
Machine Learning for 
Data Management Systems

SkinnerDB

Amol Deshpande
March 6, 2023



Outline
▪ Reinforcement Learning and UCB/UCT

▪ Simplified QP Problem with UCT

▪ SkinnerDB



Multi-armed Bandit

From Chris Liaw, https://www.cs.ubc.ca/labs/lci/mlrg/slides/2019_summer_4_intro_to_bandits.pdf



Multi-armed Bandit

From Chris Liaw, https://www.cs.ubc.ca/labs/lci/mlrg/slides/2019_summer_4_intro_to_bandits.pdf



Multi-armed Bandit

From Chris Liaw, https://www.cs.ubc.ca/labs/lci/mlrg/slides/2019_summer_4_intro_to_bandits.pdf



Multi-armed Bandit

From Chris Liaw, https://www.cs.ubc.ca/labs/lci/mlrg/slides/2019_summer_4_intro_to_bandits.pdf



Explore-then-commit (ETC) 

From Chris Liaw, https://www.cs.ubc.ca/labs/lci/mlrg/slides/2019_summer_4_intro_to_bandits.pdf



Upper Confidence Bound (UCB)



Upper Confidence Bound (UCB)

From Chris Liaw, https://www.cs.ubc.ca/labs/lci/mlrg/slides/2019_summer_4_intro_to_bandits.pdf



Upper Confidence Bound (UCB)

From Chris Liaw, https://www.cs.ubc.ca/labs/lci/mlrg/slides/2019_summer_4_intro_to_bandits.pdf



Monto Carlo Tree Search

Source: https://u.cs.biu.ac.il/~krauss/advai2018/MCTS.pdf



MCTS with UCB1

Source: https://u.cs.biu.ac.il/~krauss/advai2018/MCTS.pdf



Outline
▪ Reinforcement Learning and UCB/UCT

▪ Simplified QP Problem with UCT

▪ SkinnerDB



Simplified QP Problem



Applying UCT
▪ Learn based on prior executions

▪ Reward only provided for a permutation
– However, reward calculation requires executing on a sample of data
– Reward = # tuples processed in a fixed amount of time

▪ Overall:
– Choose a permutation using UCT algorithm
– Process using that permutation for a fixed amount of time
– Use the #input tuples processed as the reward



Outline
▪ Reinforcement Learning and UCB/UCT

▪ Simplified QP Problem with UCT

▪ SkinnerDB



Overview
▪ Learns (near-)optimal query plans on the fly during query execution

▪ No reliance on data statistics or simplifying cost and cardinality models

▪ Uses UCT to balance between exploitation and exploration

▪ No generalization errors across queries and no need for a-priori information



SkinnerDB Architecture
▪ Pre-processor: filters base tables and partitions tuples for joins

▪ Join Processor: executes joins in small time slices with learning optimizer, join 
executor, progress tracker, and reward calculator

▪ Post-processor: performs grouping, aggregation, and sorting on join results



SkinnerDB: Search Tree



Skinner-G



Skinner-C Multi-way Join



Input-based Reward Function
▪ Measure how much of the “cartesian product” space is explored



Sharing Progress
▪ For two permutations that share a prefix, the prefix computation 

doesn’t need to be repeated



Regret Guarantees
▪ Skinner-G: at most worse by a factor of O(mlog(n))

▪ Skinner-C: at most worse by a factor of O(m) (in limit)



Experiments



Experiments



Experiments



Some Discussion Points
▪ What’s the main take-away from this paper?

▪ Major concerns with the paper?

▪ Possible improvements?


