CMSC 848: Adaptive Query Processing

Instructor: Amol Deshpande

amol@cs.umd.edu

PostgreSQL Query Optimizer

» Standard dynamic programming-based optimizer

> Includes bushy plans, but no Cartesian products

» Statistics: Single-column histograms, min, max, most frequent values, etc.
> Assume independence and uniformity outside of those

> Especially for conjunctive predicates (like A =10 and B = 20)

HJ
cardinality cost N/INL N
SELECT ... || estimation model PN
FROM R,S,T 7 s
WHERE ... plan space R
enumeration

» Modified for the purposes of this paper to accept “cardinality injection”

° i.e., use different cardinality estimates than the ones it computed

° e.g., true cardinalities, or cardinalities per another system

1109 SCdle] overestimation —

<« unaerestimation

Results: Cardinality Estimation

» g-error: ratio of correct result and estimate
» Base tables: sampling (Hyper and A) works better than histograms

» Huge underestimation seen as #joins increases
o Underestimation generally worse — results in more aggressive plans (e.g., NL joins)

» Note: The experimental setup may naturally “select” for underestimates
(Missing enough details to be sure)

o

PostgreSQL DBMS A DBMS B DBMS C HyPer
T] 1 0 T T 7 T T T T H T T H H
1e4 - I . | ! : ; i i | i : :
O T T | ¢ !
' 1 H H i v $! s
i l ! i ' H H : :
te24 1 i i — i '
o . ' *

.:i:. 1Tt 4 i:k:'__" Il _-;-_lj T , i _:LL [

—_
1

i

b 1 L] |r _"-_l J =+ ! L _l f— | J
i L i] ' T |
: i ' :
; I 1 5 |
12 ! T T :
N : T } . | |
: o t T :
: 1 1 I g . i ! -+
. ! T
1e4 - - T ! : " ‘
It H] 1 ! —_—]
- = LI+ 17 |
95th percentile i | : H g] i -
1 ee -1 75th percentile I : 3
median E T) i
25th percentile - 1 1 2 H
5th percentile . :

1e8

L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L] L]] T
0 1 2 3 4 5 &6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0o 1 2 3
number of joins

Results: What if we used “correct”
estimates

» Used cardinality injection to use other systems’ estimates or the true
cardinalities

» Most bad plans boil down to NL joins
> Disabling improves performance but doesn’t fully solve the problem

default + no nested-loop join + rehashing PK indexes PK + FK indexes

60% - (a) (b) (C) 50% (a) (b)

40% = 40% -

N II
[- 0% = = [[— lI .-

20% =

- 1]
T T T T T T T T T T T T '\ '\ '\ '\ '\ IQ \ \ \ \ \ Q
N N QS O
TN, o \\\ \q> @\Q@ S AN DO SPRORAFRNCIES SN
SNPGRS \('L\Q« - KEICRENS Q/\Qﬂ TR Q\Qq Bl NG Cb Q \ ‘b QQ» QY \@
SN N RSN N AN S e Q € € N
Figure 6: Slowdown of queries using PostgreSQL estimates Figure 7: Slowdown of queries using PostgreSQL estimates

w.r.t. using true cardinalities (primary key indexes only) w.r.t. using true cardinalities (different index configurations)

Results: Cost Models

» PostgreSQL uses a disk-oriented cost model —
a weighted sum of I/O and CPU costs
> No easy way to set the parameters

» Plot predicted costs vs actual costs — a linear
line is the best outcome here

» Findings:
o Default estimates result in fairly poor fit —

predicted and actual costs quite different

° Most of the error goes away if the optimizer has
access to true cardinalities

° Tuning the cost model doesn’t really help that
much

o Using a much simpler cost model gives similar
results

* Just count the number of tuples being processed by
each operator

runsme [ms) [log scale)

PosipreSCL estmates true cardnaltios
H
. a
.‘ %
1 (a)|: (b)
144 = L
5
le2 = ﬁ
g
T B = r
;'.f 1:-.. '.: ‘I
102 .-.!. ;
| (e)| - (f)
les05 Jov7 1es03 10408 les07
cost [log scale)

Figure 8: Predicted cost vs. runtime for different cost models

Results: Join Orders

Computed estimated costs with true
cardinalities for 1000 random plans

Slowest or even median query plans
much worse than optimal (several
orders of magnitude in many cases)

Prior work from approx. 20 years ago
that does this in more depth

JOB 6a JOB 13a JOB 16d JOB 17b JOB 25¢
>
o
=
o
[0
x
[
n
|
o
~
=
o
[©)
x
[
n
o
~
+
M
7
=
o
[0
x
()
‘ JA...L 3
T T T T 1771 T T T 1T 11 1T 71T 71771
1 1e2 1e3 1e4 1 1e2 1e3 1e4 1 1e2 1e3 1e4 1 1e2 1e3 1e4 1 1e2 1e3 1e4

cost relative to optimal FK plan [log scale]

Figure 9: Cost distributions for 5 queries and different index
configurations. The vertical green lines represent the cost of
the optimal plan

Results: Join Orders

» Bushy trees important to consider

PK indexes PK + FK indexes
median | 95% | max | median | 95% | max
zig-zag 1.00 | 1.06 | 1.33 1.00 1.60 2.54
left-deep 1.00 | 1.14 | 1.63 1.06 2.49 4.50
right-deep 1.87 | 497 | 6.80 47.2 | 30931 | 738349

Table 2: Slowdown for restricted tree shapes in comparison to
the optimal plan (true cardinalities)

» Exhaustive algorithms (DP or top-down) needed

PK indexes PK + FK indexes
PostgreSQL estimates true cardinalities PostgreSQL estimates true cardinalities
median 95% max | median 95% max | median 95% max | median 95% max

Quickpick-1000 1.05 2.19 7.29 1.00 1.07 1.14 252 365 186367 1.02 472 323
Greedy Operator Ordering 1.19 229 236 1.19 1.64 197 235 169 186367 1.20 5.77 21.0

Dynamic Programming 1.03 1.85 4.79‘ 1.00 1.00 1.00 1.66 169 186367‘ 1.00 1.00 1.00

Table 3: Comparison of exhaustive dynamic programming with the Quickpick-1000 (best of 1000 random plans) and the Greedy
Operator Ordering heuristics. All costs are normalized by the optimal plan of that index configuration

Correlations

» Single-table (e.g., R.A and R.B are correlated, throwing off estimation of
R.A=10and R.B = 20)

> Handled by the “sampling” techniques

o

Build multi-dimensional histograms (don’t really work well)
Identify “soft” functional dependencies (i.e., very highly correlated columns)
e.g., “car make” and “car model” are highly correlated

Queries like: Make = Honda and Model = Accord are underestimated
But not a functional dependency: Model = Make is false

o

» Join-crossing Correlations
select *

from actors JOIN movies

where actors.location = ‘Paris” and movies.language = ‘French’

Unclear how one can benefit from capturing this correlation (even if one could)
Need a new operator or access method

o

o

Traditional Optimization not Robust Enough

» In traditional settings:
° Queries over many tables
> Unreliability of traditional cost estimation
o Success, maturity make problems more apparent, critical
» In new environments:
o e.g. data integration, web services, streams, P2P...
> Unknown dynamic characteristics for data and runtime
> Increasingly aggressive sharing of resources and computation
° Interactivity in query processing
» Note two distinct themes lead to the same conclusion:

> Unknowns: even static properties often unknown in new environments and often
unknowable a priori

> Dynamics: environment changes can be very high

» Motivates intra-query adaptivity

Some Related Topics

» Autonomic/self-tuning optimization
> Chen and Roussoupolous: Adaptive selectivity estimation [SIGMOD 1994]
> LEO (@IBM), SITS (@MSR): Learning from previous executions

» Robust/least-expected cost optimization

» Parametric optimization

> Choose a collection of plans, each optimal for a different setting of
parameters

o Select one at the beginning of execution
» Competitive optimization
o Start off multiple plans... kill all but one after a while

» Adaptive operators
More details in our survey: “Adaptive Query Processing”; FnT

2007

AQP: Overview/Summary

» Low-overhead, evolutionary approaches
> Typically apply to non-pipelined execution
> Late binding: Don’t instatntiate the entire plan at start
o Mid-query reoptimization: At “materialization” points, review
the remaining plan and possibly re-optimize
» Pipelined execution

> No materialization points, so the above doesn’t apply

° The operators may contain complex states, raising correctness
issues

o Eddies

 Always guarantee correct execution, but allows reordering during
execution

» Lot of work in 1998-2008 timeframe -- not much since

Late Binding; Staged Execution

materialization vMJv
point \ M C Normal execution: pipelines separated
‘I V@ i O by matel’lallzathn pOIntS

e.qg., at a sort, GROUP BY, efc.

Materialization points make natural decision points where
the next stage can be changed with little cost:

— Re-run optimizer at each point to get the next stage

— Choose among precomputed set of plans — parametric query
optimization [INSS'92, CG'94, ..]

Mid-query Reoptimization
[KD’98, MRS+04]

Choose checkpoints at which to monitor cardinalities /Q Where?

Balance overhead and opportunities for switching plans

If actual cardinality is too different from estimated, | When?

Avoid unnecessary plan re-optimization (where the plan doesn’t changer

Re-optimize to switch to a new plan — How?

Try to maintain previous computation during plan switching

= Most widely studied technique:
-- Federated systems (InterViso 90, MOOD 96), Red Brick,
Query scrambling (96), Mid-query re-optimization (98),
Progressive Optimization (04), Proactive Reoptimization (05), ...

Mid-query Reoptimization

= At materialization points, re-evaluate the rest of the query

plan

= Example:
Initial query plan chosen

R1
o e

Materialize
R1

Estimated 0.05
selectivities

R2 R3

0.1 0.2

A free opportunity to re-evaluate the rest of the query plan
- Exploit by gathering information about the materialized result

Mid-query Reoptimization

= At materialization points, re-evaluate the rest of the query
plan

= Example:
Initial query plan chosen

R1 |Materialize R2 R3
R —»—- R1; build result
1-d hists

Estimated 0.05 0.1 0.2
selectivities '

A free opportunity to re-evaluate the rest of the query plan
- Exploit by gathering information about the materialized result

Mid-query Reoptimization

= At materialization points, re-evaluate the rest of the query
plan
= Example:

Initial query plan chosen
R1 |Materialize R2 R3
R —»—- R1;: huilg |—» _.
[1-d hists |
Estimated 0.05 Q 1 OD

selectivities

Re-estimated 0.5 OD

selectivities

Significantly different =» original plan probably sub-optimal

Reoptimize the remaining part of the query

Eddies [AH00]

Query processing as routing of tuples through operators

A traditional pipelined query plan

Pipelined query execution using an eddy

An eddy operator

* Intercepts tuples from sources
and output tuples from operators

« Executes query by routing source
tuples through operators

| —

\ result

Encapsulates all aspects of
adaptivity in a “standard”
dataflow operator:

measure, model, plan and
actuate.

Eddies [AH00]

An R Tuple: r1

C

15 10 o

I‘1 \
result

: (rom

[V

Eddies [AH00]

An R Tuple: r1

Operator 1
a b c ready |\ done

15 | 10 AnameA 111 000
ready bit i : @
1 =2 operator i can be applied
0 - operator i can’t be applied perator2

\ result

1

Operator 3

R

A 4

Eddies [AH00]

An R Tuple: r1

Operator 1
a b c ready|| done

15 | 10 AnameA 111 000
done biti: @
1 =2 operator i has been applied
0 -2 operator i hasn’t been applied peratorZ

\ result

1

Operator 3

R

A 4

Eddies [AH00]

An R Tuple: r1

Operator 1
a b c ready | done

15 10 AnameA | 111 - 0]0]0]
Used to degide validity and need Operator 2
of applying operators

R

\ result

: (rom

Operator 3

A 4

Eddies [AH00]

An R Tuple: r1

a

C

15

AnameA ... 101

000

For a query with only selections,

= complement()

R :

eddy looks at the r1
next tuple

Operator 1

@not satisfied

ri

ri

Operator 2
R.b <20

\ reSU/t

Operator 3

Eddies [AH00]

An R Tuple: r2

Operator 1

[V

C

10 15 AnameA
Operator 2
R.b <20
R

\ result

o Operator 3
satisfied

Eddies [AH00]

An R Tuple: r2

a

C

10

15 AnameA .. 0]0]0)

111

if

= 111,
send to output

R

A 4

r2

Operator 1

Operator 2
R.b <20

\ result
r2

o Operator 3
satisfied

Eddies [AH00]

Adapting order is easy

— Just change the operators to which tuples are sent
— Can be done on a per-tuple basis

H] 11

— Can be done in the middle of tuple’s “pipeline”
How are the routing decisions made?
Using a routing policy

Operator 1

Operator 2

Operator 3

Routing Policies that Have Been Studied

Deterministic [D0O3]
— Monitor costs & selectivities continuously
— Re-optimize periodically using rank ordering
(or A-Greedy for correlated predicates)

Lottery scheduling [AHOO]
— Each operator runs in thread with an input queue
— “Tickets” assigned according to tuples input / output

— Route tuple to next eligible operator with room in queue,
based on number of “tickets” and “backpressure”

Content-based routing [BBDWO05]
— Different routes for different plans based on attribute values

Routing Policy 1: Non-adaptive

= Simulating a single static order
— E.g. operator 1, then operator 2, then operator 3

table lookups 2 very efficient
Routing policy: %

if done =
000 -2 route to 1
100 -2 route to 2
110 =2 route to 3

Operator 1

Operator 2

Operator 3

Overhead of Routing

= PostgreSQL implementation of eddies using bitset lookups [Telegraph Project]
= Queries with 3 selections, of varying cost

— Routing policy uses a single static order, i.e., no adaptation

O No-eddies
m Eddies

b
[72]
o

o

o
()

N
©
£

S

5]

=2

10 ysec 100 psec
Selection cost

Routing Policy 2: Deterministic

= Monitor costs and selectivities continuously

= Reoptimize periodically using KBZ | can use specialized

policies for correlated
predicates

atistics Maintained:

Costs of operators
Selectivities of operators

Operator 1

Routing policy:
Use a single order for a
batch of tuples
N\ Periodically apply KBZ /)

Operator 2

\ result

Operator 3

Overhead of Routing and Reoptimization

= Adaptation using batching
— Reoptimized every X tuples using monitored selectivities

— ldentical selectivities throughout = experiment measures
only the overhead

O No-eddies
B Eddies - No reoptimization

O Eddies - Batch Size = 100 tuples

b
0
o

(&

o
(]

N

®
£
[
o

=z

O Eddies - Batch Size = 1 tuple

10 psec 100 psec
Selection Cost

Routing Policy 3: Lottery Scheduling

= Originally suggested routing policy [AH 00]
= Applicable only if each operator runs in a separate thread

= Uses two easily obtainable pieces of information for making
routing decisions:

— Busy/idle status of operators

é Operator 1
— Tickets per operator

Operator 2

R — \
\ result

Operator 3

Routing Policy 3: Lottery Scheduling

= Routing decisions based on busy/idle status of operators

Rule:
IF operator busy,

THEN do not route more w
tuples to it
Operator 1

Operator 2
R — —

Rationale:
Every thread gets equal time /
SO IF an operator is busy, result

THEN its cost is perhaps very
i %

Operator 3

Routing Policy 3: Lottery Scheduling

= Routing decisions based on tickets

Rules:
1. Route a new tuple randomly _
weighted according to the ?Cietsgg;; = ;8
g ICKEelS =
number of tickets tickets(03) = 20

é Operator 1

Operator 2

——

\ result

Will be routed to: r
01 wp. 0.1 ?
02 wp. 0.7 @
O3 wp. 0.2 é

Operator 3

Routing Policy 3: Lottery Scheduling

= Routing decisions based on tickets

Rules:
1. Route a new tuple randomly
weighted according to the
number of tickets

tickets(O1) = 10
tickets(O2) = 70
tickets(O3) = 20

—)
\ result

é Operator 1

Operator 2

é Operator 3

Routing Policy 3: Lottery Scheduling

= Routing decisions based on tickets

Rules:

1. Route a new tuple randomly
weighted according to the
number of tickets

2. route a tuple to an operator O,
tickets(O,) ++;

tickets(O1) = 11
tickets(O2) = 70
tickets(0O3) = 20

—))
\ result

é Operator 1

Operator 2

é Operator 3

Routing Policy 3: Lottery Scheduling

= Routing decisions based on tickets

Rules:

1. Route a new tuple randomly
weighted according to the
number of tickets

2. route a tuple to an operator O,
tickets(O,) ++;

3. O; returns a tuple to eddy
tickets(O,) --;

tickets(O1) = 11
tickets(O2) = 70
tickets(0O3) = 20

—))
\ result

é Operator 1

Operator 2

é Operator 3

Routing Policy 3: Lottery Scheduling

= Routing decisions based on tickets

Rules:
1. Route a new tuple randomly
weighted according to the tickets(O1) = 10
number of tickets tickets(02) = 70

2. route a tuple to an operator O, I CIEA(OR)) 5 AL

tickets(O;) ++; é Operator 1
3. O; returns a tuple to eddy

tickets(O,) --; é

Operator 2

——

\ result

Will be routed to: r
02 wp. 0.777 ?
O3 w.p. 0.222 é

Operator 3

Routing Policy 3: Lottery Scheduling

= Routing decisions based on tickets

Rules:
1. Route a new tuple randomly
weighted according to the tickets(O1) = 10
number of tickets tickets(02) = 70

2. route a tuple to an operator O, I CIEA(OR)) 5 AL

tickets(O)) ++; g Operator 1
3. O; returns a tuple to eddy

tickets(O,) --;
Operator 2
Rationale: @
Tickets(O,) roughly corresponds to
(1 - selectivity(0,) 2 result

Operator 3

So more tuples are routed to
highly selective operators 2 @

Routing Policy 3: Lottery Scheduling

= Effect of the combined lottery scheduling policy:
— Low cost operators get more tuples
— Highly selective operators get more tuples
— Some tuples are knowingly routed according to sub-optimal orders
* To explore
* Necessary to detect selectivity changes over time

Eddies: Post-Mortem

= Plan Space explored
— Allows arbitrary “horizontal partitioning”
— Not necessarily correlated with order of arrival

of
arrival

In a later paper, we looked at optimizing for horizontal partitioning directly

Outline

» Query evaluation techniques for large databases, Skew
Avoidance, Query compilation/vectorization

» Query Optimization: Overview, How good are the query
optimizers, really?, Reordering for Outerjoins, Query Rewriting
» Adaptive Query Processing
o Eddies

o Progressive Query Optimization

> Compilation and adaptivity

Overview

» Continuously “reorder” operators as the query is executing
> By changing the “order” in which tuples visit operators

> QObviate the need for selectivity estimation and optimization entirely

> Naturally handles situations where the selectivities change over time (for long-
running queries)

Eddies and Joins

» Selections are arbitrarily reorderable - An index lookup can be
treated as a “selection”
> What about joins? - Send an S tuple, get back

augmented tuples
- Note: decision to use the
index cannot be “adapted”

- These two are tricky
- Nested loops requires
iterating over all of inner
- Hash join requires building a 4
hash table on inner
\

i

Reorderability of Plans

» Synchronization Barriers

o Many operators explicitly enforce an order in which tuples must be read
from the inputs

° e.g., Sort-merge joins: at most points, the next tuple to read must be read
from a specific input

> Hash joins: need to read all of "inner” before outer tuples can be read
» Moments of Symmetry

o Sort-merge join is symmetric

> But Nested-loops is not

* However, can change the outer/inner at specific points

» Join operators with more moments of symmetric preferred

° e.g., Symmetric Hash Join Operator

Reorderability of Plans

00 T N e N N e %%% ol
o0 [= B B e e e e e = o0
o0 ! NaNsNs s e eRams s e Namael 3 o0
00 0060000600000 8o oo © 0
00 00 80000000000 ok e B A 4 o0
00 -0-0-6-0-0-0-0-0-0-0-0-0-Op C OO0 O0O0O00N 00
00 -0-0-000 8000000 m 66000 eooOoOMOO0
00 R R =N 0000000000000
00 osNeNoNoNoNoNoNoNoNeNoNeNoNe) CO0O0000O0O0O00O0OD0O00O0O0O0
00 0000000000000 O0 COO0ODOODOOOOOOOO
ole] 0000000000000 O0 000000000000 0O0
00 sleNoNeNoNeNeNoNoNoNeNeNo o] O000D0O00D0O0O00D00O00O0
O0O0000000D00O00O0 O0000000000000 OO0OO0O0000000000O0
O0O0000Q0O0O0OQ0OQO0O0O00 O000000000000O0 OO0 OO0 O0O00000O00O0
Block Index Hash

Figure 3: Tuples generated by block, index, and hash ripple join. In block ripple, all tuples are generated by the join, but some may
be eliminated by the join predicate. The arrows for index and hash ripple join represent the logical portion of the cross-product
space checked so far; these joins only expend work on tuples satisfying the join predicate (black dots). In the hash ripple diagram,
one relation arrives 3 faster than the other.

Eddies

» Implemented in the context of River project

» Eddy is a separate module that talks to all other operators
> Uses “ready” and “done” bitsets to direct traffic

» Lottery scheduling-based routing policy

> Promising initial results, but bunch of caveats

m

Motivation

» Adaptive query processing (POP-style) works well with
interpretable query plans, but not as well with compilation

> Compiling a new query plan too expensive

m [@ Static - Optimal —V— Permutable (PCQ)
é 50 T T T T T T
o 40+ i
£ 40
i= 30 .
5200 |
S 10F i
0
o o 1 1 1 1 1
u’j 0.0 0.2 0.4 0.6 0.8 1.0
Selectivity

(a) Execution Time
v O Static —- Optimal —¥— Permutable (PCQ)]
é 10 T T T T T T T
- 1 0o
010’} G -
5 w5 —§) ¥ v
S 1 2 3 4 5 6 7

Predicates
(b) Code-Generation Time
Figure 1: Reoptimizing Compiled Queries — PCQ enables near-
optimal execution through adaptivity with minimal compilation
overhead.

Permutable Compiled Queries (PCQ)

» Adaptive query processing (POP-style) works well with
interpretable query plans, but not as well with compilation

> Compiling a new query plan too expensive

» Instead:
> Precompile a bunch of different plans at optimization time itself

> Add indirections to the compiled code to make it easy to switch/permute
operators

> Add hooks for collecting runtime performance metrics

* To be used to decide whether to switch

m

Permutable Compiled Queries (PCQ)

Stage #1 - Translation Stage #2 - Compilation Stage #3 - Execution

SELECT * FROM foo .
WHERE A=1 AND B=2 AND C=3 fun a_eq_lg {) Samples Analysis

) 4 ..
fun b_eq_2() { ... } o —
fﬂ: cjgg:3() { ...} Filters) ——»@
fun query() { Execution &

Translator var filters = {[Compiler | query: . m Loop * +
a_eq_1, 0x00 FilterInit —
bleq 2, oxoc FilterInsert =3 |:> | Execute Policies >
c_eq_31} 0x14 RunFilters H

for (v in foo) { E

\

\ 4

Optimizer

4

A a
}}fllters.Run(v) Bytecode I:a
Physical -

Plan TPL

Figure 2: System Overview — The DBMS translates the SQL query into a DSL that contains indirection layers to enable permutability. Next, the
system compiles the DSL into a compact bytecode representation. Lastly, an interpreter executes the bytecode. During execution, the DBMS
collects statistics for each predicate, analyzes this information, and permutes the ordering to improve performance.

Adaptive Filter Ordering

SELECT * FROM A WHERE coll * 3 = col2 + col3 AND col4 < 44

(a) Example Input SQL Query

Policies

Vectorization effect??? 1 fun query() 1 *
The code suggests filters 2 var filters={[p1,p2]} B
3 for (v in A) { | < Permute
5

applied to all tuples, so no T
B - -l —

point in reordering
8 fun p2(v:xVec) {
9 for (t in v) { Profile

10 if (t.collx3 == Sel. | Cost
11 t.col2+t.col3){ 051 10
12 v[tl=truel}}} -

0.7 4

(b) Generated Code and Execution of Permutable Filter

Figure 3: Filter Reordering — The Translator converts the query in
(a) into the TPL on the left side of (b). This program uses a data struc-
ture template with query-specific filter logic for each filter clause.
The right side of (b) shows how the policy collects metrics and then
permutes the ordering.

Adaptive Aggregations

SELECT col1, COUNT(*) FROM A GROUP BY coli
(a) Example Input SQL Query

1 fun query() { .
2 var aggregator = {[.
3 .., // Normal funcs Policies
4 aggregateHot,
5 aggregateMerge brofile
6 I : > Hash g
7 for (v in foo) Count
[#Keys| =5
Hot l ¥
——————— -
V' Initialize Hot | '
l |
| \ |
—— Aggregate Hot |
| v |

- ' =
_______ |
| I

(b) Generated Code and Execution of Adaptive Aggregation

Figure 4: Adaptive Aggregations — The input query in (a) is trans-
lated into TPL on the left side of (b). The right side of (b) steps

-irough one execution of PCQ aggregation.

Adaptive Joins

Alternate #1 Alternate #2

2N 2N
oot || o
>
C.col1 A
g H | B &

(a) Example Input SQL Query (b) Possible Join Orderings

SELECT * FROM A
INNER JOIN B ON A.coll
INNER JOIN C ON A.col2

Policies

1 fun query() {

2 // HT on B, C built.
3 var joinExec = {I
4

5

» Hash — Prcibe =
B

—®

—» Profile

Sel.

01| 20 —| Stats
0.8 4

(c) Generated Code and Execution of Permutable Joins

{ht_B, joinB},
{ht_C, joinC}]}
in A

Figure 5: Adaptive Joins — The DBMS translates the query in (a) to
the program in (c). The right side of (c) illustrates one execution of
a permutable join that includes a metric collection step.

Experimental Evaluation

[— Order-1 —— Order-2 —— Order-3 = Permutable 1

Shiftin
selectivities

: Shift in

selectivities

Execution Time
Per Block (us)
o N M OO

1
| :
0 500 1000 1500
Block #
Figure 6: Performance Over Time — Execution time of three static
filter orderings and our PCQ filter during a sequential table scan.

24 Static EXA Permutable

w
()
o

N
o
o

100

Execution Time (ms)
o

Joins

Figure 12: Varying Number of Joins — Execution time to perform a
multi-step join while keeping the overall join selectivity at 10%.

