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= Sorting andJoms are key operatlons in data management 4
systems

» Can we make them faster through use of CDFs?

* Distribution information has been used for many years
for optimizing these operations
- E.g., to deal with skew, to decide how to partition data, etc.



Outline

= Sorting

= Joins



Sorting

= Simplest algorithm: Quicksort
» RadixSort

Least significant digit [ edit]

Input list:
[170, 45, 75, 90, 2, 802, 2, 66]
Starting from the rightmost (last) digit, sort the numbers based on that digit:
[{170, 90}, {2, 802, 2}, {45, 75}, {66}]
Sorting by the next left digit:
[{02, 802, 02}, {45}, {66}, {170, 75}, {90}]
Notice that an implicit digit 0 is prepended for the two 2s so that 802 maintains its position between them.
And finally by the leftmost digit:
[{002, 002, 045, 066, 075, 090}, {170}, {802}]

Notice that a 0 is prepended to all of the 1- or 2-digit numbers.



Sortlng with Perfect CDF

= Scanthe relatlon and copy each item to the rlght location

Unsorted array A: n 24 4 43
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Figure 1: Sorting with the perfect CDF model

« But even in the simplest case (where CDF is identity), took 38 7
sec (vs Radix Sort 37.5 sec)

» Reason? Cache misses



First Learned Sort

Algorithm 1 A first Learned Sort

—_
&

1:
2:
3:
4:
5:
6:
7:
8:
9:

Input A - the array to be sorted
Input F4 - the CDF model for the distribution of A
Input o - the over-allocation rate. Default=1
Output A’ - the sorted version of array A
procedure LEARNED-SORT(A, F4, 0)
N < A.length
A’ « empty array of size (N - 0)
for x in A do
pos < [ Fa(x)- N - o]
if eMpTY(A’[pos]) then A'[pos] « x
else CorListoN-HANDLER(xX)
if 0 > 1 then CompacT(A’)
if NoN-MONOTONIC then INSERTION-SORT(A’)

return A’
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Figure 2: The sorting rate for different collision handling
strategies for Algorithm 1 on normally distributed keys.

Collision handling: (1) Scan the array for closest empty slot; (2) Do chaining; (3) Sbill bucket



First Learned Sort

— e

= Need to overfit the data to get lowest collisions
- But need to work with a sample to keep costs low

= Can "over-provision”(i.e., use a larger target array)
- Extra space requirements and more cache misses
- Also, need to deal with gaps at the end

* Do "bucketing”, i.e., map each item to a bucket than a specific position
— Smaller range, so can be more accurate '
— Need to recursively sort the buckets



Cache-optimized Radix Sort

Input Array Count Histograms

Figure 3: Radix Sort[51] can be implemented to mainly use
sequential memory access by making sure that at least one
cache line per histogram fits into the cache. This way the
prefetcher can detect when to load the next cache-line per
histogram (green slots indicate processed items, red the cur-
rent one, white slots unprocessed or empty slots)




CDF-based Sort

Step 2
unsorted aray ' ;
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Figure 4: Cache-optimized Learned Sort: First the input is partitioned into f fixed-capacity buckets (here f = 2) and the input
keys are shuffled into these buckets based on the CDF model’s predictions. If a bucket gets full, the overflowing items are
placed into a spill bucket S. Afterwards, each bucket is split again into f smaller buckets and the process repeats until the
bucket capacity meets a threshold ¢ (here t = 6). Then, each bucket is sorted using a CDF model-based counting sort-style
subroutine (Step 2). The next step corrects any sorting mistakes using Insertion Sort (Step 3). Finally we sort the spill bucket
S, merge it with B, and return the sorted array (Step 4).




CDF-based Sort

* Run-time almost identical to Radix Sort for dense keys
- i.e., key domain size is close to the data size

— But better as data size << key domain size -- each pass does more in CDF-based sort

Choice of CDF being learned

= Recursive Model Index

Used spline fitting instead of linear regression to avoid overlaps
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Figure 5: A typical RMI architecture containing three layers

Algorithm 4 The training procedure for the CDF model

CoxonmLme

Input A - the input array

Input L - the number of layers of the CDF model

Input M! - the number of linear models in the /% layer of the CDF model
Output F4 - the trained CDF model with RMI architecture

: procedure TRAIN(A, L, M)

S « SampLE(A)
SorT(S)
T «[1010] > Training sets implemented as a 3D array
fori < Oupto |S|do
T[o][0].add((S[i], i/1S1))
for < Oupto L do
for m «— 0 up to M! do
Fa[l][m] «linear model trained on the set {¢t | ¢ € T[I][m]}
if [+ 1 < L then
for t € T[l][m] do
Fa[l][m].slope«— F4[l][m].slope - M!*!
Fa[l][m].intercepte— F,[I][m].intercept - M+1
i « Fa[l][m].slope -t + Fa[l][m].intercept
T[I + 1][i].add(¢)
return F4



Experimen
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Figure 9: The sorting rate of Learned Sort and other baselines for real and synthetic datasets containing both doubles and
integers. The pictures below the charts visualize the key distributions and the dataset sizes.




Experiments
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Figure 14: The sorting rate of Learned Sort algorithm on
100M normally-distributed keys as compared with (1) a ver-
sion of LS that uses an equi-depth histogram as CDF model,
(2) a version with an equi-width histogram, (3) Equi-depth
Histogram Sort, and (4) Equi-width Histogram Sort.
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= Sorting

= Joins -



Index Nested Loops Join

e = =

= Assumes that there is an existing “index” on the inner relation

» Can we use RMI as that index?
- Do we assume one EXiStS?

= Not efficient to use as is — instead use a "gapped” version
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Fig. 3. Example of 2-levels Gapped RMI (GRMI)



Index Nested Loops Join

— — e —

* Too many cache misses

» |nstead, “buffer” requests

Level O R Keys: 19, 900, 1, 51, 752, 512
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Fig. 4. Example on hierarchical Request Buffers at some RMI models.




-Merge Join

* Prior techniques for multi

Sort

-Ccore sorts
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Sort-Merge Join

= Bitonic Sort

Within-partition sortin Within- and Cross-partitions sorting
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Fig. 7. Example of a bitonic sorting network for 16 items with 4 partitions.
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Fig. 6. L-SJ sorting and joining phases (Continued example from Figure 5).
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Experiments
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Fig. 8. Performance of the three join categories for real and synthetic datasets, where each row represents a category.




Some D15cuss1on Polnts
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* What's the main take-away from this paper7

= Major concerns with the paper?

» Possible improvements?



