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▪ A DBMS is a software system designed to store, manage, facilitate access 
to databases

▪ Provides:
– Data Definition Language (DDL)
▪ For defining and modifying the schemas

– Data Manipulation Language (DML)
▪ For retrieving, modifying, analyzing the data itself

– Guarantees about correctness in presence of failures and concurrency, data 
semantics etc. (e.g., ACID guarantees)

▪ Common use patterns
– Handling transactions (e.g. ATM Transactions, flight reservations)
– Archival (storing historical data)
– Analytics (e.g. identifying trends, Data Mining)

Database System 



▪ SQL (sequel): Structured Query Language

▪ Data definition (DDL)
– create table instructor (

ID char(5),
name           varchar(20),
dept_name varchar(20),

salary numeric(8,2))

▪ Data manipulation (DML)
– Example: Find the name of the instructor with ID 22222

select name
from instructor
where instructor.ID = ‘22222’

1.Relational DBMS: SQL



1.Some Example Queries

Find the average salary of instructors 
in the Computer Science 
select avg(salary)
from instructor
where dept_name = ‘Comp. Sci’;

Using “joins” to connect information across tables:
select * 
from instructor i, teaches t
where i.ID = t.ID;

Single-table queries:
select i.name, i.salary * 2 as double_salary
from instructor i
where i.salary < 80000 and i.name like ‘%g_’;



1.More Complex Queries

90 Chapter 3 Introduction to SQL

return a value of null when applied on an empty collection. The effect of null
values on some of the more complicated SQL constructs can be subtle.

A Boolean data type that can take values true, false, and unknown, was
introduced in SQL:1999. The aggregate functions some and every, which mean
exactly what you would intuitively expect, can be applied on a collection of
Boolean values.

3.8 Nested Subqueries

SQL provides a mechanism for nesting subqueries. A subquery is a select-from-
where expression that is nested within another query. A common use of sub-
queries is to perform tests for set membership, make set comparisons, and deter-
mine set cardinality, by nesting subqueries in the where clause. We study such
uses of nested subqueries in the where clause in Sections 3.8.1 through 3.8.4. In
Section 3.8.5, we study nesting of subqueries in the from clause. In Section 3.8.7,
we see how a class of subqueries called scalar subqueries can appear wherever
an expression returning a value can occur.

3.8.1 Set Membership

SQL allows testing tuples for membership in a relation. The in connective tests
for set membership, where the set is a collection of values produced by a select
clause. The not in connective tests for the absence of set membership.

As an illustration, reconsider the query “Find all the courses taught in the
both the Fall 2009 and Spring 2010 semesters.” Earlier, we wrote such a query by
intersecting two sets: the set of courses taught in Fall 2009 and the set of courses
taught in Spring 2010. We can take the alternative approach of finding all courses
that were taught in Fall 2009 and that are also members of the set of courses
taught in Spring 2010. Clearly, this formulation generates the same results as the
previous one did, but it leads us to write our query using the in connective of SQL.
We begin by finding all courses taught in Spring 2010, and we write the subquery

(select course id
from section
where semester = ’Spring’ and year= 2010)

We then need to find those courses that were taught in the Fall 2009 and that
appear in the set of courses obtained in the subquery. We do so by nesting the
subquery in the where clause of an outer query. The resulting query is

select distinct course id
from section
where semester = ’Fall’ and year= 2009 and

course id in (select course id
from section
where semester = ’Spring’ and year= 2010);

select ID, Salary, rank() over (order by salary desc) as s_rank
from instructor
order by s_rank



} Example: find which courses are a prerequisite, whether directly or 
indirectly, for a specific course 

with recursive rec_prereq(course_id, prereq_id) as (
select course_id, prereq_id
from prereq

union
select rec_prereq.course_id, prereq.prereq_id, 
from rec_rereq, prereq
where rec_prereq.prereq_id = prereq.course_id

)
select ∗
from rec_prereq;

Makes SQL Turing Complete (i.e., you can write any program in SQL)



} Function to count number of instructors in a department
create function dept_count (dept_name varchar(20))

returns integer
begin
declare d_count integer;

select count (* ) into d_count
from instructor
where instructor.dept_name = dept_name

return d_count;
end

} Can use in queries
select dept_name, budget
from department
where dept_count (dept_name ) > 12



enrolled = select count(*) 
from takes
where (course_info) = (CMSC 424, 201, Fall 2022)

if enrolled < capacity for the room:
insert new student into takes for that course

(Add a new section for a course for a given room and instructor)
if no section currently in that room:

insert a tuple into “sections” with that room
insert a tuple into “teaches” 

(Switch the advisor for a student)
delete old tuple with that s_id
add new tuple with that s_id and new advisor

(Modify prerequisites)
delete (CMSC422, CMSC351)
insert (CMSC422, CMSC320)

(Remove a section)
delete from takes for that section
delete from teaches for that section
delete tuple from section

update instructor 
set salary = salary * 1.03

insert into students values (…)



} Transaction: A sequence of database actions enclosed within special tags
} Properties:
◦ Atomicity: Entire transaction or nothing
◦ Consistency: Transaction, executed completely, takes database from one consistent state to another
◦ Isolation: Concurrent transactions appear to run in isolation
◦ Durability: Effects of committed transactions are not lost

} Consistency: Transaction programmer needs to guarantee that
� DBMS can do a few things, e.g., enforce constraints on the data

} Rest: DBMS guarantees



MongoDB DBMS
Database Database
Collection Relation
Document Row/Record
Field Column

Document = {…, field: value, …}

Where value can be:
• Atomic
• A document
• An array of atomic values
• An array of documents

{ qty : 1,  status : "D", size : {h : 14, w : 21}, tags : 
["a", "b"] },

Can also mix and match, e.g., array of atomics 
and documents, or array of arrays
[Same as the JSON data model]

Internally stored as BSON = Binary JSON
• Client libraries can directly operate on this 

natively



find() = SELECT <projection> 
FROM Collection 
WHERE <predicate>

limit() = LIMIT
sort()  = ORDER BY

db.inventory.find( 
{ tags : red }, 
{_id : 0, instock : 0} )

.sort ( { "dim.0": -1, item: 1 } )

.limit (2) 

WHERE
SELECT
ORDER BY
LIMIT

FROM



Find, for every state, the biggest city and its population

aggregate( [ 
{ $group: { _id: { state: "$state", city: "$city" }, pop: { $sum: "$pop" } } }, 
{ $sort: { pop: -1 } }, 
{ $group: { _id : "$_id.state", bigCity: { $first: "$_id.city" }, bigPop: { $first: "$pop" } } }, 
{ $sort : {bigPop : -1} }
] )

Approach: 
} Group by pair of city and state, and compute population per city
} Order by population descending
} Group by state, and find first city and population per group (i.e., the highest population city)
} Order by population descending

{ ”_id" : "IL", "bigCity" : "CHICAGO", "bigPop" : 2452177 }
{ "_id" : "NY", "bigCity" : "BROOKLYN", "bigPop" : 2300504 }
{ "_id" : "CA", "bigCity" : "LOS ANGELES", "bigPop" : 2102295 }
{ "_id" : "TX", "bigCity" : "HOUSTON", "bigPop" : 2095918 }
{ "_id" : "PA", "bigCity" : "PHILADELPHIA", "bigPop" : 1610956 }
{ "_id" : "MI", "bigCity" : "DETROIT", "bigPop" : 963243 }
…

gro
up

so
rt

gro
up

so
rt

Can list multiple 
aggregations 

after grouping id

Syntax somewhat different when called 
from within Python3 (using pymongo)



3. Spark
! Open-source, distributed cluster computing framework
! Much better performance than Hadoop MapReduce through in-

memory caching and pipelining
! Originally provided a low-level RDD-centric API, but today, most of 

the use is through the “Dataframes” (i.e., relations) API
ê Dataframes support relational operations like Joins, Aggregates, etc.



3. Resilient Distributed Dataset (RDD)
! RDD = Collection of records stored across multiple machines in-memory

ê Records could be objects, or key-value pairs

Worker Nodes
- Always running

Drivers
- Come and go
- Not fault-tolerant

In-memory partitions of RDD 2

In-memory partitions of RDD 3

In-memory partitions of RDD 1 RDD Manipulation 
Commands

Results – typically at 
the end



3. Spark
! Why “Resilient”?

ê Can survive the failure of a worker node
ê Spark maintains a “lineage graph” of how each RDD partition was created
ê If a worker node fails, the partitions are recreated from its inputs
ê Only a small set of well-defined operations are permitted on the RDDs

Ø But the operations usually take in arbitrary ”map” and “reduce” functions

! Fault tolerance for the “driver” is trickier
ê Drivers have arbitrary logic (cf., the programs you are writing)
ê In some cases (e.g., Spark Streaming), you can do fault tolerance
ê But in general, driver failure requires a restart



Driver

3. Example Spark Program
from pyspark import SparkContext

sc = SparkContext("local", "Simple App")

textFile = sc.textFile("README.md")

counts = textFile
.flatMap(lambda line: line.split(" "))
.map(lambda word: (word, 1))
.reduceByKey(lambda a, b: a + b)

print(counts.take(100))

Initialize RDD by reading the textFile and 
partitioning
If textFile stored on HDFS, it is already 
partitioned – just read each partition as a 
separate RDD partition

Split each line into words, creating an RDD 
of words
For each word, output (word, 1), creating a 
new RDD
Do a group-by SUM aggregate to count the 
number of times each word appears Retrieve 100 of the values in the final RDD



3. Spark
! Operations often take in a ”function” as input
! Using the inline “lambda” functionality

! Or a more explicit function declaration

! Similarly ”reduce” functions essentially tell Spark how to do 
pairwise aggregation

ê Spark will apply this to the dataset pair of values at a time
ê Difficult to do something like “median” 

flatMap(lambda line: line.split(" "))

def split(line): 
return line.split(" ")

flatMap(split)

reduceByKey(lambda a, b: a + b)
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▪ Massively successful for highly structured or semi-structured data
– Why ? Structure in the data (if any) can be exploited for ease of use and efficiency

– How ?

– Two Key Concepts:
▪ Data Modeling: Allows reasoning about the data at a high level
– e.g. “emails” have “sender”, “receiver”, “…”
– Once we can describe the data, we can start “querying” it

▪ Data Abstraction/Independence:
– Layer the system so that the users/applications are insulated from the low-level details

Data Management Systems



▪ Data modeling
– Data model: A collection of concepts that describes how data is represented and 

accessed
– Schema: A description of a specific collection of data, using a given data model

– Some examples of data models
▪ Relational, Entity-relationship model, XML…
▪ Object-oriented, object-relational, semantic data model, RDF…

– Why so many models ?
▪ Tension between descriptive power and ease of use/efficiency
▪ More powerful models à more data can be represented
▪ More powerful models à harder to use, to query, and less efficient

Data Modeling



Data Abstraction/Independence

Logical
Level

Physical 
Level

View Level

View 1 View 2 View n…

How data is actually stored ?
e.g. are we using disks ? Which
file system ?

What data is stored ?
describe data properties such as 
data semantics, data relationships

What data users and 
application programs  
see ? 

Hiding low-level details from the users of the system



▪ User-facing
– Data Model

– Query Language and/or Programming Framework

– Transactions

– Performance Guarantees/Focus

– Consistency Guarantees

▪ Implementation 
– In-memory and at-rest storage representations

– Target Computational Environment

– Query processing and optimization

– Transactions’ implementation

– Support for streaming, versioning, approximations, etc.

Design Dimensions for a DMS

These ”define” the “type” 
of the database



▪ Define how to go from input data, to some desired output
– Depends to some extent on the data model, but still a lot of flexibility

▪ Want this to be as ”high-level” or “declarative” as possible
– Too high-level à fewer use cases will be covered
– Too low-level à harder to use, support or optimize
– Lot of work on trying to find the “right” level of abstraction
– Interest in formally defining the power of a language, etc.

▪ Examples:
– SQL: Input relations à output relations
– Apache Spark RDD or Map-Reduce: Input “set of objects” à output ”set of objects”
– BlinkDB: Input relations + approximation guarantees à output relations
– Visualization Tools: Input datasets à Plots

▪ If supporting “streaming” or “versioning” or “approximations”, need to define what that means

Query Languages/Frameworks



▪ Support for updating the data in the DMS
– Some of the same issues as query language w.r.t. the expressiveness of the language

▪ Some considerations:
– Consistency guarantees around updates (ACID or not)
▪ Becomes more complicated in the distributed setting, with replication and sharding/partitioning

– Batch updates vs one-at-a-time (impact on staleness)
– Immutability: guarantees around no-tampering (e.g., blockchains)
– Versioning: ability to support multiple branches, and ”time-travel”

▪ If the language is not expressive enough, have to do more work in the applicationsà impact on 
guarantees
– e.g., MongoDB (and many other NoSQL stores) didn’t support multi-collection updates for a long time

Transactions/Updates (User-facing)



▪ How is data laid out on disks (at rest) and in-memory, and across machines
– Significant impact on performance 

– Depends somewhat on data model, but not fully (“Data Independence”)
– May use different representations when loading in memory (serialization/deserialization cost)
– Usually we also build “indexes” for efficient search
– Transmission over network also a concern

▪ Some options:
– Row-oriented storage for relational model

▪ Traditional approach: good for updates but bad for queries
– Column-oriented storage for relational model

▪ Really good performance for queries, but updates not easy to handle
– Object storage (e.g., with pointers) for object-oriented databases or Graph databases

▪ Pointers don’t translate from disk to memory easily

– Hierarchical storage for JSON/XML
– Structured file formats like CSV (row), Parquet (columnar) for Data Lakes

▪ Less up-front cost of “ingesting” the data, but more complex and less efficient to support
▪ Harder to put any “structure” or “data model” on top of it

▪ Thoughts:

– Cost of “ingest” must be amortized over many uses – for one-time use of data, prefer to leave in its native format

In-memory and at-rest storage 
representations



▪ Many, many combinations here
– Single machine vs parallel (locally) vs geographically distributed
– Hardware
▪ e.g., multi-core vs many-core, large-memory, disks or SSDs, RDMA, cache assumptions, and so on

– Use of cloud/virtualization
▪ Can have a significant impact on performance guarantees
▪ Also, may put limits on what can be done (e.g., if using “serverless functions”)

▪ Hard to build a different system for each combination

▪ Increasing interest in “auto-tuning” through use of ML
– Try to ”learn” how to do things for a new environment

Target Computational Environment



▪ Depends significantly on how “declarative” is the query language/framework

▪ Most systems support a collection of low-level “operators”
– Relational: joins, aggregates, etc.
– Apache Spark: map, reduce, joins, group-by, …

▪ Should choose a good set of operators
– Restricts the optimization abilities
– e.g., if only support “binary” joins then lose the ability to optimize multi-way joins
– In general, a sequence of operations will perform worse than a single equivalent operation

▪ Need to map from the overall “task” or “query” into those low-level operators
– Usually called a “query execution/evaluation plan”
– There may potentially be many many ways to do this (depending on how declarative)
– Try to choose in a “cost-based” manner

▪ Need the ability to estimate costs of different plans 
▪ ”Heuristics” often preferred in less mature systems 

Query Processing and Optimization



▪ Cost measure
– Important to decide what resource you are optimizing
– Need to focus on the bottlenecks of the environment

– Traditionally: CPU, Memory, Disks
– Today, network costs play a very important role

– Also: optimizing for “total resources” or “wall-clock time” ?
▪ Especially important in parallel/distributed environments

▪ May wish to “pre-compute” certain queries to reduce the query execution times
– Especially for ”real-time” queries over “streaming” data

– Often called “materialized views” in the context of relational databases
– Any pre-computed data must be kept up-to-date

▪ Adaptive query processing
– May wish to “change” the query plan during execution based on what we are seeing

Query Processing and Optimization



▪ Streaming
– Usually need to keep a lot of pre-built state to handle high-rate data streams
– Each new update à modify the pre-built state, and output results

– Hard to do this in a generic way 
▪ A specialized system will likely have much lower response times (e.g., in financial settings)

▪ Versioning
– So far, the focus has primarily been on storage (i.e., how to compactly store the version history over time)

– The “retrieval” of old versions considered less important to date

▪ Immutability
– More interest in recent years on this, but still pretty open from a database perspective

▪ Approximate Query Processing
– Usually need additional constructs like “random samples”

Support for Streaming, Versioning, 
Approximations, etc…



▪ Not intended to cover all data management research, but as a helpful guide to 
think about data management systems
– Data cleaning, visualizations, security, privacy, …

▪ Finding the right abstractions is often the key to wide usage

▪ More complex abstractions may provide short-term wins, but often become 
difficult to manage and use over time

▪ Implementations have become very complex and involved today
– Easy to obtain significant benefits focusing on a specific workload and hardware
– But hard to get, and/or reason about performance in general settings
– Experimental evaluations can’t cover all different scenarios

Recap



Database Architecture: Pre-2000’s

▪ All data was typically in hard disks or arrays of hard disks

▪ RAM (Memory) was never enough
– So always had to worry about what was in memory vs not

▪ Almost no real “distributed” execution 
– Different from “parallel”, i.e., on co-located clusters of computers

▪ Relatively well-understood use cases
– Report generation
– Interactive data analysis and exploration
– Supporting transactions

lock 
manager
processlock tablelog buffer

shared
memory 

database
 writer
process

log writer
process

checkpoint
process

process
monitor
process

server
process

server
process

user
process

user
process

server
process

user
process

ODBC JDBC

log disks data disks

query plan cache

buffer pool

From Chapter 20
Database System Concepts (7th Edition)



lock 
manager
processlock tablelog buffer

shared
memory 

database
 writer
process

log writer
process

checkpoint
process

process
monitor
process

server
process

server
process

user
process

user
process

server
process

user
process

ODBC JDBC

log disks data disks

query plan cache

buffer pool

Clients may be anywhere – e.g., ATMs, 
desktops, laptops, web apps etc.

Talk to the database using standard protocols 
like JDBC/ODBC, SOAP, or REST (today), or 

proprietary protocols

Typical components in a database system: 
some for queries, some for transactions

Maybe on a single physical computer or a 
cluster connected by a fast network

Data Storage Systems:
(1) Punch cards (long time ago)
(2) Hard disks (still prevalent)
(3) SSDs

Need “redundancy” and “fault-tolerance” 
Data once stored should always be there

RAID = Redundant Array of Independent 
Disks

Some sort of load balancer 
or intake mechanism



Database Architecture: Today

▪ Much more diversity in the architectures that we see
– More modern hardware architectures 
▪ Massively parallel computers
▪ SSDs
▪ Massive amounts of RAM – often don’t need to worry about data fitting in memory
▪ Much faster networks, even over a wide area
▪ Virtualization and Containerization
▪ Cloud Computing

– As a result: Data and execution typically distributed all over the place

▪ Much more diversity in data processing applications
– Much more non-relational data (images, text, video)
– Data Analytics/Machine learning more common use-cases

▪ Much more diversity in “data models” 
– Document data models (JSON, XML), Key-value data model, Graph data model, RDF



Data Warehouses
For: Large-scale data processing (TBs to PBs)
Parallel architectures (lots of co-located computers)
SQL and Reporting 
No transactions

In-memory OLTP (on-line transaction processing)
For: Extremely fast transactions
Many-core or parallel architectures
Very limited SQL – mostly focused on “writes”
Typically assume data fits in memory across servers

Highly available, distributed OLTP
For: Distributed scenarios where clients are all over the world
Focus on “consistency” – how to make sure all users see the same 
data
Limited SQL – mostly focused on “writes”
Considerations of memory vs disk less important



Extract-Transform-Load Systems, or Map-
Reduce, or Big Data Frameworks

For: Large-scale, “ad hoc” data analysis

Mix of parallel and distributed architectures
Data usually coming from many different sources
Mix of SQL, Machine Learning, and ad hoc tasks (e.g., do 
image analysis, followed by SQL)

AWS Glue

Apache Spark



▪ Key takeaway: Modern data architectures are all over the place

▪ Fundamentals haven’t changed that much though
– We are still either:

▪ Going from some “input datasets” to an “output dataset” (queries/analytics)

▪ Modifying data (transactions)

– SQL is still very common, albeit often disguised 
▪ Spark RDD operations map nicely to SQL joins and aggregates (unified now)

▪ MongoDB lookups, filters, and aggregates map to joins, selects, and aggregates in SQL

▪ But “performance trade-offs” are all over the place now
– 30 years ago, we worried a lot about hard disks and things fitting in memory
– Today, focus more on networks 

▪ Focus has shifted to other aspects of data processing pipelines
– Analytics/Machine learning, data cleaning, statistics

Recap


