
Machine Learning for
Data Management Systems

Sorting; Joins

Amol Deshpande
February 28, 2023

Motivation
▪ Sorting and joins are key operations in data management

systems

▪ Can we make them faster through use of CDFs?

▪ Distribution information has been used for many years
for optimizing these operations
– E.g., to deal with skew, to decide how to partition data, etc.

Outline
▪ Sorting

▪ Joins

Sorting
▪ Simplest algorithm: Quicksort

▪ RadixSort

Sorting with Perfect CDF
▪ Scan the relation, and copy each item to the right location

▪ But even in the simplest case (where CDF is identity), took 38.7
sec (vs Radix Sort 37.5 sec)

▪ Reason? Cache misses

Figure 1: Sorting with the perfect CDF model

experiments show that Learned Sort can indeed achieve bet-
ter performance than highly tuned counting-based sorting
algorithms, including Radix Sort and histogram-based sorts,
as well as comparison-based and hybrid sorting algorithms.
In fact, our learned sorting algorithm provides the best per-
formance even when we include the model training time as
a part of the overall sorting time. For example, our exper-
iments show that Learned Sort yields an average of 3.38⇥
performance improvement over C++ STL sort (std::sort)[16],
5.54⇥ improvement over Timsort (Python’s default sorting
algorithm [45]), 1.49⇥ over Radix sort[51], and 1.31⇥ over
IS4o[2], a cache-e�cient version of the Samplesort and one
of the fastest available sorting implementations [40].

In summary, we make the following contributions:
• We propose a �rst ML-enhanced sorting algorithm, called
Learned Sort, which leverages simpleMLmodels tomodel
the empirical CDF to signi�cantly speed-up a new variant
of Radix Sort

• We theoretically analyze our sorting algorithm
• We exhaustively evaluate Learned Sort over various syn-
thetic and real-world datasets

2 LEARNING TO SORT NUMBERS
Given a function FA(x), which returns the exact empirical
CDF value for each key x 2 A, we can sort A by calcu-
lating the position of each key within the sorted order as
pos FA(x) · |A|. This would allow us to sort a dataset
with a single pass over the data as visualized in Figure 1.

However, in general, we will not have a perfect CDF func-
tion, especially if we train the model just based on a sample
from the input data. In addition, there might be duplicates
in the dataset, which may cause several keys to be mapped
to the same position. In the following, we describe an initial
learned sorting algorithm, similar to the one of SageDB[28],
that is robust against imprecise models, and then explain why
this �rst approach is still not competitive, before introducing
the �nal algorithm. To simplify the discussion, our focus in
this section is exclusively on the sorting of numbers and we
only describe the out-of-place variant of our algorithm, in

Algorithm 1 A �rst Learned Sort
Input A - the array to be sorted
Input FA - the CDF model for the distribution of A
Input o - the over-allocation rate. Default=1
Output A0 - the sorted version of array A

1: procedure L�������S���(A, FA, o)
2: N A.length
3: A0 empty array of size (N · o)
4: for x in A do
5: pos bFA(x) · N · o c
6: if �����(A0[pos]) then A0[pos] x
7: else C���������H������(x)
8: if o > 1 then C������(A0)
9: if ������������� then I���������S���(A0)
10: return A0

which we use an auxiliary array as big as the input array.
Later, we discuss the changes necessary to create an in-place
variant of the same algorithm in Section 4.1 and address the
sorting of strings and other complex objects in Section 4.2.

2.1 Sorting with imprecise models
As discussed earlier, duplicate keys and imprecise models
may lead to the mapping of multiple keys to the same out-
put position in the sorted array. Moreover, some models
(e.g., NN or even the Recursive Model Index (RMI) [29]) may
not be able to guarantee monotonicity, creating small mis-
placements in the output. That is, for two keys a and b with
a < b the CDF value of a might be greater than the one of
b (F (a) > F (b)), thus, causing the output to not be entirely
sorted. Obviously, such errors should be small as otherwise
using a model would provide no bene�ts. However, if the
model does not guarantee monotonicity, further work on
the output is needed to repair such errors. That is a learned
sorting algorithm also has to (1) correct the sort order for
non-monotonic models, (2) handle key collisions, and prefer-
ably (3) minimize the number of such collisions. A general
algorithm for dealing with those three issues is outlined in
Algorithm 1. The core idea is again simple: given a model we
calculate the expected position for each key (Line 5) and, if
that position in the output is free, place the key there (Line
6). In case the position is not empty, we have several options
to handle the collisions (Line 7):
(1) Linear probing: If a position is already occupied, we

could sequentially scan the array for the nearest empty
spot and place the element there. However, this technique
might misplace keys (like non-monotonic models) and
will take increasingly more time as the array �lls up.

(2) Chaining: Like in hash-tables, we could chain elements
for already-�lled positions. This could be implemented
either with a linked list or variable-sized sub-arrays, both
of which introduce additional performance overhead due
to pointer chasing and dynamic memory allocation.

Research 11: Machine Learning for Databases II SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1002

First Learned Sort

Figure 1: Sorting with the perfect CDF model

experiments show that Learned Sort can indeed achieve bet-
ter performance than highly tuned counting-based sorting
algorithms, including Radix Sort and histogram-based sorts,
as well as comparison-based and hybrid sorting algorithms.
In fact, our learned sorting algorithm provides the best per-
formance even when we include the model training time as
a part of the overall sorting time. For example, our exper-
iments show that Learned Sort yields an average of 3.38⇥
performance improvement over C++ STL sort (std::sort)[16],
5.54⇥ improvement over Timsort (Python’s default sorting
algorithm [45]), 1.49⇥ over Radix sort[51], and 1.31⇥ over
IS4o[2], a cache-e�cient version of the Samplesort and one
of the fastest available sorting implementations [40].

In summary, we make the following contributions:
• We propose a �rst ML-enhanced sorting algorithm, called
Learned Sort, which leverages simpleMLmodels tomodel
the empirical CDF to signi�cantly speed-up a new variant
of Radix Sort

• We theoretically analyze our sorting algorithm
• We exhaustively evaluate Learned Sort over various syn-
thetic and real-world datasets

2 LEARNING TO SORT NUMBERS
Given a function FA(x), which returns the exact empirical
CDF value for each key x 2 A, we can sort A by calcu-
lating the position of each key within the sorted order as
pos FA(x) · |A|. This would allow us to sort a dataset
with a single pass over the data as visualized in Figure 1.

However, in general, we will not have a perfect CDF func-
tion, especially if we train the model just based on a sample
from the input data. In addition, there might be duplicates
in the dataset, which may cause several keys to be mapped
to the same position. In the following, we describe an initial
learned sorting algorithm, similar to the one of SageDB[28],
that is robust against imprecise models, and then explain why
this �rst approach is still not competitive, before introducing
the �nal algorithm. To simplify the discussion, our focus in
this section is exclusively on the sorting of numbers and we
only describe the out-of-place variant of our algorithm, in

Algorithm 1 A �rst Learned Sort
Input A - the array to be sorted
Input FA - the CDF model for the distribution of A
Input o - the over-allocation rate. Default=1
Output A0 - the sorted version of array A

1: procedure L�������S���(A, FA, o)
2: N A.length
3: A0 empty array of size (N · o)
4: for x in A do
5: pos bFA(x) · N · o c
6: if �����(A0[pos]) then A0[pos] x
7: else C���������H������(x)
8: if o > 1 then C������(A0)
9: if ������������� then I���������S���(A0)
10: return A0

which we use an auxiliary array as big as the input array.
Later, we discuss the changes necessary to create an in-place
variant of the same algorithm in Section 4.1 and address the
sorting of strings and other complex objects in Section 4.2.

2.1 Sorting with imprecise models
As discussed earlier, duplicate keys and imprecise models
may lead to the mapping of multiple keys to the same out-
put position in the sorted array. Moreover, some models
(e.g., NN or even the Recursive Model Index (RMI) [29]) may
not be able to guarantee monotonicity, creating small mis-
placements in the output. That is, for two keys a and b with
a < b the CDF value of a might be greater than the one of
b (F (a) > F (b)), thus, causing the output to not be entirely
sorted. Obviously, such errors should be small as otherwise
using a model would provide no bene�ts. However, if the
model does not guarantee monotonicity, further work on
the output is needed to repair such errors. That is a learned
sorting algorithm also has to (1) correct the sort order for
non-monotonic models, (2) handle key collisions, and prefer-
ably (3) minimize the number of such collisions. A general
algorithm for dealing with those three issues is outlined in
Algorithm 1. The core idea is again simple: given a model we
calculate the expected position for each key (Line 5) and, if
that position in the output is free, place the key there (Line
6). In case the position is not empty, we have several options
to handle the collisions (Line 7):
(1) Linear probing: If a position is already occupied, we

could sequentially scan the array for the nearest empty
spot and place the element there. However, this technique
might misplace keys (like non-monotonic models) and
will take increasingly more time as the array �lls up.

(2) Chaining: Like in hash-tables, we could chain elements
for already-�lled positions. This could be implemented
either with a linked list or variable-sized sub-arrays, both
of which introduce additional performance overhead due
to pointer chasing and dynamic memory allocation.

Research 11: Machine Learning for Databases II SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1002

Collision handling: (1) Scan the array for closest empty slot; (2) Do chaining; (3) Spill bucket

First Learned Sort
▪ Need to overfit the data to get lowest collisions
– But need to work with a sample to keep costs low

▪ Can ”over-provision” (i.e., use a larger target array)
– Extra space requirements and more cache misses
– Also, need to deal with gaps at the end

▪ Do ”bucketing”, i.e., map each item to a bucket than a specific position
– Smaller range, so can be more accurate
– Need to recursively sort the buckets

Cache-optimized Radix Sort

CDF-based Sort

CDF-based Sort
▪ Run-time almost identical to Radix Sort for dense keys
– i.e., key domain size is close to the data size
– But better as data size << key domain size -- each pass does more in CDF-based sort

▪ Choice of CDF being learned
– Recursive Model Index
– Used spline fitting instead of linear regression to avoid overlaps

Experiments

Experiments

Outline
▪ Sorting

▪ Joins

Index Nested Loops Join
▪ Assumes that there is an existing “index” on the inner relation

▪ Can we use RMI as that index?
– Do we assume one exists?

▪ Not efficient to use as is – instead use a “gapped” version

Index Nested Loops Join
▪ Too many cache misses

▪ Instead, ”buffer” requests

Sort-Merge Join
▪ Prior techniques for multi-core sorts

Sort-Merge Join
▪ Bitonic Sort

3. PARALLELIZING SORT WITH SIMD
The dominant cost in sort-merge joins is sorting the input

relations. We thus now discuss strategies to implement sort-
ing in a hardware-conscious manner. Typically, sort-merge
joins use merge sort—a tribute to the latency/bandwidth
gap in modern system architectures. Both building blocks
of merge sort, (a) initial run generation and (b) the merging

of pre-sorted runs, benefit from SIMD.

3.1 Run Generation
For initial run generation, many chunks with a small num-

ber of tuples need to be sorted. This favors sorting al-
gorithms that can process multiple chunks in parallel over
ones that have a good asymptotic complexity with respect
to the tuple count. Sorting networks provide these char-
acteristics and fit well with the SIMD execution model of
modern CPUs [7, 10, 21].

3.1.1 Sorting Networks

6 9

3 6

5 5

9 35

9

3

6

3

6

5

9

5

6

Figure 1: Even-
odd network for
four inputs.

Figure 1 on the left illustrates, in the
notation of Knuth [17, Section 5.3.4], a
sorting network for four input items. A
set of four items h9, 5, 3, 6i enters the net-
work on the left and travels toward the
right through a series of comparators .
Every comparator emits the smaller of
its two input values at the top, the larger
on the bottom. After traversing the five
comparators, the data set is sorted.

The beauty of sorting networks is that comparators can be
implemented with help of min/max operators only. Specif-

e = min (a, b)

f = max (a, b)

g = min (c, d)

h = max (c, d)

i = max (e, g)

j = min (f, h)

w = min (e, g)

x = min (i, j)

y = max (i, j)

z = max (f, h)

ically, the five comparators in Figure 1 com-
pile into a sequence of ten min/max operations
as illustrated here on the right (input vari-
ables a, . . . , d and output variables w, . . . , z).
Limited data dependencies and the absence
of branching instructions make such code run
very e�ciently on modern hardware.

Sorting networks are also appealing be-
cause they can be accelerated through SIMD
instructions. When all variables in the code
on the right are instantiated with SIMD vec-
tors of  items and all min/max calls are replaced by SIMD
calls,  sets of items can be sorted in approximately the
same time that a single set would require in scalar mode
(suggesting a -fold speedup through SIMD).

3.1.2 Speedup Through SIMD
However, the strategy illustrated above will sort input

items across SIMD registers. That is, for each vector po-
sition i, the sequence wi, xi, yi, zi will be sorted, but not

the sequence of items within one vector (i.e., wi, . . . , w is
in undefined order). Only full SIMD vectors can be read or
written to memory consecutively. Before writing back initial
runs to main-memory, SIMD register contents must thus be
transposed, so items within each vector become sorted (i.e.,
w2 must be swapped with x1, w3 with y1, etc.).

Transposition can be achieved through SIMD shu✏e in-
structions that can be used to move individual values within
and across SIMD registers. A common configuration in the
context of join processing is to generate runs of four items
with  = 4. Eight shu✏e instructions are then needed
to transpose registers. That is, generating four runs of

a1

a2

a3

a4

b4

b3

b2

b1

out1

out2

out3

out4

out5

out6

out7

out8

so
rt
ed

so
rt
ed

sorted

Figure 2: Bitonic merge network.

four items each requires 10 min/max instructions, 8 shu✏es,
4 loads, and 4 stores. Shu✏e operations significantly reduce
the e↵ective SIMD speedup for run generation from optimal
 = 4 to about 2.7.

3.2 Merging Sorted Runs

3.2.1 Bitonic Merge Networks
Although sequential in nature, merging also benefits from

SIMD acceleration. The basic idea comes from Inoue et
al. [13] and has been used for sorting [7] and joins [15].
Looking back to the idea of sorting networks, larger net-

works can be built with help of merging networks that com-
bine two pre-sorted inputs into an overall sorted output.
Figure 2 shows a network that combines two input lists of
size four. The network in Figure 2 is a sequence of three
stages, each consisting of four comparator elements . Each
stage can thus be implemented using one max and one min

SIMD instruction (assuming  = 4). Shu✏e instructions
in-between stages bring vector elements into their proper
positions (for instance, if a and b are provided as one SIMD
register each, b must be reversed using shu✏es to prepare
for the first min/max instruction pair).
On current Intel hardware, for  = 4, implementing a

bitonic merge network for 2⇥ 4 input items requires 6 SIMD
min/max instructions and 7–10 shu✏es. The exact number of
shu✏es depends on the bit width of the input items and the
instruction set o↵ered by the hardware (SSE, AVX, AVX2).

3.2.2 Merging Larger Lists using Bitonic Merge
For larger input sizes, merge networks scale poorly [21]:

sorting networks for N input items require O
�
N log2 N

�

comparators—clearly inferior to alternative algorithms. But
small merge networks can be used as a kernel within a merg-
ing algorithm for larger lists [13]. The resulting merging al-
gorithm (Algorithm 1) uses a working set of 2⇥k data items
(variables a and b, both implemented as SIMD registers).
In each iteration of the algorithm’s loop body, that working
set is sorted (using the merge kernel bitonic_merge4 () and
knowing that a and b themselves are sorted already) and the
smaller k items are emitted to the merge result.
The emitted SIMD vector is then replaced by fresh data

from the input. As in the classical scalar merge algorithm,
the two head elements of the input runs are used to decide
which new data to load (line 5 in Algorithm 1). Unlike in
the classical algorithm, however, the decision is used to load
an entire vector into the working set. The rationale is that
the resulting working set still contains at least k items that
are smaller than the larger of the two head items, and only
k items will be emitted in the next loop iteration.
In terms of performance, the separation between control

flow and merge kernel operations in Algorithm 1 fits well

87

Learned SMJ

Experiments

Some Discussion Points
▪ What’s the main take-away from this paper?

▪ Major concerns with the paper?

▪ Possible improvements?

