 1e3 1e4 1 1e2 1e3 1e4 1 1e2 1e3 1e4 1 1e2 1e3 1e4 1 1e2 1e3 1e4

cost relative to optimal FK plan [log scale]

Figure 9: Cost distributions for 5 queries and different index
configurations. The vertical green lines represent the cost of
the optimal plan

Results: Join Orders

» Bushy trees important to consider

PK indexes PK + FK indexes
median | 95% | max | median | 95% | max
zig-zag 1.00 | 1.06 | 1.33 1.00 1.60 2.54
left-deep 1.00 | 1.14 | 1.63 1.06 2.49 4.50
right-deep 1.87 | 497 | 6.80 47.2 | 30931 | 738349

Table 2: Slowdown for restricted tree shapes in comparison to
the optimal plan (true cardinalities)

» Exhaustive algorithms (DP or top-down) needed

PK indexes PK + FK indexes
PostgreSQL estimates true cardinalities PostgreSQL estimates true cardinalities
median 95% max | median 95% max | median 95% max | median 95% max

Quickpick-1000 1.05 2.19 7.29 1.00 1.07 1.14 252 365 186367 1.02 472 323
Greedy Operator Ordering 1.19 229 236 1.19 1.64 197 235 169 186367 1.20 5.77 21.0

Dynamic Programming 1.03 1.85 4.79‘ 1.00 1.00 1.00 1.66 169 186367‘ 1.00 1.00 1.00

Table 3: Comparison of exhaustive dynamic programming with the Quickpick-1000 (best of 1000 random plans) and the Greedy
Operator Ordering heuristics. All costs are normalized by the optimal plan of that index configuration

Correlations

» Single-table (e.g., R.A and R.B are correlated, throwing off estimation of
R.A=10and R.B = 20)

> Handled by the “sampling” techniques

o

Build multi-dimensional histograms (don’t really work well)
Identify “soft” functional dependencies (i.e., very highly correlated columns)
e.g., “car make” and “car model” are highly correlated

Queries like: Make = Honda and Model = Accord are underestimated
But not a functional dependency: Model = Make is false

o

» Join-crossing Correlations
select *

from actors JOIN movies

where actors.location = ‘Paris” and movies.language = ‘French’

Unclear how one can benefit from capturing this correlation (even if one could)
Need a new operator or access method

o

o

Outline

» Query evaluation techniques for large databases
» Skew avoidance strategies

» Query compilation

» Vectorization

» Query Optimization: Overview

» How good are the query optimizers, really?

» Reordering for Outerjoins

» Query Rewriting
o Starburst

o Unnesting arbitrary queries
o APPLY (SQL Server)

m

Why Query Rewrite?

» Many queries are written in a way that forces a procedural execution

o Use of WITH clause or Views to simplify

° Procedural code easier for users to write
> Modern frameworks/query languages often not that declarative
. . WITH TBL1 AS (SELECT p.id AS pid, q.id AS gid, p.temp AS temp,
o Automated translation of other DSLs into SQL AN BS i, Lo un i) 8 Lo
o AND p.time = QPO :I;?;.Si}:eemf 20

Program synthesis? 6 B [, pen, 1ph g 85

) WITH TBL2 AS (SELECT pid, temp, weight, exp(sum(logsum)) AS prob
FROM TBL1 GROUP BY pid, temp
HAVING Count ()= (SELECT COUNT distinct id FROM particles)+l

)

(a) VMinQ: SELECT sum(prob#weight+temp) FROM TBL2;
(b) EMinQ: SELECT pid, sum(prob+weight) FROM TBL2 GROUP BY pid;

» Harder for optimizers to deal with

> Join order optimization usually goes block-by-block = significant benefits
in reducing the number of blocks

o Redundant DISTINCTs etc., lead to unnecessary work

Two Main Issues

» Merging of select blocks
o Different “blocks” get created because of:

WITH, Views
Table expressions in FROM (e.g., select * from R, (select S.A, max(S.B) from S group by S.A) X)...)

Table expressions in WHERE/SELECT/HAVING etc. (e.g., where R.A in (select S.A from S))

Scalar expressions in WHERE/SELECT/HAVING etc. (e.g., where R.A = (select max(S.A) from S)))

» Correlations Across Blocks
> When an ”lower” block refers to an “upper” block

> Forces a “dependent” “nested-loops” execution

For every tuple in the outer block, the inner block is executed

Example

select x* with temp as
from users (select userid
where users.userid in from status
(select userid group by userid
from status having count(x) > 5)
group by userid select x*
having count(x) > 5); from users

where users.userid in (select userid from temp);

select *
from users
where exists

(select userid Correlated
from status
[] where status.userid = users.useri

group by userid
having count(x) > 5);

Join Operators and Implementations

R(A, B), and S(B, C)
R Natural Join S

ht = dict()
for r in R:
if r.B in ht:
ht[r.B].append(r)
else:
ht[r.B] = [r]
for s in S:

for r in ht.get(s.B, [1]):

yield (s, r)

Most other join operators built as
minor modifications (special cases)
of this basic code

S Semi Join R (build on R)

ht = set()
for r in R:
ht.add(r.B)
for s in S:
1f s.B in ht:
yield s

R Semi Join S (build on R)

ht = dict()
for r in R:
if r.B not in ht:
ht[r.B].append(r)
else:
ht[r.B] = [r]
for s in S:
for r in ht[s.B]:
yield r
ht[s.B] = [] -- avoid
duplicates

Join Operators and Implementations

R(A, B), and S(B, C) S AntiJoin R
R Natural Join S ht = set()
for r in R:
ht = d?Ct() for s ?E.g?d(r.B)
for r n R: : . if s.B not in ht:
if r.B in ht: ield s
ht[r.B].append(r) Y
else:
' ht[r.B] = [r]
for s in 5: R Anti Join S

for r in ht.get(s.B, [1]):
yield (s, r)

ht = dict()
for r in R:
if r.B not in ht:
ht[r.B].append(r)
else:
ht[r.B] = [r]
for s in S:
ht[s.B] = [] --- remove r
for r in ht.values():
yield r

Join Operators and Implementations

R(A, B), and S(B, C)
R Natural Join S

ht = dict()
for r in R:
if r.B in ht:
ht[r.B].append(r)
else:
ht[r.B] = [r]
for s in S:

for r in ht.get(s.B, [1]):
yield (s, r)

R Full Quter Join S

ht = dict()
found_set = set()
for r in R:

if r.B in ht:
ht[r.B].append(r)
else:
ht[r.B] = [r]
for s in S:
1f s.B in ht:

found_set.add(s.B)
for r in ht[s.B]:
yield (s, r)
else:
yield (NULLS, s)

for x in ht:
if x not in found_set:
for r in ht[x]:
yield(r, NULLS)

