Machine Learning for
- Data Management Systems

SkinnerDB

Amol Deshpande
March 6, 2023

Outline

=

. Reinforcem‘ent Learning and UCB/UCT -
* Simplified QP Problem with g
s SklnnerDB

Multi-armed Bandit

K arms; unknown sequence of stochastic rewards R{, R,, ... € [O,1]K; R;~v

Foreachroundt =1,2,...,T (assume horizon T is known; will say more later)
* Choose arm A4; € [K]

* Obtain reward R; 4, and only see Ry 4,

Problem was introduced by Robbins (1952).

From Chris Liaw, https://www.cs.ubc.ca/labs/lci/mlrg/slides/2019_summer_4_intro_to_bandits.pdf

Multi-armed Bandit

Pull arm 3

Pull arm 1

Pull arm 3

From Chris Liaw, https://www.cs.ubc.ca/labs/lci/mlrg/slides/2019_summer_4_intro_to_bandits.pdf

Multi-armed Bandit

K arms; unknown sequence of stochastic rewards Ry, R,, ... € [0,1]%; R;~v
Foreachroundt =1,2,...,T (assume horizon T is known; will say more later)
* Choose arm A; € [K]
* Obtain reward R; 4, and only see Ry 4,
Arm i has mean u; which is unknown.
Goal: Find a policy that minimizes the regret
Reg(T) =T 1" —E|) Ry, u* = max

tEIT] <

R d of best ith
eward ot best arm Algorithm’s reward

Ideally, we would like that Reg(T) = o(T).

From Chris Liaw, https://www.cs.ubc.ca/labs/lci/mlrg/slides/2019_summer_4_intro_to_bandits.pdf

Multi-armed Bandit

At each time step, we can either:
1. (Exploit) Pull the arm we think is the best one; or
2. (Explore) Pull an arm we think is suboptimal.

We do not know which is the best arm so if we keep exploiting, we may keep
pulling a suboptimal arm which may incur large regret.

If we explore, we gather information about the arms, but we pull suboptimal
arms so may incur large regret again!

Challenge is to tradeoff exploration and exploitation!

From Chris Liaw, https://www.cs.ubc.ca/labs/lci/mlrg/slides/2019_summer_4_intro_to_bandits.pdf

Explore-then-commit (ETC)

Perhaps the simplest algorithm that provably gets sublinear regret!

/Let T, be a hyper-parameter and assume T = K - T'y,.

1. Pull each of K arms T’ times.

2. Compute empirical average fi; of each arm.

\3. Pull arm with largest empirical average for remaining T — K - T, rounds.

Theorem. Let A; = u* — u; be suboptimality of arm i. Then

2
Reg(T) < EA +(T—-K-Typ) - ZAexp(T, - AC>

A i€[K] ’f
Suboptimality of each additional step.

/

“Cost of exploration” X2
Note: The term A; exp(—T, -) is small when T is large.

From Chris Liaw, https://www.cs.ubc.ca/labs/lci/mlrg/slides/2019_summer_4_intro_to_bandits.pdf

Confidence Bound (UCB)

Start by pulling each arm once. Start by pulling each arm once.

Arm 3 has the highest UCB, we pull that next.

Start by pulling each arm once.

Arm 3 has the highest UCB, we pull that next.

Now, arm 2 has the highest UCB; we pull arm 2.

o SNy e

PSS

Upper Confidence Bound (UCB)

ﬁet 6 € (0,1) be a hyper-parameter.
e Pull each of K arms once.
* Fort=K+1,K+2,..T
1. Let N;(t) be number of times arm i was pulled so far and £i;(t) be
empirical average.

2. LetUCB;(t) = fi;(t) + Jz log () /N;(®)
\ 3. Play armin argmax UCB;(t). /

Claim. Fix an arm i. Then with probability at least 1 — 26, we have

— ;1) < 210g<)/N (t)
\

From Chris Liaw, https://www.cs.ubc.ca/labs/lci/mlrg/slides/2019_summer_4_intro_to_bandits.pdf

Upper Confidence Bound (UCB)

Theorem. Let A; := u* — u; be suboptimality of arm i. If we choose 6~1/T?:

C log(T
Reg(T) < C Z A; + z ﬁ
i€[K

. A;
] i:A;>0

Always have to pay. \

This turns out to mean the following:

If A; > 0, we only pull arm i roughly A7 % log(T) times
incurring regret A; each time.

From Chris Liaw, https://www.cs.ubc.ca/labs/lci/mlrg/slides/2019_summer_4_intro_to_bandits.pdf

Monto Carlo Tree Search

Repeated X times

Selection Expansion Play-out Backpropagation

F S

One or more nodes One simulated The result of this game is
are created game is played backpropagated in the tree

The selection policy is
applied recursively until
a leaf node is reached

Source: https://u.cs.biu.ac.il/~krauss/advai2018/MCTS.pdf

MCTS with UCB1

Selection policy is applied
recursively until a leaf node is
@& @@ =

()
@ 0 ® o ©%
@) () @) () () oi1c100

@ @ Result is backpropagated up the tree |

D
Source: https://u.cs.biu.ac.il/~krauss/advai2018/MCTS.pdf

One simulated game is played

Outline

——

" Reinforcement Learning anc

= Simplified QP Problem with
. SklnnerDB

\/

322

UJCB/UCT -

Simplified QP Problem

Find a single order of the selections to be used for all tuples

Query

select * from R
where R.a = 10 and R.b < 20
and R.c like ‘%name$%’;

Query plans considered

\
« — D@D D
plans possible

o
@)
o

Applying UCT

» Learn based on prior executions

= Reward only provided for a permutation
- However, reward calculation requires executing on a sample of data
- Reward = # tuples processed in a fixed amount of time

= QOverall:
— Choose a permutation using UCT algorithm
- Process using that permutation for a fixed amount of time
- Use the #input tuples processed as the reward

Outline

=

" Reinforcement Learning anc

» Simplified QP Problem with
i SklnnerDB

_/

CT

UJCB/UCT -

Overview

— e —

Learns (near-)optimal query plans on the fly during query execution
No reliance on data statistics or simplifying cost and cardinality models
Uses UCT to balance between exploitation and exploration

No generalization errors across queries and no need for a-priori information

Plan Quality

Traditional

Opume] Optimization

Robust

Near-Gptimal Optimization

Expected Regret-Bounded

Near-Optimal Evaluation

Complete Partial None
A-priori Information

Figure 1: Tradeoffs between a-priori information and
guarantees on plan quality in query evaluation.

SkinnerDB Architecture

— e

* Pre-processor: filters base tables and partitions tuples for joins

= Join Processor: executes joins in small time slices with learning optimizer, join
executor, progress tracker, and reward calculator

= Post-processor: performs grouping, aggregation, and sorting on join results

Join Processor

Learning

Query e Optimizer Executor
Processor

P =

Processor Calculator Tracker

Figure 2: Primary components of SkinnerDB.

SkinnerDB: Search Tree

\ /l\ ‘
///1/ //\\ \f\\\

| R» S ’ ’RNT‘ . SR ST ‘ . T=R | ’ TS ‘
| y 4 | | |

R SpaT| R TS| |SeRMT||[SKTeR||[ToRxS| | TSR

Fig. 2. We model join order choices for a query as an episodic Markov Decision Process. Actions (arrows)
correspond to table choices and states (rectangles) to join order prefixes. A selected join order is executed
on one data batch (Skinner-G and Skinner-H) or for one time slice (Skinner-C). Reward is calculated based
on execution progress and associated with the final state (transition marked with thick red line).

Skinner-G

Timeout Level

Time Units

Fig. 3. lllustration of time budget allocation scheme: We do not know the optimal time per batch and iterate
over different timeouts, allocating higher budgets less frequently.

(a) Having selected join order R »a S b4 T in
the first episode, Skinner-G joins the first
batch of R with all tuples in S and T,
succeeding within the per-episode time limit.

(b) Having selected join order S »a T > R in
the second episode, Skinner-G joins the first
batch of S with unprocessed tuples in S and T
(excluding Ry, processed in episode 1).

Fig. 4. lllustrating first (a) and second (b) episode of Skinner-G for an example query with three tables (R, S,
and T). The red rectangles, surrounding the tables, highlight tuples joined in the corresponding episode.

Skinner-C Multi-way Join

L

(a) Depth-first multi-way join strategy: we increase (b) Depth-first multi-way join strategy exploiting

the join order index once the first tuple satisfying all indices on join columns: using indices, the algorithm

applicable predicates is found, we decrease it once all skips tuples that do not satisfy binary equality join
tuples in the current table were considered. predicates.

Fig. 6. Comparison of simple (left) and refined (right) variant of depth-first multi-way join algorithm.

s

Input-based Reward Function

» Measure how much of the “cartesian product” space is explored

Fig. 8. The input reward function is based on the percentage of the space of Cartesian product tuples that
has been considered per episode. When advancing by three tuples in the second table (for a fixed tuple in
the first), we process a fraction of (1/5) - (3/5) of the Cartesian product space. All join orders must ultimately
search 100% of the Cartesian product space, giving faster join orders a higher average reward per episode.

Sharing Progress

e — = =
—

» For two permutations that share a prefix, the prefix computation
doesn’t need to be repeated

Selected Tuples (ST)
for Join Order
Rea SpaT U

Tuples Selected for
OrderRa S U T
Before (B-FF) and
After (A-FF) Fast Forward

Fig. 9. We fast-forward the execution of join order R = S > U > T (lower part) by integrating evaluation
progress made for join order R >4 S > T > U (upper part).

Regret Guarantees

— e

= Skinner-G: at most worse by a factor ofO(mIog(n))

THEOREM 7.10. Expected execution time regret of Skinner-G is upper-bounded by (1 — 1/(log(n) -

m-4)) -n+ O(log(n)).

= Skinner-C: at most worse by a factor of O(m) (in limit)

THEOREM 7.13. Expected execution time regret of Skinner-C is upper-bounded by (1 — 1/m) - n +
O(log(n)).

THEOREM 7.14. The ratio of expected to optimal execution time for Skinner-C is upper-bounded
and that bound converges to m as n grows.

Experiments

[

I I 1 |

&

N &9
S N

N &

08 SkinnerDB I8 MonetDB [0 Postgres] 0 TelegraphCQ

Fig. 12. Total runtime for different benchmarks and systems, the red line marks the timeout.

Experiments

Table 2. Comparison of Search Space for Join Ordering

IMDB-S TPC-H

Metric Average Maximum Average Maximum
UCT Nodes 211 4,779 18 64
Plans 143 1,029 6 17

¢ ¢ & o & 68 ° o o o & o

Episode 0-4
Episode 5-9
Episode 10-24
Episode 25-49
Episode 50-74
Episode 75+

Fig. 22. Illustration of UCT growth over start of processing of IMDB-S query 33c: After random initial ex-
ploration, the tree is expanded towards join orders that seem most interesting. The node color indicates in
which episode the corresponding node was added.

Experiments

PG Untuned Skinner-G Skinner-H

40 30
30

20 20
10 10
0 0 0

-10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10
log,(Relative Time) log,(Relative Time) log,(Relative Time)

Fig. 29. We compare performance of different approaches on IMDB-S against performance of a manually
tuned Postgres installation. Compared to an untuned installation, using Skinner-G or Skinner-H reduces the
number of outlier queries where execution time is significantly above the fine-tuned version.

Table 3. Performance of SkinnerDB on Postgres with
a Timeout of Five Minutes per Query

System Time (s) # Timeouts
Postgres - No Tuning 6,493
SkinnerG(PG) 2,049
SkinnerH(PG) 1,539
Postgres with Tuning 297

Some D15cuss1on Polnts

— e

* What's the main take-away from this paper7

= Major concerns with the paper?

» Possible improvements?

