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} Standard dynamic programming-based optimizer
◦ Includes bushy plans, but no Cartesian products

} Statistics: Single-column histograms, min, max, most frequent values, etc.
◦ Assume independence and uniformity outside of those

◦ Especially for conjunctive predicates (like A = 10 and B = 20)

} Modified for the purposes of this paper to accept “cardinality injection”
◦ i.e., use different cardinality estimates than the ones it computed

◦ e.g., true cardinalities, or cardinalities per another system
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ABSTRACT
Finding a good join order is crucial for query performance. In this
paper, we introduce the Join Order Benchmark (JOB) and exper-
imentally revisit the main components in the classic query opti-
mizer architecture using a complex, real-world data set and realistic
multi-join queries. We investigate the quality of industrial-strength
cardinality estimators and find that all estimators routinely produce
large errors. We further show that while estimates are essential for
finding a good join order, query performance is unsatisfactory if
the query engine relies too heavily on these estimates. Using an-
other set of experiments that measure the impact of the cost model,
we find that it has much less influence on query performance than
the cardinality estimates. Finally, we investigate plan enumera-
tion techniques comparing exhaustive dynamic programming with
heuristic algorithms and find that exhaustive enumeration improves
performance despite the sub-optimal cardinality estimates.

1. INTRODUCTION
The problem of finding a good join order is one of the most stud-

ied problems in the database field. Figure 1 illustrates the classical,
cost-based approach, which dates back to System R [36]. To obtain
an efficient query plan, the query optimizer enumerates some subset
of the valid join orders, for example using dynamic programming.
Using cardinality estimates as its principal input, the cost model
then chooses the cheapest alternative from semantically equivalent
plan alternatives.

Theoretically, as long as the cardinality estimations and the cost
model are accurate, this architecture obtains the optimal query plan.
In reality, cardinality estimates are usually computed based on sim-
plifying assumptions like uniformity and independence. In real-
world data sets, these assumptions are frequently wrong, which
may lead to sub-optimal and sometimes disastrous plans.

In this experiments and analyses paper we investigate the three
main components of the classical query optimization architecture
in order to answer the following questions:

• How good are cardinality estimators and when do bad esti-
mates lead to slow queries?
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of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 9, No. 3
Copyright 2015 VLDB Endowment 2150-8097/15/11.

SELECT ...
FROM R,S,T
WHERE ...

v

B

B

R
S

T

HJ

INLcardinality
estimation

cost
model

plan space
enumeration

Figure 1: Traditional query optimizer architecture

• How important is an accurate cost model for the overall query
optimization process?

• How large does the enumerated plan space need to be?

To answer these questions, we use a novel methodology that allows
us to isolate the influence of the individual optimizer components
on query performance. Our experiments are conducted using a real-
world data set and 113 multi-join queries that provide a challeng-
ing, diverse, and realistic workload. Another novel aspect of this
paper is that it focuses on the increasingly common main-memory
scenario, where all data fits into RAM.

The main contributions of this paper are listed in the following:

• We design a challenging workload named Join Order Bench-

mark (JOB), which is based on the IMDB data set. The
benchmark is publicly available to facilitate further research.

• To the best of our knowledge, this paper presents the first
end-to-end study of the join ordering problem using a real-
world data set and realistic queries.

• By quantifying the contributions of cardinality estimation,
the cost model, and the plan enumeration algorithm on query
performance, we provide guidelines for the complete design
of a query optimizer. We also show that many disastrous
plans can easily be avoided.

The rest of this paper is organized as follows: We first discuss
important background and our new benchmark in Section 2. Sec-
tion 3 shows that the cardinality estimators of the major relational
database systems produce bad estimates for many realistic queries,
in particular for multi-join queries. The conditions under which
these bad estimates cause slow performance are analyzed in Sec-
tion 4. We show that it very much depends on how much the
query engine relies on these estimates and on how complex the
physical database design is, i.e., the number of indexes available.
Query engines that mainly rely on hash joins and full table scans,
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} q-error: ratio of correct result and estimate
} Base tables: sampling (Hyper and A) works better than histograms
} Huge underestimation seen as #joins increases
◦ Underestimation generally worse – results in more aggressive plans (e.g., NL joins)

} Note: The experimental setup may naturally “select” for underestimates
◦ (Missing enough details to be sure)
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Figure 3: Quality of cardinality estimates for multi-join queries in comparison with the true cardinalities. Each boxplot summarizes
the error distribution of all subexpressions with a particular size (over all queries in the workload)

median 90th 95th max
PostgreSQL 1.00 2.08 6.10 207
DBMS A 1.01 1.33 1.98 43.4
DBMS B 1.00 6.03 30.2 104000
DBMS C 1.06 1677 5367 20471
HyPer 1.02 4.47 8.00 2084

Table 1: Q-errors for base table selections

cardinality estimates are sometimes wrong by orders of magnitude,
and that such errors are usually the reason for slow queries. In this
section, we experimentally investigate the quality of cardinality es-
timates in relational database systems by comparing the estimates
with the true cardinalities.

3.1 Estimates for Base Tables
To measure the quality of base table cardinality estimates, we

use the q-error, which is the factor by which an estimate differs
from the true cardinality. For example, if the true cardinality of
an expression is 100, the estimates of 10 or 1000 both have a q-
error of 10. Using the ratio instead of an absolute or quadratic
difference captures the intuition that for making planning decisions
only relative differences matter. The q-error furthermore provides
a theoretical upper bound for the plan quality if the q-errors of a
query are bounded [30].

Table 1 shows the 50th, 90th, 95th, and 100th percentiles of the
q-errors for the 629 base table selections in our workload. The
median q-error is close to the optimal value of 1 for all systems,
indicating that the majority of all selections are estimated correctly.
However, all systems produce misestimates for some queries, and
the quality of the cardinality estimates differs strongly between the
different systems.

Looking at the individual selections, we found that DBMS A and
HyPer can usually predict even complex predicates like substring
search using LIKE very well. To estimate the selectivities for base

tables HyPer uses a random sample of 1000 rows per table and
applies the predicates on that sample. This allows one to get ac-

curate estimates for arbitrary base table predicates as long as the
selectivity is not too low. When we looked at the selections where
DBMS A and HyPer produce errors above 2, we found that most
of them have predicates with extremely low true selectivities (e.g.,
10�5 or 10�6). This routinely happens when the selection yields
zero tuples on the sample, and the system falls back on an ad-hoc
estimation method (“magic constants”). It therefore appears to be
likely that DBMS A also uses the sampling approach.

The estimates of the other systems are worse and seem to be
based on per-attribute histograms, which do not work well for many
predicates and cannot detect (anti-)correlations between attributes.
Note that we obtained all estimates using the default settings af-
ter running the respective statistics gathering tool. Some commer-
cial systems support the use of sampling for base table estimation,
multi-attribute histograms (“column group statistics”), or ex post
feedback from previous query runs [38]. However, these features
are either not enabled by default or are not fully automatic.

3.2 Estimates for Joins
Let us now turn our attention to the estimation of intermediate

results for joins, which are more challenging because sampling or
histograms do not work well. Figure 3 summarizes over 100,000
cardinality estimates in a single figure. For each intermediate re-
sult of our query set, we compute the factor by which the estimate
differs from the true cardinality, distinguishing between over- and
underestimation. The graph shows one “boxplot” (note the legend
in the bottom-left corner) for each intermediate result size, which
allows one to compare how the errors change as the number of joins
increases. The vertical axis uses a logarithmic scale to encompass
underestimates by a factor of 108 and overestimates by a factor of
104.

Despite the better base table estimates of DBMS A, the overall
variance of the join estimation errors, as indicated by the boxplot,
is similar for all systems with the exception of DBMS B. For all
systems we routinely observe misestimates by a factor of 1000 or
more. Furthermore, as witnessed by the increasing height of the
box plots, the errors grow exponentially (note the logarithmic scale)
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} Used cardinality injection to use other systems’ estimates or the true 
cardinalities

} Most bad plans boil down to NL joins
◦ Disabling improves performance but doesn’t fully solve the problem

4. WHEN DO BAD CARDINALITY ESTI-
MATES LEAD TO SLOW QUERIES?

While the large estimation errors shown in the previous section
are certainly sobering, large errors do not necessarily lead to slow
query plans. For example, the misestimated expression may be
cheap in comparison with other parts of the query, or the relevant
plan alternative may have been misestimated by a similar factor
thus “canceling out” the original error. In this section we investi-
gate the conditions under which bad cardinalities are likely to cause
slow queries.

One important observation is that query optimization is closely
intertwined with the physical database design: the type and number
of indexes heavily influence the plan search space, and therefore
affects how sensitive the system is to cardinality misestimates. We
therefore start this section with experiments using a relatively ro-
bust physical design with only primary key indexes and show that
in such a setup the impact of cardinality misestimates can largely be
mitigated. After that, we demonstrate that for more complex con-
figurations with many indexes, cardinality misestimation makes it
much more likely to miss the optimal plan by a large margin.

4.1 The Risk of Relying on Estimates
To measure the impact of cardinality misestimation on query per-

formance we injected the estimates of the different systems into
PostgreSQL and then executed the resulting plans. Using the same
query engine allows one to compare the cardinality estimation com-
ponents in isolation by (largely) abstracting away from the different
query execution engines. Additionally, we inject the true cardinali-
ties, which computes the—with respect to the cost model—optimal
plan. We group the runtimes based on their slowdown w.r.t. the op-
timal plan, and report the distribution in the following table, where
each column corresponds to a group:

<0.9 [0.9,1.1) [1.1,2) [2,10) [10,100) >100
PostgreSQL 1.8% 38% 25% 25% 5.3% 5.3%
DBMS A 2.7% 54% 21% 14% 0.9% 7.1%
DBMS B 0.9% 35% 18% 15% 7.1% 25%
DBMS C 1.8% 38% 35% 13% 7.1% 5.3%
HyPer 2.7% 37% 27% 19% 8.0% 6.2%

A small number of queries become slightly slower using the true
instead of the erroneous cardinalities. This effect is caused by cost
model errors, which we discuss in Section 5. However, as expected,
the vast majority of the queries are slower when estimates are used.
Using DBMS A’s estimates, 78% of the queries are less than 2⇥
slower than using the true cardinalities, while for DBMS B this is
the case for only 53% of the queries. This corroborates the findings
about the relative quality of cardinality estimates in the previous
section. Unfortunately, all estimators occasionally lead to plans
that take an unreasonable time and lead to a timeout. Surprisingly,
however, many of the observed slowdowns are easily avoidable de-
spite the bad estimates as we show in the following.

When looking at the queries that did not finish in a reasonable
time using the estimates, we found that most have one thing in
common: PostgreSQL’s optimizer decides to introduce a nested-
loop join (without an index lookup) because of a very low cardinal-
ity estimate, whereas in reality the true cardinality is larger. As we
saw in the previous section, systematic underestimation happens
very frequently, which occasionally results in the introduction of
nested-loop joins.

The underlying reason why PostgreSQL chooses nested-loop joins
is that it picks the join algorithm on a purely cost-based basis. For
example, if the cost estimate is 1,000,000 with the nested-loop

default + no nested-loop join + rehashing
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Figure 6: Slowdown of queries using PostgreSQL estimates
w.r.t. using true cardinalities (primary key indexes only)

join algorithm and 1,000,001 with a hash join, PostgreSQL will
always prefer the nested-loop algorithm even if there is a equality
join predicate, which allows one to use hashing. Of course, given
the O(n2) complexity of nested-loop join and O(n) complexity of
hash join, and given the fact that underestimates are quite frequent,
this decision is extremely risky. And even if the estimates happen
to be correct, any potential performance advantage of a nested-loop
join in comparison with a hash join is very small, so taking this high

risk can only result in a very small payoff.
Therefore, we disabled nested-loop joins (but not index-nested-

loop joins) in all following experiments. As Figure 6b shows, when
rerunning all queries without these risky nested-loop joins, we ob-
served no more timeouts despite using PostgreSQL’s estimates.

Also, none of the queries performed slower than before despite
having less join algorithm options, confirming our hypothesis that
nested-loop joins (without indexes) seldom have any upside. How-
ever, this change does not solve all problems, as there are still a
number of queries that are more than a factor of 10 slower (cf., red
bars) in comparison with the true cardinalities.

When investigating the reason why the remaining queries still
did not perform as well as they could, we found that most of them
contain a hash join where the size of the build input is underesti-
mated. PostgreSQL up to and including version 9.4 chooses the
size of the in-memory hash table based on the cardinality estimate.
Underestimates can lead to undersized hash tables with very long
collisions chains and therefore bad performance. The upcoming
version 9.5 resizes the hash table at runtime based on the number
of rows actually stored in the hash table. We backported this patch
to our code base, which is based on 9.4, and enabled it for all re-
maining experiments. Figure 6c shows the effect of this change
in addition with disabled nested-loop joins. Less than 4% of the
queries are off by more than 2⇥ in comparison with the true cardi-
nalities.

To summarize, being “purely cost-based”, i.e., not taking into
account the inherent uncertainty of cardinality estimates and the
asymptotic complexities of different algorithm choices, can lead to
very bad query plans. Algorithms that seldom offer a large benefit
over more robust algorithms should not be chosen. Furthermore,
query processing algorithms should, if possible, automatically de-
termine their parameters at runtime instead of relying on cardinality
estimates.

4.2 Good Plans Despite Bad Cardinalities
The query runtimes of plans with different join orders often vary

by many orders of magnitude (cf. Section 6.1). Nevertheless, when
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Figure 7: Slowdown of queries using PostgreSQL estimates
w.r.t. using true cardinalities (different index configurations)

the database has only primary key indexes, as in all in experiments
so far, and once nested loop joins have been disabled and rehashing
has been enabled, the performance of most queries is close to the
one obtained using the true cardinalities. Given the bad quality
of the cardinality estimates, we consider this to be a surprisingly
positive result. It is worthwhile to reflect on why this is the case.

The main reason is that without foreign key indexes, most large
(“fact”) tables need to be scanned using full table scans, which
dampens the effect of different join orders. The join order still
matters, but the results indicate that the cardinality estimates are
usually good enough to rule out all disastrous join order decisions
like joining two large tables using an unselective join predicate.
Another important reason is that in main memory picking an index-
nested-loop join where a hash join would have been faster is never
disastrous. With all data and indexes fully cached, we measured
that the performance advantage of a hash join over an index-nested-
loop join is at most 5⇥ with PostgreSQL and 2⇥ with HyPer. Ob-
viously, when the index must be read from disk, random IO may
result in a much larger factor. Therefore, the main-memory setting
is much more forgiving.

4.3 Complex Access Paths
So far, all query executions were performed on a database with

indexes on primary key attributes only. To see if the query opti-
mization problem becomes harder when there are more indexes,
we additionally indexed all foreign key attributes. Figure 7b shows
the effect of additional foreign key indexes. We see large perfor-
mance differences with 40% of the queries being slower by a factor
of 2! Note that these results do not mean that adding more indexes
decreases performance (although this can occasionally happen). In-
deed overall performance generally increases significantly, but the
more indexes are available the harder the job of the query optimizer
becomes.

4.4 Join-Crossing Correlations
There is consensus in our community that estimation of interme-

diate result cardinalities in the presence of correlated query predi-
cates is a frontier in query optimization research. The JOB work-
load studied in this paper consists of real-world data and its queries
contain many correlated predicates. Our experiments that focus on
single-table subquery cardinality estimation quality (cf. Table 1)
show that systems that keep table samples (HyPer and presumably
DBMS A) can achieve almost perfect estimation results, even for
correlated predicates (inside the same table). As such, the cardinal-
ity estimation research challenge appears to lie in queries where the

correlated predicates involve columns from different tables, con-
nected by joins. These we call “join-crossing correlations”. Such
correlations frequently occur in the IMDB data set, e.g., actors born
in Paris are likely to play in French movies.

Given these join-crossing correlations one could wonder if there
exist complex access paths that allow to exploit these. One exam-
ple relevant here despite its original setting in XQuery processing
is ROX [22]. It studied runtime join order query optimization in
the context of DBLP co-authorship queries that count how many
Authors had published Papers in three particular venues, out of
many. These queries joining the author sets from different venues
clearly have join-crossing correlations, since authors who publish
in VLDB are typically database researchers, likely to also publish in
SIGMOD, but not—say—in Nature.

In the DBLP case, Authorship is a n : m relationship that
links the relation Authors with the relation Papers. The op-
timal query plans in [22] used an index-nested-loop join, look-
ing up each author into Authorship.author (the indexed pri-
mary key) followed by a filter restriction on Paper.venue, which
needs to be looked up with yet another join. This filter on venue
would normally have to be calculated after these two joins. How-
ever, the physical design of [22] stored Authorship partitioned by

Paper.venue.7 This partitioning has startling effects: instead of
one Authorship table and primary key index, one physically has
many, one for each venue partition. This means that by accessing
the right partition, the filter is implicitly enforced (for free), before

the join happens. This specific physical design therefore causes
the optimal plan to be as follows: first join the smallish authorship
set from SIGMOD with the large set for Nature producing almost
no result tuples, making the subsequent nested-loops index lookup
join into VLDB very cheap. If the tables would not have been parti-
tioned, index lookups from all SIGMOD authors into Authorships

would first find all co-authored papers, of which the great majority
is irrelevant because they are about database research, and were not
published in Nature. Without this partitioning, there is no way to
avoid this large intermediate result, and there is no query plan that
comes close to the partitioned case in efficiency: even if cardinality
estimation would be able to predict join-crossing correlations, there
would be no physical way to profit from this knowledge.

The lesson to draw from this example is that the effects of query
optimization are always gated by the available options in terms of
access paths. Having a partitioned index on a join-crossing predi-

cate as in [22] is a non-obvious physical design alternative which
even modifies the schema by bringing in a join-crossing column
(Paper.venue) as partitioning key of a table (Authorship). The
partitioned DBLP set-up is just one example of how one particu-
lar join-crossing correlation can be handled, rather than a generic
solution. Join-crossing correlations remain an open frontier for
database research involving the interplay of physical design, query
execution and query optimization. In our JOB experiments we do
not attempt to chart this mostly unknown space, but rather charac-
terize the impact of (join-crossing) correlations on the current state-
of-the-art of query processing, restricting ourselves to standard PK
and FK indexing.

5. COST MODELS
The cost model guides the selection of plans from the search

space. The cost models of contemporary systems are sophisticated
7In fact, rather than relational table partitioning, there was a sep-
arate XML document per venue, e.g., separate documents for
SIGMOD, VLDB, Nature and a few thousand more venues. Stor-
age in a separate XML document has roughly the same effect on
access paths as partitioned tables.
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} PostgreSQL uses a disk-oriented cost model –
a weighted sum of I/O and CPU costs
◦ No easy way to set the parameters

} Plot predicted costs vs actual costs – a linear 
line is the best outcome here

} Findings:
◦ Default estimates result in fairly poor fit –

predicted and actual costs quite different
◦ Most of the error goes away if the optimizer has 

access to true cardinalities
◦ Tuning the cost model doesn’t really help that 

much
◦ Using a much simpler cost model gives similar 

results
� Just count the number of tuples being processed by 

each operator



Computed estimated costs with true 
cardinalities for 1000 random plans

Slowest or even median query plans 
much worse than optimal (several 
orders of magnitude in many cases)

Prior work from approx. 20 years ago 
that does this in more depth

into available memory (admittedly, the core of PostgreSQL was
shaped decades ago when database servers only had few megabytes
of RAM). This does not eliminate the page access costs entirely
(due to buffer manager overhead), but significantly bridges the gap
between the I/O and CPU processing costs.

Arguably, the most important change that needs to be done in the
cost model for a main-memory workload is to decrease the propor-
tion between these two groups. We have done so by multiplying the
CPU cost parameters by a factor of 50. The results of the workload
run with improved parameters are plotted in the two middle subfig-
ures of Figure 8. Comparing Figure 8b with d, we see that tuning
does indeed improve the correlation between the cost and the run-
time. On the other hand, as is evident from comparing Figure 8c
and d, parameter tuning improvement is still overshadowed by the
difference between the estimated and the true cardinalities. Note
that Figure 8c features a set of outliers for which the optimizer has
accidentally discovered very good plans (runtimes around 1 ms)
without realizing it (hence very high costs). This is another sign of
“oscillation” in query planning caused by cardinality misestimates.

In addition, we measure the prediction error ✏ of the tuned cost
model, as defined in Section 5.2. We observe that tuning improves
the predictive power of the cost model: the median error decreases
from 38% to 30%.

5.4 Are Complex Cost Models Necessary?
As discussed above, the PostgreSQL cost model is quite com-

plex. Presumably, this complexity should reflect various factors
influencing query execution, such as the speed of a disk seek and
read, CPU processing costs, etc. In order to find out whether this
complexity is actually necessary in a main-memory setting, we will
contrast it with a very simple cost function Cmm. This cost func-
tion is tailored for the main-memory setting in that it does not model
I/O costs, but only counts the number of tuples that pass through
each operator during query execution:

Cmm(T ) =

8
>>><

>>>:

⌧ · |R| if T = R _ T = �(R)

|T |+ Cmm(T1) + Cmm(T2) if T = T1 ./
HJ

T2

Cmm(T1)+ if T = T1 ./
INL

T2,

� · |T1| · max( |T1./R|
|T1|

, 1) (T2 = R _ T2 = �(R))

In the formula above R is a base relation, and ⌧  1 is a pa-
rameter that discounts the cost of a table scan in comparison with
joins. The cost function distinguishes between hash ./

HJ and index-
nested loop ./

INL joins: the latter scans T1 and performs index
lookups into an index on R, thus avoiding a full table scan of R.
A special case occurs when there is a selection on the right side of
the index-nested loop join, in which case we take into account the
number of tuple lookups in the base table index and essentially dis-
card the selection from the cost computation (hence the multiplier
max( |T1./R|

|T1|
, 1)). For index-nested loop joins we use the constant

� � 1 to approximate by how much an index lookup is more ex-
pensive than a hash table lookup. Specifically, we set � = 2 and
⌧ = 0.2. As in our previous experiments, we disable nested loop
joins when the inner relation is not an index lookup (i.e., non-index
nested loop joins).

The results of our workload run with Cmm as a cost function are
depicted in Figure 8e and f. We see that even our trivial cost model
is able to fairly accurately predict the query runtime using the true
cardinalities. To quantify this argument, we measure the improve-
ment in the runtime achieved by changing the cost model for true
cardinalities: In terms of the geometric mean over all queries, our
tuned cost model yields 41% faster runtimes than the standard Post-
greSQL model, but even a simple Cmm makes queries 34% faster

JOB 6a JOB 13a JOB 16d JOB 17b JOB 25c

no indexes
PK indexes

PK + FK indexes

1 1e2 1e3 1e4 1 1e2 1e3 1e4 1 1e2 1e3 1e4 1 1e2 1e3 1e4 1 1e2 1e3 1e4
cost relative to optimal FK plan  [log scale]

Figure 9: Cost distributions for 5 queries and different index
configurations. The vertical green lines represent the cost of
the optimal plan

than the built-in cost function. This improvement is not insignifi-
cant, but on the other hand, it is dwarfed by improvement in query
runtime observed when we replace estimated cardinalities with the
real ones (cf. Figure 6b). This allows us to reiterate our main mes-
sage that cardinality estimation is much more crucial than the cost
model.

6. PLAN SPACE
Besides cardinality estimation and the cost model, the final im-

portant query optimization component is a plan enumeration algo-
rithm that explores the space of semantically equivalent join orders.
Many different algorithms, both exhaustive (e.g., [29, 12]) as well
as heuristic (e.g, [37, 32]) have been proposed. These algorithms
consider a different number of candidate solutions (that constitute
the search space) when picking the best plan. In this section we
investigate how large the search space needs to be in order to find a
good plan.

The experiments of this section use a standalone query optimizer,
which implements Dynamic Programming (DP) and a number of
heuristic join enumeration algorithms. Our optimizer allows the in-
jection of arbitrary cardinality estimates. In order to fully explore
the search space, we do not actually execute the query plans pro-
duced by the optimizer in this section, as that would be infeasible
due to the number of joins our queries have. Instead, we first run
the query optimizer using the estimates as input. Then, we recom-
pute the cost of the resulting plan with the true cardinalities, giving
us a very good approximation of the runtime the plan would have
in reality. We use the in-memory cost model from Section 5.4 and
assume that it perfectly predicts the query runtime, which, for our
purposes, is a reasonable assumption since the errors of the cost
model are negligible in comparison the cardinality errors. This ap-
proach allows us to compare a large number of plans without exe-
cuting all of them.

6.1 How Important Is the Join Order?
We use the Quickpick [40] algorithm to visualize the costs of

different join orders. Quickpick is a simple, randomized algorithm
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} Bushy trees important to consider

} Exhaustive algorithms (DP or top-down) needed

PK indexes PK + FK indexes
PostgreSQL estimates true cardinalities PostgreSQL estimates true cardinalities
median 95% max median 95% max median 95% max median 95% max

Dynamic Programming 1.03 1.85 4.79 1.00 1.00 1.00 1.66 169 186367 1.00 1.00 1.00
Quickpick-1000 1.05 2.19 7.29 1.00 1.07 1.14 2.52 365 186367 1.02 4.72 32.3
Greedy Operator Ordering 1.19 2.29 2.36 1.19 1.64 1.97 2.35 169 186367 1.20 5.77 21.0

Table 3: Comparison of exhaustive dynamic programming with the Quickpick-1000 (best of 1000 random plans) and the Greedy
Operator Ordering heuristics. All costs are normalized by the optimal plan of that index configuration

certain correlations [19] to subsequently create multi-column his-
tograms [34] for these.

However, many of our JOB queries contain join-crossing cor-
relations, which single-table samples do not capture, and where
the current generation of systems still apply the independence as-
sumption. There is a body of existing research work to better esti-
mate result sizes of queries with join-crossing correlations, mainly
based on join samples [17], possibly enhanced against skew (end-
biased sampling [10], correlated samples [43]), using sketches [35]
or graphical models [39]. This work confirms that without ad-
dressing join-crossing correlations, cardinality estimates deterio-
rate strongly with more joins [21], leading to both the over- and
underestimation of result sizes (mostly the latter), so it would be
positive if some of these techniques would be adopted by systems.

Another way of learning about join-crossing correlations is by
exploiting query feedback, as in the LEO project [38], though there
it was noted that deriving cardinality estimations based on a mix of
exact knowledge and lack of knowledge needs a sound mathemat-
ical underpinning. For this, maximum entropy (MaxEnt [28, 23])
was defined, though the costs for applying maximum entropy are
high and have prevented its use in systems so far. We found that
the performance impact of estimation mistakes heavily depends on
the physical database design; in our experiments the largest impact
is in situations with the richest designs. From the ROX [22] dis-
cussion in Section 4.4 one might conjecture that to truly unlock
the potential of correctly predicting cardinalities for join-crossing
correlations, we also need new physical designs and access paths.

Another finding in this paper is that the adverse effects of cardi-
nality misestimations can be strongly reduced if systems would be
“hedging their bets” and not only choose the plan with the cheapest
expected cost, but take the probabilistic distribution of the estimate
into account, to avoid plans that are marginally faster than others
but bear a high risk of strong underestimation. There has been work
both on doing this for cardinality estimates purely [30], as well as
combining these with a cost model (cost distributions [2]).

The problem with fixed hash table sizes for PostgreSQL illus-
trates that cost misestimation can often be mitigated by making the
runtime behavior of the query engine more “performance robust”.
This links to a body of work to make systems adaptive to estima-
tion mistakes, e.g., dynamically switch sides in a join, or change
between hashing and sorting (GJoin [15]), switch between sequen-
tial scan and index lookup (smooth scan [4]), adaptively reordering
join pipelines during query execution [24], or change aggregation
strategies at runtime depending on the actual number of group-by
values [31] or partition-by values [3].

A radical approach is to move query optimization to runtime,
when actual value-distributions become available [33, 9]. However,
runtime techniques typically restrict the plan search space to limit
runtime plan exploration cost, and sometimes come with functional
restrictions such as to only consider (sampling through) operators
which have pre-created indexed access paths (e.g., ROX [22]).

Our experiments with the second query optimizer component be-
sides cardinality estimation, namely the cost model, suggest that
tuning cost models provides less benefits than improving cardi-
nality estimates, and in a main-memory setting even an extremely
simple cost-model can produce satisfactory results. This conclu-
sion resonates with some of the findings in [42] which sets out to
improve cost models but shows major improvements by refining
cardinality estimates with additional sampling.

For testing the final query optimizer component, plan enumera-
tion, we borrowed in our methodology from the Quickpick method
used in randomized query optimization [40] to characterize and vi-
sualize the search space. Another well-known search space visu-
alization method is Picasso [18], which visualizes query plans as
areas in a space where query parameters are the dimensions. Inter-
estingly, [40] claims in its characterization of the search space that
good query plans are easily found, but our tests indicate that the
richer the physical design and access path choices, the rarer good
query plans become.

Query optimization is a core database research topic with a huge
body of related work, that cannot be fully represented in this sec-
tion. After decades of work still having this problem far from re-
solved [26], some have even questioned it and argued for the need
of optimizer application hints [6]. This paper introduces the Join
Order Benchmark based on the highly correlated IMDB real-world
data set and a methodology for measuring the accuracy of cardinal-
ity estimation. Its integration in systems proposed for testing and
evaluating the quality of query optimizers [41, 16, 14, 27] is hoped
to spur further innovation in this important topic.

8. CONCLUSIONS AND FUTURE WORK
In this paper we have provided quantitative evidence for conven-

tional wisdom that has been accumulated in three decades of prac-
tical experience with query optimizers. We have shown that query
optimization is essential for efficient query processing and that ex-
haustive enumeration algorithms find better plans than heuristics.
We have also shown that relational database systems produce large
estimation errors that quickly grow as the number of joins increases,
and that these errors are usually the reason for bad plans. In con-
trast to cardinality estimation, the contribution of the cost model to
the overall query performance is limited.

Going forward, we see two main routes for improving the plan
quality in heavily-indexed settings. First, database systems can in-
corporate more advanced estimation algorithms that have been pro-
posed in the literature. The second route would be to increase the
interaction between the runtime and the query optimizer. We leave
the evaluation of both approaches for future work.

We encourage the community to use the Join Order Benchmark
as a test bed for further experiments, for example into the risk/re-
ward tradeoffs of complex access paths. Furthermore, it would be
interesting to investigate disk-resident and distributed databases,
which provide different challenges than our main-memory setting.
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that picks joins edges at random until all joined relations are fully
connected. Each run produces a correct, but usually slow, query
plan. By running the algorithm 10,000 times per query and com-
puting the costs of the resulting plans, we obtain an approximate
distribution for the costs of random plans. Figure 9 shows density
plots for 5 representative example queries and for three physical
database designs: no indexes, primary key indexes only, and pri-
mary+foreign key indexes. The costs are normalized by the opti-
mal plan (with foreign key indexes), which we obtained by running
dynamic programming and the true cardinalities.

The graphs, which use a logarithmic scale on the horizontal cost
axis, clearly illustrate the importance of the join ordering problem:
The slowest or even median cost is generally multiple orders of
magnitude more expensive than the cheapest plan. The shapes of
the distributions are quite diverse. For some queries, there are many
good plans (e.g., 25c), for others few (e.g., 16d). The distribution
are sometimes wide (e.g., 16d) and sometimes narrow (e.g., 25c).
The plots for the “no indexes” and the “PK indexes” configurations
are very similar implying that for our workload primary key in-
dexes alone do not improve performance very much, since we do
not have selections on primary key columns. In many cases the
“PK+FK indexes” distributions have additional small peaks on the
left side of the plot, which means that the optimal plan in this index
configuration is much faster than in the other configurations.

We also analyzed the entire workload to confirm these visual ob-
servations: The percentage of plans that are at most 1.5⇥ more
expensive than the optimal plan is 44% without indexes, 39% with
primary key indexes, but only 4% with foreign key indexes. The
average fraction between the worst and the best plan, i.e., the width
of the distribution, is 101⇥ without indexes, 115⇥ with primary
key indexes, and 48120⇥ with foreign key indexes. These sum-
mary statistics highlight the dramatically different search spaces of
the three index configurations.

6.2 Are Bushy Trees Necessary?
Most join ordering algorithms do not enumerate all possible tree

shapes. Virtually all optimizers ignore join orders with cross prod-
ucts, which results in a dramatically reduced optimization time with
only negligible query performance impact. Oracle goes even fur-
ther by not considering bushy join trees [1]. In order to quantify
the effect of restricting the search space on query performance, we
modified our DP algorithm to only enumerate left-deep, right-deep,
or zig-zag trees.

Aside from the obvious tree shape restriction, each of these
classes implies constraints on the join method selection. We fol-
low the definition by Garcia-Molina et al.’s textbook, which is re-
verse from the one in Ramakrishnan and Gehrke’s book: Using
hash joins, right-deep trees are executed by first creating hash ta-
bles out of each relation except one before probing in all of these
hash tables in a pipelined fashion, whereas in left-deep trees, a new
hash table is built from the result of each join. In zig-zag trees,
which are a super set of all left- and right-deep trees, each join
operator must have at least one base relation as input. For index-
nested loop joins we additionally employ the following convention:
the left child of a join is a source of tuples that are looked up in the
index on the right child, which must be a base table.

Using the true cardinalities, we compute the cost of the optimal
plan for each of the three restricted tree shapes. We divide these
costs by the optimal tree (which may have any shape, including
“bushy”) thereby measuring how much performance is lost by re-
stricting the search space. The results in Table 2 show that zig-zag
trees offer decent performance in most cases, with the worst case
being 2.54⇥ more expensive than the best bushy plan. Left-deep

PK indexes PK + FK indexes
median 95% max median 95% max

zig-zag 1.00 1.06 1.33 1.00 1.60 2.54
left-deep 1.00 1.14 1.63 1.06 2.49 4.50
right-deep 1.87 4.97 6.80 47.2 30931 738349

Table 2: Slowdown for restricted tree shapes in comparison to
the optimal plan (true cardinalities)

trees are worse than zig-zag trees, as expected, but still result in
reasonable performance. Right-deep trees, on the other hand, per-
form much worse than the other tree shapes and thus should not be
used exclusively. The bad performance of right-deep trees is caused
by the large intermediate hash tables that need to be created from
each base relation and the fact that only the bottom-most join can
be done via index lookup.

6.3 Are Heuristics Good Enough?
So far in this paper, we have used the dynamic programming

algorithm, which computes the optimal join order. However, given
the bad quality of the cardinality estimates, one may reasonably ask
whether an exhaustive algorithm is even necessary. We therefore
compare dynamic programming with a randomized and a greedy
heuristics.

The “Quickpick-1000” heuristics is a randomized algorithm that
chooses the cheapest (based on the estimated cardinalities) 1000
random plans. Among all greedy heuristics, we pick Greedy Op-
erator Ordering (GOO) since it was shown to be superior to other
deterministic approximate algorithms [11]. GOO maintains a set
of join trees, each of which initially consists of one base relation.
The algorithm then combines the pair of join trees with the lowest
cost to a single join tree. Both Quickpick-1000 and GOO can pro-
duce bushy plans, but obviously only explore parts of the search
space. All algorithms in this experiment internally use the Post-
greSQL cardinality estimates to compute a query plan, for which
we compute the “true” cost using the true cardinalities.

Table 3 shows that it is worthwhile to fully examine the search
space using dynamic programming despite cardinality misestima-
tion. However, the errors introduced by estimation errors cause
larger performance losses than the heuristics. In contrast to some
other heuristics (e.g., [5]), GOO and Quickpick-1000 are not re-
ally aware of indexes. Therefore, GOO and Quickpick-1000 work
better when few indexes are available, which is also the case when
there are more good plans.

To summarize, our results indicate that enumerating all bushy
trees exhaustively offers moderate but not insignificant performance
benefits in comparison with algorithms that enumerate only a sub
set of the search space. The performance potential from good car-
dinality estimates is certainly much larger. However, given the ex-
istence of exhaustive enumeration algorithms that can find the opti-
mal solution for queries with dozens of relations very quickly (e.g.,
[29, 12]), there are few cases where resorting to heuristics or dis-
abling bushy trees should be necessary.

7. RELATED WORK
Our cardinality estimation experiments show that systems which

keep table samples for cardinality estimation predict single-table
result sizes considerably better than those which apply the inde-
pendence assumption and use single-column histograms [20]. We
think systems should be adopting table samples as a simple and ro-
bust technique, rather than earlier suggestions to explicitly detect
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} Single-table (e.g., R.A and R.B are correlated, throwing off estimation of 
R.A = 10 and R.B = 20)
◦ Handled by the “sampling” techniques 
◦ Build multi-dimensional histograms (don’t really work well)
◦ Identify “soft” functional dependencies (i.e., very highly correlated columns)

� e.g., “car make” and “car model” are highly correlated
� Queries like: Make = Honda and Model = Accord are underestimated
� But not a functional dependency: Model à Make is false 

} Join-crossing Correlations
select * 
from actors JOIN movies
where actors.location = ‘Paris’ and movies.language = ‘French’

◦ Unclear how one can benefit from capturing this correlation (even if one could)
◦ Need a new operator or access method



} In traditional settings: 

◦ Queries over many tables

◦ Unreliability of traditional cost estimation

◦ Success, maturity make problems more apparent, critical 

} In new environments:

◦ e.g. data integration, web services, streams, P2P... 

◦ Unknown dynamic characteristics for data and runtime 

◦ Increasingly aggressive sharing of resources and computation

◦ Interactivity in query processing 

} Note two distinct themes lead to the same conclusion:

◦ Unknowns: even static properties often unknown in new environments and often 
unknowable a priori 

◦ Dynamics: environment changes can be very high 

} Motivates intra-query adaptivity 



} Autonomic/self-tuning optimization
◦ Chen and Roussoupolous: Adaptive selectivity estimation [SIGMOD 1994]
◦ LEO (@IBM), SITS (@MSR): Learning from previous executions 

} Robust/least-expected cost optimization 
} Parametric optimization 
◦ Choose a collection of plans, each optimal for a different setting of 

parameters
◦ Select one at the beginning of execution 

} Competitive optimization
◦ Start off multiple plans... kill all but one after a while 

} Adaptive operators
More details in our survey: “Adaptive Query Processing”; FnT
2007 



} Low-overhead, evolutionary approaches
◦ Typically apply to non-pipelined execution
◦ Late binding: Don’t instatntiate the entire plan at start 
◦ Mid-query reoptimization: At “materialization” points, review 

the remaining plan and possibly re-optimize 
} Pipelined execution
◦ No materialization points, so the above doesn’t apply 
◦ The operators may contain complex states, raising correctness 

issues
◦ Eddies 
� Always guarantee correct execution, but allows reordering during 

execution 

} Lot of work in 1998-2008 timeframe -- not much since



Late Binding; Staged Execution

Materialization points make natural decision points where 
the next stage can be changed with little cost:

– Re-run optimizer at each point to get the next stage
– Choose among precomputed set of plans – parametric query 

optimization [INSS’92, CG’94, …]

AR

NLJ

sort

C

B

MJ

MJ

sort
Normal execution: pipelines separated 
by materialization points

e.g., at a sort, GROUP BY, etc.

materialization 
point



Mid-query Reoptimization
[KD’98,MRS+04]

Choose checkpoints at which to monitor cardinalities
Balance overhead and opportunities for switching plans

If actual cardinality is too different from estimated,
Avoid unnecessary plan re-optimization (where the plan doesn’t change)

Re-optimize to switch to a new plan
Try to maintain previous computation during plan switching

§ Most widely studied technique:
-- Federated systems (InterViso 90, MOOD 96), Red Brick, 

Query scrambling (96), Mid-query re-optimization (98),  
Progressive Optimization (04), Proactive Reoptimization (05), …

Where?

How?

When?

AR

NLJ

B

C

HJ

MJ

sort

C

B

MJ

MJ

sort



Mid-query Reoptimization

§ At materialization points, re-evaluate the rest of the query 
plan

§ Example:

R.a = 10 R.b < 20R resultR.c like …
R1 R2 R3Materialize

R1

Initial query plan chosen

Estimated 
selectivities

0.05 0.1 0.2

A free opportunity to re-evaluate the rest of the query plan
- Exploit by gathering information about the materialized result



Mid-query Reoptimization

§ At materialization points, re-evaluate the rest of the query 
plan

§ Example:

R.a = 10 R.b < 20R resultR.c like …
R1 R2 R3Materialize

R1; build
1-d hists

Initial query plan chosen

Estimated 
selectivities

0.05 0.1 0.2

A free opportunity to re-evaluate the rest of the query plan
- Exploit by gathering information about the materialized result



Mid-query Reoptimization

§ At materialization points, re-evaluate the rest of the query 
plan

§ Example:

R.b < 20 R.c like …
R2 R3

R.a = 10R
R1 Materialize

R1

Initial query plan chosen

Estimated 
selectivities

0.05 0.1 0.2

Re-estimated
selectivities

0.5 0.01

Significantly different è original plan probably sub-optimal
Reoptimize the remaining part of the query

Materialize
R1; build
1-d hists



Eddies [AH’00]

Query processing as routing of tuples through operators

Pipelined query execution using an eddy

An eddy operator
• Intercepts tuples from sources

and output tuples from operators
• Executes query by routing source         

tuples through operators

A traditional pipelined query plan

R.a = 10 R.b < 20R resultR.c like …
R1 R2 R3

EddyR
result

R.a = 10

R.c like …

R.b < 20

Encapsulates all aspects of 
adaptivity in a “standard” 

dataflow operator: 
measure, model, plan and 

actuate.



Eddies [AH’00]

a b c …
15 10 AnameA …

An R Tuple:  r1

r1

r1

EddyR

result

R.a = 10

R.c like …

R.b < 20



ready bit i :
1 à operator i can be applied
0 à operator i can’t be applied

Eddies [AH’00]

a b c … ready done
15 10 AnameA … 111 000

An R Tuple:  r1

r1

Operator 1

Operator 2

Operator 3

EddyR

result

R.a = 10

R.c like …

R.b < 20



done bit i :
1 à operator i has been applied
0 à operator i hasn’t been applied

Eddies [AH’00]

a b c … ready done
15 10 AnameA … 111 000

An R Tuple:  r1

r1

Operator 1

Operator 2

Operator 3

EddyR

result

R.a = 10

R.c like …

R.b < 20



Eddies [AH’00]

a b c … ready done
15 10 AnameA … 111 000

An R Tuple:  r1

r1

Operator 1

Operator 2

Operator 3

Used to decide validity and need
of applying operators

EddyR

result

R.a = 10

R.c like …

R.b < 20



Eddies [AH’00]

a b c … ready done
15 10 AnameA … 111 000

An R Tuple:  r1

r1

Operator 1

Operator 2

Operator 3

satisfied
r1

r1

a b c … ready done
15 10 AnameA … 101 010

r1

not satisfied

eddy looks at the
next tuple

For a query with only selections,
ready = complement(done)

EddyR

result

R.a = 10

R.c like …

R.b < 20



Eddies [AH’00]

a b c …
10 15 AnameA …

An R Tuple:  r2

Operator 1

Operator 2

Operator 3

r2
EddyR

result

R.a = 10

R.c like …

R.b < 20

satisfied

satisfied

satisfied



Eddies [AH’00]

a b c … ready done
10 15 AnameA … 000 111

An R Tuple:  r2

Operator 1

Operator 2

Operator 3

r2

if done = 111,
send to output 

r2

EddyR

result

R.a = 10

R.c like …

R.b < 20

satisfied

satisfied

satisfied



Eddies [AH’00]

Adapting order is easy
– Just change the operators to which tuples are sent
– Can be done on a per-tuple basis
– Can be done in the middle of tuple’s “pipeline”

How are the routing decisions made?
Using a routing policy

Operator 1

Operator 2

Operator 3

EddyR

result

R.a = 10

R.c like …

R.b < 20



Routing Policies that Have Been Studied

Deterministic [D03]
– Monitor costs & selectivities continuously
– Re-optimize periodically using rank ordering

(or A-Greedy for correlated predicates)

Lottery scheduling [AH00]
– Each operator runs in thread with an input queue
– “Tickets” assigned according to tuples input / output
– Route tuple to next eligible operator with room in queue, 

based on number of “tickets” and “backpressure”

Content-based routing [BBDW05]
– Different routes for different plans based on attribute values



Routing Policy 1: Non-adaptive

§ Simulating a single static order
– E.g. operator 1, then operator 2, then operator 3

Routing policy:
if done = 

000 à route to 1
100 à route to 2
110 à route to 3

table lookups à very efficient

Operator 1

Operator 2

Operator 3

EddyR

result

R.a = 10

R.c like …

R.b < 20



Overhead of Routing
§ PostgreSQL implementation of eddies using bitset lookups [Telegraph Project]
§ Queries with 3 selections, of varying cost

– Routing policy uses a single static order, i.e., no adaptation
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Routing Policy 2: Deterministic

§ Monitor costs and selectivities continuously
§ Reoptimize periodically using KBZ

Statistics Maintained:
Costs of operators
Selectivities of operators

Routing policy:
Use a single order for a 

batch of tuples
Periodically apply KBZ

Operator 1

Operator 2

Operator 3

EddyR

result

R.a = 10

R.c like …

R.b < 20

Can use specialized 
policies for correlated 
predicates



Overhead of Routing and Reoptimization

§ Adaptation using batching
– Reoptimized every X tuples using monitored selectivities
– Identical selectivities throughout è experiment measures 

only the overhead
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Routing Policy 3: Lottery Scheduling

§ Originally suggested routing policy [AH’00]
§ Applicable only if each operator runs in a separate thread
§ Uses two easily obtainable pieces of information for making 

routing decisions:
– Busy/idle status of operators
– Tickets per operator

Operator 1

Operator 2

Operator 3

EddyR

result

R.a = 10

R.c like …

R.b < 20



Routing Policy 3: Lottery Scheduling
§ Routing decisions based on busy/idle status of operators

Rule:
IF operator busy,
THEN do not route more  

tuples to it

Rationale:
Every thread gets equal time
SO IF an operator is busy,
THEN its cost is perhaps very

high

Operator 1

Operator 2

Operator 3

EddyR

result

R.a = 10

R.c like …

R.b < 20

BUSY

IDLE

IDLE



Routing Policy 3: Lottery Scheduling
§ Routing decisions based on tickets

Rules:
1. Route a new tuple randomly 

weighted according to the 
number of tickets 

tickets(O1) = 10
tickets(O2) = 70
tickets(O3) = 20

Will be routed to:
O1   w.p.   0.1
O2   w.p.   0.7
O3   w.p.   0.2

Operator 1

Operator 2

Operator 3

Eddy

result

R.a = 10

R.c like …

R.b < 20

r



Routing Policy 3: Lottery Scheduling
§ Routing decisions based on tickets

Rules:
1. Route a new tuple randomly 

weighted according to the 
number of tickets 

tickets(O1) = 10
tickets(O2) = 70
tickets(O3) = 20

r

Operator 1

Operator 2

Operator 3

Eddy

result

R.a = 10

R.c like …

R.b < 20



Routing Policy 3: Lottery Scheduling
§ Routing decisions based on tickets

Rules:
1. Route a new tuple randomly 

weighted according to the 
number of tickets 

2. route a tuple to an operator Oi
tickets(Oi) ++; Operator 1

Operator 2

Operator 3

Eddy

result

R.a = 10

R.c like …

R.b < 20

tickets(O1) = 11
tickets(O2) = 70
tickets(O3) = 20



Routing Policy 3: Lottery Scheduling
§ Routing decisions based on tickets

r

Rules:
1. Route a new tuple randomly 

weighted according to the 
number of tickets 

2. route a tuple to an operator Oi
tickets(Oi) ++;

3. Oi returns a tuple to eddy
tickets(Oi) --;

Operator 1

Operator 2

Operator 3

Eddy

result

R.a = 10

R.c like …

R.b < 20

tickets(O1) = 11
tickets(O2) = 70
tickets(O3) = 20



Routing Policy 3: Lottery Scheduling
§ Routing decisions based on tickets

r

Rules:
1. Route a new tuple randomly 

weighted according to the 
number of tickets 

2. route a tuple to an operator Oi
tickets(Oi) ++;

3. Oi returns a tuple to eddy
tickets(Oi) --;

Operator 1

Operator 2

Operator 3

Eddy

result

R.a = 10

R.c like …

R.b < 20

tickets(O1) = 10
tickets(O2) = 70
tickets(O3) = 20

Will be routed to:
O2   w.p.   0.777
O3   w.p.   0.222



Routing Policy 3: Lottery Scheduling
§ Routing decisions based on tickets

Rationale:
Tickets(Oi) roughly corresponds to

(1 - selectivity(Oi))
So more tuples are routed to

highly selective operators

Rules:
1. Route a new tuple randomly 

weighted according to the 
number of tickets 

2. route a tuple to an operator Oi
tickets(Oi) ++;

3. Oi returns a tuple to eddy
tickets(Oi) --;

Operator 1

Operator 2

Operator 3

Eddy

result

R.a = 10

R.c like …

R.b < 20

tickets(O1) = 10
tickets(O2) = 70
tickets(O3) = 20



Routing Policy 3: Lottery Scheduling

§ Effect of the combined lottery scheduling policy:
– Low cost operators get more tuples
– Highly selective operators get more tuples
– Some tuples are knowingly routed according to sub-optimal orders

• To explore
• Necessary to detect selectivity changes over time



Eddies: Post-Mortem

§ Plan Space explored
– Allows arbitrary “horizontal partitioning”
– Not necessarily correlated with order of arrival

..

R.a = 10 R.b < 20 R.c like …

R.b < 20 R.a= 10 R.c like …

.

.

order
of 
arrival

In a later paper, we looked at optimizing for horizontal partitioning directly 



} Query evaluation techniques for large databases, Skew 
Avoidance, Query compilation/vectorization

} Query Optimization: Overview, How good are the query 
optimizers, really?, Reordering for Outerjoins, Query Rewriting

} Adaptive Query Processing
◦ Eddies

◦ Progressive Query Optimization

◦ Compilation and adaptivity



} Continuously ”reorder” operators as the query is executing
◦ By changing the “order” in which tuples visit operators

◦ Obviate the need for selectivity estimation and optimization entirely 

◦ Naturally handles situations where the selectivities change over time (for long-
running queries)

Eddies: Continuously Adaptive Query Processing

Ron Avnur Joseph M. Hellerstein
University of California, Berkeley
avnur@cohera.com, jmh@cs.berkeley.edu

In large federated and shared-nothing databases, resources can
exhibit widely fluctuating characteristics. Assumptions made
at the time a query is submitted will rarely hold throughout
the duration of query processing. As a result, traditional static
query optimization and execution techniques are ineffective in
these environments.
In this paper we introduce a query processing mechanism

called an eddy, which continuously reorders operators in a
query plan as it runs. We characterize the moments of sym-
metry during which pipelined joins can be easily reordered,
and the synchronization barriers that require inputs from dif-
ferent sources to be coordinated. By combining eddies with
appropriate join algorithms, we merge the optimization and
execution phases of query processing, allowing each tuple to
have a flexible ordering of the query operators. This flexibility
is controlled by a combination of fluid dynamics and a simple
learning algorithm. Our initial implementation demonstrates
promising results, with eddies performing nearly as well as
a static optimizer/executor in static scenarios, and providing
dramatic improvements in dynamic execution environments.

There is increasing interest in query engines that run at un-
precedented scale, both for widely-distributed information re-
sources, and for massively parallel database systems. We are
building a system called Telegraph, which is intended to run
queries over all the data available on line. A key requirement
of a large-scale system like Telegraph is that it function ro-
bustly in an unpredictable and constantly fluctuating environ-
ment. This unpredictability is endemic in large-scale systems,
because of increased complexity in a number of dimensions:
Hardware and Workload Complexity: In wide-area envi-
ronments, variabilities are commonly observable in the bursty
performance of servers and networks [UFA98]. These systems
often serve large communities of users whose aggregate be-
havior can be hard to predict, and the hardware mix in the wide
area is quite heterogeneous. Large clusters of computers can
exhibit similar performance variations, due to a mix of user
requests and heterogeneous hardware evolution. Even in to-
tally homogeneous environments, hardware performance can
be unpredictable: for example, the outer tracks of a disk can
exhibit almost twice the bandwidth of inner tracks [Met97].
Data Complexity: Selectivity estimation for static alphanu-

Figure 1: An eddy in a pipeline. Data flows into the eddy from
input relations and . The eddy routes tuples to opera-
tors; the operators run as independent threads, returning tuples
to the eddy. The eddy sends a tuple to the output only when
it has been handled by all the operators. The eddy adaptively
chooses an order to route each tuple through the operators.

meric data sets is fairly well understood, and there has been
initial work on estimating statistical properties of static sets of
data with complex types [Aok99] and methods [BO99]. But
federated data often comes without any statistical summaries,
and complex non-alphanumeric data types are now widely in
use both in object-relational databases and on the web. In these
scenarios – and even in traditional static relational databases –
selectivity estimates are often quite inaccurate.
User Interface Complexity: In large-scale systems, many
queries can run for a very long time. As a result, there is in-
terest in Online Aggregation and other techniques that allow
users to “Control” properties of queries while they execute,
based on refining approximate results [HAC 99].
For all of these reasons, we expect query processing param-

eters to change significantly over time in Telegraph, typically
many times during a single query. As a result, it is not appro-
priate to use the traditional architecture of optimizing a query
and then executing a static query plan: this approach does
not adapt to intra-query fluctuations. Instead, for these en-
vironments we want query execution plans to be reoptimized
regularly during the course of query processing, allowing the
system to adapt dynamically to fluctuations in computing re-
sources, data characteristics, and user preferences.
In this paper we present a query processing operator called

an eddy, which continuously reorders the application of pipe-
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Data Complexity: Selectivity estimation for static alphanu-

Figure 1: An eddy in a pipeline. Data flows into the eddy from
input relations and . The eddy routes tuples to opera-
tors; the operators run as independent threads, returning tuples
to the eddy. The eddy sends a tuple to the output only when
it has been handled by all the operators. The eddy adaptively
chooses an order to route each tuple through the operators.

meric data sets is fairly well understood, and there has been
initial work on estimating statistical properties of static sets of
data with complex types [Aok99] and methods [BO99]. But
federated data often comes without any statistical summaries,
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User Interface Complexity: In large-scale systems, many
queries can run for a very long time. As a result, there is in-
terest in Online Aggregation and other techniques that allow
users to “Control” properties of queries while they execute,
based on refining approximate results [HAC 99].
For all of these reasons, we expect query processing param-

eters to change significantly over time in Telegraph, typically
many times during a single query. As a result, it is not appro-
priate to use the traditional architecture of optimizing a query
and then executing a static query plan: this approach does
not adapt to intra-query fluctuations. Instead, for these en-
vironments we want query execution plans to be reoptimized
regularly during the course of query processing, allowing the
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Figure 3: Tuples generated by block, index, and hash ripple join. In block ripple, all tuples are generated by the join, but some may
be eliminated by the join predicate. The arrows for index and hash ripple join represent the logical portion of the cross-product
space checked so far; these joins only expend work on tuples satisfying the join predicate (black dots). In the hash ripple diagram,
one relation arrives 3 faster than the other.

namically adapts to fluctuations in performance and workload.
River has been used to robustly produce near-record perfor-
mance on I/O-intensive benchmarks like parallel sorting and
hash joins, despite heterogeneities and dynamic variability in
hardware and workloads across machines in a cluster. For
more details on River’s adaptivity and parallelism features, the
interested reader is referred to the original paper on the topic
[AAT 99]. In Telegraph, we intend to leverage the adaptabil-
ity of River to allow for dynamic shifting of load (both query
processing and data delivery) in a shared-nothing parallel en-
vironment. But in this paper we restrict ourselves to basic
(single-site) features of eddies; discussions of eddies in par-
allel rivers are deferred to Section 6.
Since we do not discuss parallelism here, a very simple

overview of the River framework suffices. River is a dataflow
query engine, analogous in many ways to Gamma [DGS 90],
Volcano [Gra90] and commercial parallel database engines,
in which “iterator”-style modules (query operators) commu-
nicate via a fixed dataflow graph (a query plan). Each mod-
ule runs as an independent thread, and the edges in the graph
correspond to finite message queues. When a producer and
consumer run at differing rates, the faster thread may block
on the queue waiting for the slower thread to catch up. As
in [UFA98], River is multi-threaded and can exploit barrier-
free algorithms by reading from various inputs at indepen-
dent rates. The River implementation we used derives from
the work on Now-Sort [AAC 97], and features efficient I/O
mechanisms including pre-fetching scans, avoidance of oper-
ating system buffering, and high-performance user-level net-
working.

Although we will use eddies to reorder tables among joins,
a heuristic pre-optimizer must choose how to initially pair off
relations into joins, with the constraint that each relation par-
ticipates in only one join. This corresponds to choosing a span-
ning tree of a query graph, in which nodes represent relations
and edges represent binary joins [KBZ86]. One reasonable
heuristic for picking a spanning tree forms a chain of cartesian
products across any tables known to be very small (to handle
“star schemas” when base-table cardinality statistics are avail-
able); it then picks arbitrary equijoin edges (on the assumption

that they are relatively low selectivity), followed by as many
arbitrary non-equijoin edges as required to complete a span-
ning tree.
Given a spanning tree of the query graph, the pre-optimizer

needs to choose join algorithms for each edge. Along each
equijoin edge it can use either an index join if an index is avail-
able, or a hash ripple join. Along each non-equijoin edge it can
use a block ripple join.
These are simple heuristics that we use to allow us to focus

on our initial eddy design; in Section 6 we present initial ideas
on making spanning tree and algorithm decisions adaptively.

An eddy is implemented via a module in a river containing
an arbitrary number of input relations, a number of partici-
pating unary and binary modules, and a single output relation
(Figure 1)3. An eddy encapsulates the scheduling of its par-
ticipating operators; tuples entering the eddy can flow through
its operators in a variety of orders.
In essence, an eddy explicitly merges multiple unary and

binary operators into a single -ary operator within a query
plan, based on the intuition from Section 2.2 that symmetries
can be easily captured in an -ary operator. An eddy module
maintains a fixed-sized buffer of tuples that are to be processed
by one or more operators. Each operator participating in the
eddy has one or two inputs that are fed tuples by the eddy, and
an output stream that returns tuples to the eddy. Eddies are so
named because of this circular data flow within a river.
A tuple entering an eddy is associated with a tuple descrip-

tor containing a vector of Ready bits and Done bits, which
indicate respectively those operators that are elgibile to pro-
cess the tuple, and those that have already processed the tuple.
The eddy module ships a tuple only to operators for which the
corresponding Ready bit turned on. After processing the tuple,
the operator returns it to the eddy, and the corresponding Done
bit is turned on. If all the Done bits are on, the tuple is sent
to the eddy’s output; otherwise it is sent to another eligible
operator for continued processing.

Nothing prevents the use of -ary operators with in an eddy, but
since implementations of these are atypical in database query processing we do
not discuss them here.
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} Adaptive query processing (POP-style) works well with 
interpretable query plans, but not as well with compilation
◦ Compiling a new query plan too expensive

(a) Execution Time

(b) Code-Generation Time
Figure 1: Reoptimizing Compiled Queries – PCQ enables near-
optimal execution through adaptivity with minimal compilation
overhead.

is expensive. But even if the DBMS’s optimizer pre-computed all
variations of a pipeline before compiling the query, including extra
pipelines in a plan increases the compilation time. The DBMS could
compile these pipelines in the background [20], but then it is using
CPU resources for compilation instead of query execution.

There are also �ne-grained optimizations where it is infeasible
to use either of the two above AQP methods. For example, suppose
the DBMS wants to �nd an ordering of predicates in a table scan
such that the most selective predicates are evaluated �rst. Since the
number of possible orderings is combinatorial, the DBMS has to
generate a separate scan pipeline for each ordering. The number of
pipelines is so high that the computation requirements to compile
them would dominate the system. Even if the DBMS compiled
alternative plans on-the-�y, it still may not adapt quickly enough if
both the data and operating environment change during execution.

To help motivate the need for low-overhead AQP in compilation-
based DBMSs, we present an experiment that measures the perfor-
mance of evaluating a WHERE clause during a sequential scan on a
single table (A) composed of six 64-bit integer columns (col1–col6)
that has 10m tuples. The workload is comprised of a single query:
SELECT * FROM A
WHERE col1 = X1 AND col2 = X2 AND . . . AND col6 = X6
We generate each column’s data and choose each �ltering con-

stant (X8 ) so that the overall selectivity is �xed, but each predicate
term’s selectivity changes for di�erent blocks of the table. We defer
the description of our experimental setup to sec. 5.

We �rst measure the time the DBMS takes to execute the above
query using the best “static” plan (i.e., one with a �xed evaluation
order chosen by the DBMS optimizer). We also execute an “optimal”
plan that is provided the best �lter ordering for each data block
a priori. The optimal plan is as if the DBMS compiled all possible
pipelines for the query and represents the theoretical lower bound
execution time. Lastly, we also execute the query using permutable
�lters that the DBMS reorders based on selectivities.

The results in �g. 1a show that the static plan is up to 4.4⇥
slower than the optimal plan when selectivity is low. As selectiv-
ity increases, the performance gap gradually reduces since more
tuples must be processed. Our second observation is that PCQ is

consistently within 10% of the optimal execution time across all
selectivities. This is because it periodically reorders the predicate
terms based on real-time data distributions.

Next, we measure the code-generation time for each of the three
approaches as we vary the number of �lter terms. In this exper-
iment, we add an additional �lter term on col1 to form a range
predicate. The results in �g. 1b reveal that when there are fewer
than three �lter terms, the code-generation time for all approaches
is similar. However, beyond three terms, the optimal approach be-
comes impractical as there are $ (=!) possible plans to generate.
In contrast, the code-generation time for the permutable query
increases by ⇠20% from one to seven terms.

Given these results, what is needed is the ability for a compilation-
basedDBMS to dynamically permute and adapt a query planwithout
having to recompile it, or eagerly generate alternative plans.

3 PCQ OVERVIEW
The goal of PCQ is to enable a JIT-based DBMS to modify a com-
piled query’s execution strategy while it is running without (1)
restarting the query, (2) performing redundant work, or (3) pre-
compiling alternative pipelines. A key insight behind PCQ is to
compile once in such a way that the query can be permuted later
while retaining compiled performance. At a high-level, PCQ is sim-
ilar to proactive reoptimization [7] as both approaches modify the
execution behavior of a query without returning to the optimizer
for a new plan or processing tuples multiple times. The key dif-
ference, however, is that PCQ facilitates these modi�cations for
compiled queries without pre-computing every possible alternative
sub-plan or pre-de�ning thresholds for switching sub-plans. PCQ
is a dynamic approach where the DBMS explores alternative sub-
plans at runtime to discover execution strategies that improve a
target objective function (e.g., latency, resource utilization). This
adaptivity enables �ne-grained modi�cations to plans based on data
distribution, hardware characteristics, and system performance.

In this section, we present an overview of PCQ using the example
query shown in �g. 2. As we discuss below, the life-cycle of a query
is broken up into three stages. Althoughwe designed the framework
for NoisePage’s LLVM-based environment, it works with any DBMS
execution engine that supports query compilation.

3.1 Stage #1 – Translation
After the DBMS’s optimizer generates a physical query plan, the
Translator converts the plan into a domain-speci�c language (DSL),
called TPL, that decomposes the it into pipelines. TPL combines
Vectorwise-style pre-compiled primitives [9] with HyPer’s data-
centric code generation [28]. Using TPL enables the DBMS to apply
database-speci�c optimizations more easily than a general-purpose
language (e.g., C/C++). Moreover, as we describe below, TPL enjoys
low-latency compilation time.

Additionally, the Translator augments the query’s TPL program
with additional PCQ constructs to facilitate permutations. The �rst
is hooks for collecting runtime performance metrics for low-level
operations in a pipeline. For example, the DBMS adds hooks to the
generated program in �g. 2 to collect metrics for evaluating WHERE
clause predicates. The DBMS can toggle this collection on and o�
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SELECT * FROM foo
WHERE A=1 AND B=2 AND C=3 

Optimizer

Bytecode

Stage #2 - Compilation

C=3
B=2
A=1query:

0x00 FilterInit
0x0c FilterInsert
0x14 RunFilters
...

Filters

Physical
Plan TPL

Stage #1 - Translation

Translator

fun a_eq_1() { ... }
fun b_eq_2() { ... }
fun c_eq_3() { ... }
fun query() {
  var filters = {[
    a_eq_1, 
    b_eq_2,
    c_eq_3]}
  for (v in foo) {
    filters.Run(v)
  }}

Stage #3 - Execution

Compiler
Execution

Loop

Execute Permute

Stats

C=3
B=2
A=1

Policies

Samples Analysis

Figure 2: System Overview – The DBMS translates the SQL query into a DSL that contains indirection layers to enable permutability. Next, the
system compiles the DSL into a compact bytecode representation. Lastly, an interpreter executes the bytecode. During execution, the DBMS
collects statistics for each predicate, analyzes this information, and permutes the ordering to improve performance.

depending on whether it needs data to guide its decision-making
policies on how to optimize the query’s program.

The second type of PCQ constructs are parameterized runtime
structures in the program that use indirection to enable the substitu-
tion of execution strategies within a pipeline. The DBMS parameter-
izes all relational operators in this way. This design choice follows
naturally from the observation that operator logic is comprised
of query-agnostic and query-speci�c sections. Since the DBMS
generates the query-speci�c sections, it is able to generate di�er-
ent versions uses indirection to switch at runtime. We de�ne two
classi�cations of indirection. The �rst level is when operators are
unaware or unconcerned with the speci�c implementation of query-
speci�c code. The second level of indirection requires coordination
between the runtime and the code-generator.

In the example in �g. 2, the Translator organizes the predicates
in an array that allows the DBMS to rearrange their order. For
example, the DBMS could switch the �rst predicate it evaluates to
be on attribute foo.C if it is the most selective. Each entry in the
indirection array is a pointer to the generated code. Thus, permuting
this part of the query only involves lightweight pointer swapping.

3.2 Stage #2 – Compilation
In the second stage, the Compiler converts the DSL program (includ-
ing both its hooks for collecting runtime performance metrics and
its use of indirection to support dynamic permutation) into a com-
pact bytecode representation. This bytecode is a CISC instruction
set composed of arithmetic, memory, and branching instructions,
as well as database-level instructions, such as for comparing SQL
values with NULL semantics, constructing iterators over tables and
indexes, building hash tables, and spawning parallel tasks.

In �g. 2, the query’s bytecode contains instructions to construct
a permutable �lter to evaluate the WHERE clause. The permutable
�lter stores an array of function pointers to implementations of the
�lter’s component. The order the functions appear in the array is
the order that the DBMS executes them when it evaluates the �lter.

3.3 Stage #3 – Execution
After converting the query plan to bytecode, the DBMS uses adap-
tive execution modes to achieve low-latency query processing [20].
The DBMS begins execution using a bytecode interpreter and asyn-
chronously compiles the bytecode into native machine code using
LLVM. Once the background compilation task completes, native
function implementations are automatically executed by the DBMS.

During execution, the plan’s runtime data structures use poli-
cies to selectively enable lightweight metric sampling. In �g. 2,
the DBMS collects selectivity and timing data for each �ltering
term periodically with a �xed probability. It uses this information
to construct a ranking metric that orders the �lters to minimize
execution time given the current data distribution. Each execution
thread makes an independent decision since they operate on dis-
joint segments of the table and potentially observe di�erent data
distributions. All permutable components use a library of policies
to decide (1) when to enable metric collection and (2) what adaptive
policy to apply given new runtime metric data. The execution en-
gine continuously performs this cyclic behavior over the course of
a query. All policies account for the fact that execution threads may
be concurrently executing native and bytecode implementations of
query functions and observe varying runtimes.

NoisePage uses a push-based batch-oriented engine that com-
bines vectorized and tuple-at-a-time execution in the same spirit as
Relaxed Operator Fusion (ROF) [27]. Batch-based execution allows
the DBMS to amortize overhead of PCQ indirection while retaining
the performance bene�ts of JIT code. It also provides LLVM an
opportunity to auto-vectorize generated code.

4 SUPPORTED QUERY OPTIMIZATIONS
We now present the optimization categories that are possible with
PCQ. As described above, the DBMS generates execution code for a
query in a manner that allows it to modify its behavior at runtime.
The core idea underlying PCQ is that the generated code supports
the ability to permute or selectively enable operations within a
pipeline whenever there could be a di�erence in performance of
those operations. These operations can be either short-running, �ne-
grained steps (e.g., a single predicate) or more expensive relational
operators (e.g., joins). These optimizations are independent of each
other and do not in�uence the behavior of other optimizations in
either the same pipeline or other pipelines for the query.

For each category, we describe what changes (if any) the DBMS’s
optimizer makes to a query’s plan and how the Translator organizes
the code to support runtime permutations. We also discuss how the
DBMS collects metrics about that it uses for policy decisions.

4.1 Filter Reordering
The �rst optimization is the ability to modify the evaluation order
of predicates during a scan operation. The optimal ordering strikes
a balance between selectivity and evaluation time: applying a more
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SELECT * FROM A WHERE col1 * 3 = col2 + col3 AND col4 < 44

(a) Example Input SQL Query

 6 fun p1(v:*Vec) {
 7   @selectLT(v.col4,44)}

 8 fun p2(v:*Vec) {
 9   for (t in v) {
10     if (t.col1*3 == 
11         t.col2+t.col3){
12       v[t]=true}}}

 1 fun query() {
 2   var filters={[p1,p2]}
 3   for (v in A) {
 4     filters.Run(v)
 5   }}

Execute 
p1
p2

Permute
p2
p1

Profile

Sel. Cost
10
4

0.5
0.7

p1
p2

Rank
0.05
0.75

Stats

Policies

(b) Generated Code and Execution of Permutable Filter
Figure 3: Filter Reordering – The Translator converts the query in
(a) into the TPL on the left side of (b). This program uses a data struc-
ture template with query-speci�c �lter logic for each �lter clause.
The right side of (b) shows how the policy collects metrics and then
permutes the ordering.

selective �lter �rst will discard more tuples, but it may be expen-
sive to run. Likewise, the fastest �lter may discard too few tuples,
causing the DBMS to waste cycles applying subsequent �lters.

Preparation / Code-Gen: The �rst step is to prepare the phys-
ical plan to support reordering. The DBMS normalizes �lter expres-
sions into their disjunctive normal form (DNF). An expression in
DNF is composed of a disjunction of summands, B1 _ B2 _ . . . B" .
Each summand, B8 , is a conjunction of factors, 51 ^ 52 ^ . . . 5# . Each
factor constitutes a single predicate in the larger �lter expression
(e.g., col4 < 44). The DBMS can reorder factors within a summand,
as well as summands within a DNF expression. Thus, there are
' = "!# ! possible overall orderings of a �lter in DNF.

Decomposing and structuring �lters as functions has two bene-
�ts. First, it allows the DBMS to explore di�erent orderings without
having to recompile the query. Re-arranging two factors incurs neg-
ligible overhead as it involves a function pointer swap. The second
bene�t is that the DBMS utilizes both code-generation and vector-
ization where each is best suited. The system implements complex
arithmetic expressions in generated code to remove the overhead
of materializing intermediate results, while simpler predicates fall
back to a library of ⇠250 vectorized primitives.

Since the WHERE clause in �g. 3a is in DNF, the query requires
no further modi�cation. Next, the Translator generates a function
for each factor in the �lter that accepts a tuple vector as input. In
�g. 3b, p1 (lines 6–7) and p2 (lines 8–12) are generated functions
for the query’s conjunctive �lter. p1 calls on a builtin vectorized
selection primitive, while p2 uses fused tuple-at-a-time logic.

Lastly, line 2 in �g. 3b initializes a runtime data structure with
a list of �lter functions. This structure encapsulates the �ltering
and permutation logic. A sequential scan is generated over A on
line 3 using a batch-oriented iteration loop, and the �lter is applied
to each tuple batch in the table on line 4.

Runtime Permutation: Given the array of �lter functions cre-
ated previously during code-generation, this optimization seeks to
order them to minimize the �lter’s evaluation time. This process is
illustrated in �g. 3b. When the DBMS invokes the permutable �lter
on an input batch, it decides whether to recollect statistics on each
�lter component. The frequency of collection and precisely what
data to collect are con�gurable policies. A simple approach that we

SELECT col1, COUNT(*) FROM A GROUP BY col1

(a) Example Input SQL Query

Policies

Hash 
Hot Set?

17 fun aggregateMerge(
 ↪     hot:[*]Agg,ht:*HashTable){
18   ht[hot[0].col1]=hot[0]
19   ht[hot[1].col1]=hot[1]}

 1 fun query() {
 2   var aggregator = {[
 3     ..., // Normal funcs
 4     aggregateHot,
 5     aggregateMerge
 6   ]} 
 7   for (v in foo) {
 8     aggregator.Run(v)
 9   }}

Count
≈5#Keys

Profile

Probe

Create + Initialize

Update

No

Initialize Hot

Aggregate Hot

Merge Hot

Yes

Hot Cold
10 fun aggregateHot(
 ↪     v:*Vec, hot:[*]Agg){
11   for(t in v) {
12     if(t.col1==hot[0].col1){
13       hot[0].c++}
14     elif(t.col1==hot[1].col1){
15       hot[1].c++}   
16   }}

(b) Generated Code and Execution of Adaptive Aggregation
Figure 4: Adaptive Aggregations – The input query in (a) is trans-
lated into TPL on the left side of (b). The right side of (b) steps
through one execution of PCQ aggregation.

use is to sample selectivities and runtimes randomly with a �xed
probability ? . We explore the e�ect of ? in sec. 5.

If the policy chooses not to sample selectivities, the DBMS in-
vokes the �ltering functions in their current order on the tuple
batch. Functions within a summand incrementally �lter tuples out,
and each summand’s results are combined together to produce the
result of the �lter. If the policy chooses to re-sample statistics, the
DBMS executes each predicate on all input tuples and tracks their
selectivity and invocation time to construct a pro�le. The DBMS
uses a predicate’s A0=: as the metric by which to order predicate
terms. The rank of a predicate accounts for both its selectivity and
its evaluation costs, and is computed as 1�B

2 , where B speci�es the
selectivity of the factor, and 2 speci�es the per-tuple evaluation cost.
After rank computation, the DBMS stores the refreshed statistics in
an in-memory statistics table. It then reorders the predicates using
both their new rank values and the �lter’s permutation policy.

When the policy recollects statistics, the DBMS evaluates all
�lters to capture their true selectivities (i.e., no short-circuiting).
This means the DBMS performs redundant work that impacts query
performance. Therefore, policies must balance unnecessary work
with the ability to respond to shifting data skew quickly.

4.2 Adaptive Aggregations
The next optimization is to extract “hot” group-by keys in hash-
based aggregations and generate a separate code path for maintain-
ing their values that do no probe the hash table. Hash aggregations
are composed of �ve batch-oriented steps: (1) hashing, (2) probing,
(3) key-equality check, (4) initialization, and (5) update. Parallel
aggregations require an additional sixth step to merge thread-local
partial aggregates into a global aggregation hash table. The Trans-
lator generates custom code for aggregate initialization, update,
and merging because these are often computationally heavy and
query-speci�c. The other steps rely on vectorized primitives.

We now present PCQ adaptive aggregations that exploit skew
in the grouping keys.

Preparation / Code-Gen: The Translator �rst creates a special-
ized function to handle the hot keys. This function, aggregateHot
on lines 10–16 in �g. 4, takes a batch of input tuples and an ar-
ray of # aggregate payload structures for the extracted hot keys.
Each element in the array stores both the grouping key and the

105

Vectorization effect???
The code suggests filters 
applied to all tuples, so no 
point in reordering



SELECT * FROM A WHERE col1 * 3 = col2 + col3 AND col4 < 44

(a) Example Input SQL Query

 6 fun p1(v:*Vec) {
 7   @selectLT(v.col4,44)}

 8 fun p2(v:*Vec) {
 9   for (t in v) {
10     if (t.col1*3 == 
11         t.col2+t.col3){
12       v[t]=true}}}

 1 fun query() {
 2   var filters={[p1,p2]}
 3   for (v in A) {
 4     filters.Run(v)
 5   }}

Execute 
p1
p2

Permute
p2
p1

Profile

Sel. Cost
10
4

0.5
0.7

p1
p2

Rank
0.05
0.75

Stats

Policies

(b) Generated Code and Execution of Permutable Filter
Figure 3: Filter Reordering – The Translator converts the query in
(a) into the TPL on the left side of (b). This program uses a data struc-
ture template with query-speci�c �lter logic for each �lter clause.
The right side of (b) shows how the policy collects metrics and then
permutes the ordering.

selective �lter �rst will discard more tuples, but it may be expen-
sive to run. Likewise, the fastest �lter may discard too few tuples,
causing the DBMS to waste cycles applying subsequent �lters.

Preparation / Code-Gen: The �rst step is to prepare the phys-
ical plan to support reordering. The DBMS normalizes �lter expres-
sions into their disjunctive normal form (DNF). An expression in
DNF is composed of a disjunction of summands, B1 _ B2 _ . . . B" .
Each summand, B8 , is a conjunction of factors, 51 ^ 52 ^ . . . 5# . Each
factor constitutes a single predicate in the larger �lter expression
(e.g., col4 < 44). The DBMS can reorder factors within a summand,
as well as summands within a DNF expression. Thus, there are
' = "!# ! possible overall orderings of a �lter in DNF.

Decomposing and structuring �lters as functions has two bene-
�ts. First, it allows the DBMS to explore di�erent orderings without
having to recompile the query. Re-arranging two factors incurs neg-
ligible overhead as it involves a function pointer swap. The second
bene�t is that the DBMS utilizes both code-generation and vector-
ization where each is best suited. The system implements complex
arithmetic expressions in generated code to remove the overhead
of materializing intermediate results, while simpler predicates fall
back to a library of ⇠250 vectorized primitives.

Since the WHERE clause in �g. 3a is in DNF, the query requires
no further modi�cation. Next, the Translator generates a function
for each factor in the �lter that accepts a tuple vector as input. In
�g. 3b, p1 (lines 6–7) and p2 (lines 8–12) are generated functions
for the query’s conjunctive �lter. p1 calls on a builtin vectorized
selection primitive, while p2 uses fused tuple-at-a-time logic.

Lastly, line 2 in �g. 3b initializes a runtime data structure with
a list of �lter functions. This structure encapsulates the �ltering
and permutation logic. A sequential scan is generated over A on
line 3 using a batch-oriented iteration loop, and the �lter is applied
to each tuple batch in the table on line 4.

Runtime Permutation: Given the array of �lter functions cre-
ated previously during code-generation, this optimization seeks to
order them to minimize the �lter’s evaluation time. This process is
illustrated in �g. 3b. When the DBMS invokes the permutable �lter
on an input batch, it decides whether to recollect statistics on each
�lter component. The frequency of collection and precisely what
data to collect are con�gurable policies. A simple approach that we

SELECT col1, COUNT(*) FROM A GROUP BY col1

(a) Example Input SQL Query

Policies

Hash 
Hot Set?

17 fun aggregateMerge(
 ↪     hot:[*]Agg,ht:*HashTable){
18   ht[hot[0].col1]=hot[0]
19   ht[hot[1].col1]=hot[1]}

 1 fun query() {
 2   var aggregator = {[
 3     ..., // Normal funcs
 4     aggregateHot,
 5     aggregateMerge
 6   ]} 
 7   for (v in foo) {
 8     aggregator.Run(v)
 9   }}

Count
≈5#Keys

Profile

Probe

Create + Initialize

Update

No

Initialize Hot

Aggregate Hot

Merge Hot

Yes

Hot Cold
10 fun aggregateHot(
 ↪     v:*Vec, hot:[*]Agg){
11   for(t in v) {
12     if(t.col1==hot[0].col1){
13       hot[0].c++}
14     elif(t.col1==hot[1].col1){
15       hot[1].c++}   
16   }}

(b) Generated Code and Execution of Adaptive Aggregation
Figure 4: Adaptive Aggregations – The input query in (a) is trans-
lated into TPL on the left side of (b). The right side of (b) steps
through one execution of PCQ aggregation.

use is to sample selectivities and runtimes randomly with a �xed
probability ? . We explore the e�ect of ? in sec. 5.

If the policy chooses not to sample selectivities, the DBMS in-
vokes the �ltering functions in their current order on the tuple
batch. Functions within a summand incrementally �lter tuples out,
and each summand’s results are combined together to produce the
result of the �lter. If the policy chooses to re-sample statistics, the
DBMS executes each predicate on all input tuples and tracks their
selectivity and invocation time to construct a pro�le. The DBMS
uses a predicate’s A0=: as the metric by which to order predicate
terms. The rank of a predicate accounts for both its selectivity and
its evaluation costs, and is computed as 1�B

2 , where B speci�es the
selectivity of the factor, and 2 speci�es the per-tuple evaluation cost.
After rank computation, the DBMS stores the refreshed statistics in
an in-memory statistics table. It then reorders the predicates using
both their new rank values and the �lter’s permutation policy.

When the policy recollects statistics, the DBMS evaluates all
�lters to capture their true selectivities (i.e., no short-circuiting).
This means the DBMS performs redundant work that impacts query
performance. Therefore, policies must balance unnecessary work
with the ability to respond to shifting data skew quickly.

4.2 Adaptive Aggregations
The next optimization is to extract “hot” group-by keys in hash-
based aggregations and generate a separate code path for maintain-
ing their values that do no probe the hash table. Hash aggregations
are composed of �ve batch-oriented steps: (1) hashing, (2) probing,
(3) key-equality check, (4) initialization, and (5) update. Parallel
aggregations require an additional sixth step to merge thread-local
partial aggregates into a global aggregation hash table. The Trans-
lator generates custom code for aggregate initialization, update,
and merging because these are often computationally heavy and
query-speci�c. The other steps rely on vectorized primitives.

We now present PCQ adaptive aggregations that exploit skew
in the grouping keys.

Preparation / Code-Gen: The Translator �rst creates a special-
ized function to handle the hot keys. This function, aggregateHot
on lines 10–16 in �g. 4, takes a batch of input tuples and an ar-
ray of # aggregate payload structures for the extracted hot keys.
Each element in the array stores both the grouping key and the
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running aggregate value. The policy determines the size of # . For
east of illustration, we choose to extract two heavy-hitter keys. The
Translator generates a loop to iterate over each tuple in the batch
and checks for a key-equality match against one of the keys in the
hot array. As # is a query compile-time constant, the Translator
generates # conditional branches. Tuples that �nd a match update
their aggregates according to the query; others fall through to the
“cold” key code path.

Next, the Translator generates amerge function, aggregateMerge
on lines 17–19, that takes a list of partially computed aggregates
and merges them into the hash table. As before, because # is a
compile-time constant, the Translator unrolls and inlines the merge
logic for the # aggregates into the function.

Finally, in the main query processing function, the Translator
creates the data structure (aggregator) on lines 2–6 and injects it
with pointers to generated functions encapsulating each step in the
aggregation, including the new functions to exploit key skew.

Runtime Permutation: Aggregation proceeds similarly as it
would without any optimization, but with one adjustment. While
computing the hash values of grouping keys in a batch, the DBMS
also tracks an approximate distinct key count using HyperLogLog
(HLL) [15]. Collecting this metric is inexpensive since HLLs have a
compact representation and incur minimal computational overhead
in comparison to the more complex aggregation processing logic.
After hashing all tuples, if the HLL estimates fewer than # unique
grouping keys in the input batch, we follow the optimized pipeline.

In the optimized �ow, the DBMS �rst allocates an array of ag-
gregate values. It initializes this array with the hottest keys in the
current batch. The method for identifying these keys is de�ned
by the system’s con�gured policy. A simple policy is to use the
�rst # unique keys in the batch. A more sophisticated option is
to randomly sample from within the current batch until # unique
keys are found. In this work, we use the former as we found it o�ers
the best performance versus cost trade-o�.

After initializing the hot aggregates array, the DBMS invokes
the optimized aggregation function. On return, partially aggregated
data is merged back into the hash table using the merging function.
Since HLL estimations have errors, it is possible for some tuples to
not �nd a match in the hot set. In this case, the batch is processed
using the cold path as well. Thus, there is a risk of an additional pass,
but the DBMS mitigates this by tuning the HLL estimation error.
Supporting parallel aggregation requires neither a modi�cation to
the algorithm described earlier, or the generation of additional code.
Each execution thread performs thread-local aggregation as before.

4.3 Adaptive Joins
A PCQ DBMS optimizes hash joins by (1) tailoring the hash table
implementation based on runtime information and (2) reordering
the application of joins in right- or left-deep query plans.We discuss
data structure specialization before describing the steps required
during code-generation and runtime to implement join reordering.
We use the convention that the left input to a hash join is the build
side, and the right input is the probe side.

Hash table construction proceeds in two phases. First, the DBMS
materializes the tuples from the left join input into a thread-local
memory bu�er in row-wise format along with the computed hash

SELECT * FROM A
INNER JOIN B ON A.col1 = B.col1
INNER JOIN C ON A.col2 = C.col1

(a) Example Input SQL Query

B

C A
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(b) Possible Join Orderings
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 1 fun query() {
 2   // HT on B, C built.
 3   var joinExec = {[
 4     {ht_B, joinB},
 5     {ht_C, joinC}]} 
 6   for (v in A) {
 7    joinExec.Run(v)
 8   }}

 9 fun joinB(
 ↪     v:*Vec,m:[*]Entry){
10   for (t in v){
11     if (t.col1==m[t].col1){
12       v[t]=true}}}  

13 fun joinC(
 ↪     v:*Vec,m:[*]Entry) {
14   @gatherSelectEq(v.col2,
 ↪                   m,0)}

Hash Probe 

B

C

Stats

B

C

Policies

(c) Generated Code and Execution of Permutable Joins
Figure 5: Adaptive Joins – The DBMS translates the query in (a) to
the program in (c). The right side of (c) illustrates one execution of
a permutable join that includes a metric collection step.

of the join columns. The DBMS also tracks an approximate count
of unique keys using an HLL estimator. Once the left join input
is exhausted, the DBMS uses HLL to estimate the hash table size.
If the estimated size is smaller than the CPU’s L3 cache capacity,
the DBMS constructs a concise hash table (CHT [31]); otherwise, it
constructs a bucket-chained hash table with pointer-tagging [22].
With this, the DBMS is able to perfectly size the hash table, thereby
eliminating the need to resize during construction. Furthermore,
deferring the choice of table implementation to runtime allows
the DBMS to tune itself according to the data distribution. In the
second phase, each execution thread scans its memory bu�ers to
build a global hash table. If a bucket-chained hash table was selected,
pointers to thread-local tuples are inserted using atomic compare-
and-swap instructions. If a CHT was selected, a partitioned build is
performed as described in [31]. We now describe how to implement
permutable joins using �g. 5 as the running example.

Preparation / Code-Gen: The DBMS’s optimizer supports per-
mutable joins in right-deep query plans containing consecutive
joins, as in �g. 5a. The system designates one table as the “driver”
that it joins with one or more tables (i.e., one per join). The DBMS
may use either hash or index joins depending on the selected access
method. The DBMS applies the joins in any order regardless of the
join type (i.e., inner vs. outer) since each driver tuple is independent
of other tuples in the table and intermediate iteration state is tran-
sient for a batch of tuples. In �g. 5b, the DBMS can join the tuples in
A either against C or B �rst. The best ordering may change over the
duration of a query on a per-block basis due to variations in data
distributions. Our implementation in NoisePage has an additional
requirement that the driver table contains all key columns required
across all joins.

During code generation, the Translator �rst generates one key-
check function per join. In �g. 5c, joinB (lines 9–12) and joinC
(lines 13–14) are the key-check functions for joining tuples from A
against tables B and C, respectively. These functions take in a vector
of input tuples and a vector of potential join candidates, and then
evaluates the join predicate for each tuple. As described earlier,
the DBMS may implement these functions either by dispatching
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to vectorized primitives or using tuple-at-a-time logic directly in
bytecode. In the example, joinC uses a built-in primitive to perform
a fused gather and select operation with SIMD instructions.

Next, the Translator constructs a data structure (joinExec on
lines 3–5) in the pipeline to manage the join and permutation logic.
This structure requires three inputs for each join: (1) a pointer to
the hash table to probe, (2) a list of attribute indexes forming the
join key, and (3) a pointer to the join’s key-check function. Finally,
the Translator generates the scan code for A on lines 6–8 and the
invocation of the join executor for each tuple batch on line 7.

Runtime Permutation:During execution, the DBMS �rst com-
putes a hash value for each tuple in the input batch. Next, a policy
decision is made whether to recollect statistics on each join. As-
suming the a�rmative, the DBMS then probes each hash table.

The probing process is decomposed into two steps. Since hash ta-
bles embed Bloom �lters, the DBMS performs the combined lookup
and �lter operation using only the hash values computed in the
previous step. The second step invokes each join’s key-equality
function to resolve false positives from the �rst step. The DBMS
ensures that only tuples that pass previous joins are processed in
the remaining joins. After completion, the system creates a pro�le
that captures selectivity and timing information for each join step.
Similar to �lters, the DBMS saves the pro�le to its internal catalog
and then permutes the join according to the policy.

5 EVALUATION
We now present an analysis of the PCQ method and correspond-
ing system architecture. We implemented our PCQ framework
and execution engine in the NoisePage DBMS [4]. NoisePage is a
PostgreSQL-compatible HTAPDBMS that usesHyPer-styleMVCC [29]
over the Apache Arrow in-memory columnar data [25]. It uses
LLVM (v9) to JIT compile our bytecode into machine code.

We performed our evaluation on machine with 2 ⇥ 10-core Intel
Xeon Silver 4114 CPUs (2.2GHz, 25 MB L3 cache per-core, with
AVX512) and 128 GB of DRAM. We ensure that the DBMS loads
the entire database into the same NUMA region using numactl.
We implemented our microbenchmarks using the Google Bench-
mark [2] library which runs each experiment a su�cient number
of iterations to get a statistically stable execution times.

We begin by describing the workloads that we use in our evalu-
ation. We then measure PCQ’s ability to improve the performance
of compiled queries. We execute these �rst experiments using a sin-
gle thread to minimize scheduling interference. Lastly, we present
a comparison of NoisePage on multi-threaded queries with PCQ
against two state-of-the-art OLAP DBMSs.

5.1 Workloads
We �rst describe the three workloads that we use in our evaluation:

Microbenchmark:We created a synthetic benchmark to isolate
and measure aspects of the DBMS’s runtime behavior. The database
contains six tables (A–F) that each contain six 64-bit signed integer
columns (col1–col6). Each table contains 3m tuples and occupies
144 MB of memory. For each experiment that uses this benchmark,
we vary the distributions and correlations of the database’s columns’
values to highlight a speci�c component. The workload contains
three query types that each target a separate optimization from

Figure 6: Performance Over Time – Execution time of three static
�lter orderings and our PCQ �lter during a sequential table scan.

sec. 4: (1) a scan query with three predicates, (2) an aggregation
query with groupings, and (3) a multi-way join query.

TPC-H: This is a decision support system workload that sim-
ulates an OLAP environment [37]. It contains eight tables in 3NF
schema. We use a scale factor of 10 (⇠10 GB). To better represent
real-world applications, we use a skewed version of the TPC-H gen-
erator [5]. We select nine queries that cover the TPC-H choke-point
categories [8] that vary from compute- to memory/join-intensive
queries. Thus, we expect our results to generalize and extend to the
remaining queries in the benchmark.

Star Schema Benchmark (SSB): This workload simulates a
data warehousing environment [30]. It is based on TPC-H, but
with three di�erences: (1) it denormalizes the two largest tables (i.e.,
LINEITEM and ORDERS) into a single new fact table (i.e., LINEORDER),
(2) it drops the PARTSUPP table, and (3) it creates a new DATE dimen-
sion table. SSB consists of thirteen queries and is characterized by
its join complexity. We use a scale factor of 10 (⇠10 GB) using the
default uniformly random data generator.

5.2 Filter Adaptivity
We begin with evaluating PCQ’s ability to optimize and permute
�lter ordering in response to shifting data distributions. We use the
microbenchmark workload with a SELECT query that performs a
sequential scan over a single table:
SELECT * FROM A
WHERE col1 < 1000 AND col3 < 1000 AND col3 < 3000
The constant values in the WHERE clause’s predicates enable the

data generators in each experiment to target a speci�c selectivity.
Performance Over Time: The �rst experiment evaluates the

performance of PCQ �lters during a table scan as we vary the selec-
tivity of individual predicates. We populate each column such that
one of the predicates has a selectivity of ⇠2% while the remaining
two have 98% selectivity each. We alternate which predicate is the
most selective over disjoint sections of the table. That is, for the
�rst 500 blocks of tuples, the predicate on col1 is the most selective.
Then for the next 500 blocks, the predicate on col2 is the most
selective. Thus, each predicate is optimal for only 1

3 of the table.
We execute this query with PCQ’s permutable �lters con�gured

using a 10% sampling rate policy (i.e., the DBMS will collect metrics
per block with a 10% probability). We also execute the query using
three “static” orderings that each evaluate a di�erent predicate �rst.
These static orderings represent how existing JIT compilation-based
DBMSs execute queries without permutability.

The results in �g. 6 show the processing time per block during
the scan. Each of the static orderings is only optimal for a por-
tion of the table, while PCQ discovers new optimal orderings after
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Figure 12: Varying Number of Joins – Execution time to perform a
multi-step join while keeping the overall join selectivity at 10%.

auto-vectorization of the key-equality check function. Although
the overall selectivity is constant, as the number of joins increase,
PCQ outperforms the static plan by discovering the most selective
joins and dynamically reordering them earlier in processing. PCQ
is 3⇥ faster than static when performing two joins, and 2.5⇥ faster
when performing greater than three joins.

5.5 System Comparison
Lastly, we compare NoisePage with and without PCQ against two
state-of-the-art in-memory databases: Actian Vector (v9.2) and
Tableau HyPer (v5.1). Vector [1] is a columnar DBMS based on Mon-
etDB/x100 [9] that uses a vectorized execution engine comprised of
SIMD-optimized primitives. We modi�ed Vector’s con�guration to
fully utilize system memory and CPU threads for parallel execution.
HyPer [3] is a columnar DBMS that uses the LLVM to generate
tuple-at-a-time query plans that are either interpreted or JIT com-
piled. The version of HyPer we use also supports SIMD predicate
evaluation. After consulting with Tableau’s engineers, we did not
modify any con�guration options for HyPer.

In this section we evaluate the TPC-H and SSB benchmarks.
After loading the data into each system, we run their requisite
statistics collection and optimization operations. We warm each
DBMS by running the workload queries once before reporting the
average execution time over �ve consecutive runs. We make a
good faith e�ort to ensure the DBMSs execute equivalent query
plans by manually inspecting them. We note, however, that the
DBMSs include additional optimizations that are not present in
all systems. For NoisePage, we use the query plan generated by
HyPer’s optimizer.

5.5.1 Skewed TPC-H. We �rst evaluate the TPC-H benchmark
using Microsoft’s skewed data generator [5], using a skew of 2.0
(i.e., high-skew). The results are shown �g. 13. We also show the
e�ect of each optimization in table 1. Each cell shows the relative
speedup of enabling the associated optimization atop all previous
optimizations. Numbers close to 1.0 mean the optimization had
little impact, while large numbers indicate greater impact. Gray
(i.e., blank) entries signify that the optimization was not applied.

Q1: This query computes �ve aggregates over four group-by
keys in a single table. Increased skew a�ects the distribution among
the four grouping keys. The hottest grouping key pair receives 49%
of the updates when there is no skew, and 86% with signi�cant skew.
NoisePage’s PCQ aggregation optimization is triggered resulting
in a 1.7⇥ improvement since the bulk of processing time is spent
performing the aggregation. Although NoisePage with PCQ is 4.8⇥
faster than Vector, it is 1.2⇥ slower than HyPer. We believe this is

due to HyPer’s use of �xed-point arithmetic which is faster than
the �oating-point math used in NoisePage.

Q4: This query computes a single aggregate over �ve group-by
keys (triggering the PCQ aggregation optimization), and contains a
permutable �lter on ORDERS. The selectivity of the range predicate
on o_orderdate is 0.08% with high skew. NoisePage with PCQ
�ips the range predicate and applies the aggregation optimization
resulting in a 2⇥ improvement over both NoisePage without PCQ
and commercial systems. table 1 shows that the bulk of the bene�t
is attributed to the optimized aggregation.

Q5: This query joins six tables, but contains only two permutable
joins. The �nal aggregation computes one summation on two group-
by keys, which triggers the PCQ aggregation optimization. This
query also contains vectorizable predicates that are supported by
all DBMSs. In NoisePage, the bene�t of permutable �lters is modest,
while the optimized aggregation leads to a 1.33⇥ improvement over
the baseline. The two permutable joins are never rearranged, hence
there is no improvement from PCQ joins. Overall, NoisePage with
PCQ is 3⇥ faster than HyPer and 5⇥ faster than Vector.

Q6: The performance of Q6 depends on the DBMS’s implemen-
tation of the highly selective (0.05%) �lter over LINEITEM. We note
that increased skew does not a�ect the ordering of the LINEITEM
predicate. Thus, NoisePage’s PCQ permutable �lter adds minor
overhead resulting in 4% slowdown over the baseline. This is a
direct result of resampling with a �xed probability, and can be
remedied by using a more advanced sampling policy. All systems
leverage SIMD �lter evaluation with comparable performance.

Q7: This is a join-heavy query where HyPer chooses a bushy join
plan that is 4⇥ slower than a right-deep plan. Although no tuples
reach the �nal aggregation, PCQ �ips the application order of the
range predicate on l_shipdate resulting in a 1.2⇥ improvement.

Q11: This query also contains �ve joins, but none are permutable.
It also contains two separate aggregations, but whose cardinalities
never trigger the PCQ optimizations. Finally, it contains multiple
vectorizable predicates, but all have single terms making permu-
tation unnecessary. Thus, Q11 represents a query where none of
the PCQ optimizations are tripped. We include it to show that PCQ
incurs negligible overhead, and to serve as an example of where
an optimizer can assist in identifying better plans in the presence
of data skew. NoisePage (with an without PCQ) o�ers comparable
performance to HyPer, and is 4⇥ faster than Vector.

Q16: This query has a right-deep join pipeline using PARTSUPP
as the driver, a multi-part �lter on PART and a hash aggregation.
The cardinality of the aggregation exceeds the optimization thresh-
old (i.e., �ve). PCQ reorders the PART �lters, yielding a boost of
almost 1.2⇥. Next, PCQ reorders the join to use SIMD gathers due
to the size of the build table, which improves performance by 1.2⇥.
NoisePage with PCQ is 7.4⇥ and 3⇥ faster than HyPer and Vector,
respectively. HyPer chooses a worse plan at high-skew: it decides
on a left anti-join rather than a right anti-join. We believe that
HyPer’s performance would improve with a better plan.

Q18: Like Q16, this query also contains a right-deep join pipeline
using ORDERS as the driver. Additionally, there is an aggregation,
but whose cardinality exceeds the optimization’s threshold. PCQ
reorders the joins in order to utilize SIMD gathers on the smaller
table resulting in a 1.19⇥ improvement over the baseline. Inter-
estingly, HyPer chooses a worse query plan at high skew, using
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