
Machine Learning for
Data Management Systems

AutoAdmin
Amol Deshpande
February 2, 2023

Outline

▪ Architecture of Database System

▪ AutoAdmin

▪ Towards self-driving databases

▪ Paper by: Hellerstein, Stonebraker, Hamilton

▪ Covers the main components of a typical relational DBMS

▪ Will cover briefly for now, and revisit as appropriate later

Architecture of a Traditional DBMS

Main Components
144 Introduction

Fig. 1.1 Main components of a DBMS.

a well-understood point of reference for new extensions and revolutions
in database systems that may arise in the future. As a result, we focus
on relational database systems throughout this paper.

At heart, a typical RDBMS has five main components, as illustrated
in Figure 1.1. As an introduction to each of these components and the
way they fit together, we step through the life of a query in a database
system. This also serves as an overview of the remaining sections of the
paper.

Consider a simple but typical database interaction at an airport, in
which a gate agent clicks on a form to request the passenger list for a
flight. This button click results in a single-query transaction that works
roughly as follows:

1. The personal computer at the airport gate (the “client”) calls
an API that in turn communicates over a network to estab-
lish a connection with the Client Communications Manager
of a DBMS (top of Figure 1.1). In some cases, this connection

Life of a Query

144 Introduction

Fig. 1.1 Main components of a DBMS.

a well-understood point of reference for new extensions and revolutions
in database systems that may arise in the future. As a result, we focus
on relational database systems throughout this paper.

At heart, a typical RDBMS has five main components, as illustrated
in Figure 1.1. As an introduction to each of these components and the
way they fit together, we step through the life of a query in a database
system. This also serves as an overview of the remaining sections of the
paper.

Consider a simple but typical database interaction at an airport, in
which a gate agent clicks on a form to request the passenger list for a
flight. This button click results in a single-query transaction that works
roughly as follows:

1. The personal computer at the airport gate (the “client”) calls
an API that in turn communicates over a network to estab-
lish a connection with the Client Communications Manager
of a DBMS (top of Figure 1.1). In some cases, this connection

Clients connect using
standard or proprietary
protocols to submit
“queries”/”transactions”

Web Server

App Server

ODBC/JDBC

Admission Control

Assign a “thread of
computation”

Parse, compile, optimize the
query

Start fetching or updating
the data
- get locks
- create log records if

needed
- etc…

Return data batch-at-a-time

▪ Question: How do we handle multiple user requests/queries “concurrently”?

▪ Lot of variations across Operating Systems

– OS Process: Private address space – scheduled by kernel

– OS (Kernel) Thread: Multiple threads per process – shared memory

▪ Support for this relatively recent (late 90’s, early 00’s)

▪ OS can “see” these threads and does the scheduling

– Lightweight threads in user space

▪ Scheduled by the application

▪ Need to be very very careful, because OS can’t pre-empt

▪ e.g., can’t do Synchronous I/O

– DBMS Threads
▪ Similar to general lightweight threads, but special-purpose

Process Models

▪ Each query gets its own “process” (e.g., PostgreSQL, IBM D2, Oracle)*
– Heavy-weight, but easy to port to other systems

– Need support for “shared memory” (for lock tables, etc)

Process per DBMS Worker

2.1 Uniprocessors and Lightweight Threads 153

2.1.1 Process per DBMS Worker

The process per DBMS worker model (Figure 2.1) was used by early
DBMS implementations and is still used by many commercial systems
today. This model is relatively easy to implement since DBMS work-
ers are mapped directly onto OS processes. The OS scheduler man-
ages the timesharing of DBMS workers and the DBMS programmer
can rely on OS protection facilities to isolate standard bugs like mem-
ory overruns. Moreover, various programming tools like debuggers and
memory checkers are well-suited to this process model. Complicating
this model are the in-memory data structures that are shared across
DBMS connections, including the lock table and buffer pool (discussed
in more detail in Sections 6.3 and 5.3, respectively). These shared data
structures must be explicitly allocated in OS-supported shared memory
accessible across all DBMS processes. This requires OS support (which
is widely available) and some special DBMS coding. In practice, the

Fig. 2.1 Process per DBMS worker model: each DBMS worker is implemented as an OS
process. * All circa 2007 – may have changed since then.

▪ A single-multithreaded server
– Need support for “asynchronous” I/O (so threads don’t block)

– Easy to share state, but also makes it easy for queries to interfere

Thread per DBMS Worker

154 Process Models

required extensive use of shared memory in this model reduces some of
the advantages of address space separation, given that a good fraction
of “interesting” memory is shared across processes.

In terms of scaling to very large numbers of concurrent connections,
process per DBMS worker is not the most attractive process model. The
scaling issues arise because a process has more state than a thread and
consequently consumes more memory. A process switch requires switch-
ing security context, memory manager state, file and network handle
tables, and other process context. This is not needed with a thread
switch. Nonetheless, the process per DBMS worker model remains pop-
ular and is supported by IBM DB2, PostgreSQL, and Oracle.

2.1.2 Thread per DBMS Worker

In the thread per DBMS worker model (Figure 2.2), a single multi-
threaded process hosts all the DBMS worker activity. A dispatcher

Fig. 2.2 Thread per DBMS worker model: each DBMS worker is implemented as an OS
thread.

▪ Typically DBMS allots a pool of processes or threads, and multiplexes
clients/requests across those

Process (or Thread) Pools

156 Process Models

Fig. 2.3 Process Pool: each DBMS Worker is allocated to one of a pool of OS processes
as work requests arrive from the Client and the process is returned to the pool once the
request is processed.

and all processes are already servicing other requests, the new request
must wait for a process to become available.

Process pool has all of the advantages of process per DBMS worker
but, since a much smaller number of processes are required, is consid-
erably more memory efficient. Process pool is often implemented with
a dynamically resizable process pool where the pool grows potentially
to some maximum number when a large number of concurrent requests
arrive. When the request load is lighter, the process pool can be reduced
to fewer waiting processes. As with thread per DBMS worker, the pro-
cess pool model is also supported by a several current generation DBMS
in use today.

2.1.4 Shared Data and Process Boundaries

All models described above aim to execute concurrent client requests
as independently as possible. Yet, full DBMS worker independence and
isolation is not possible, since they are operating on the same shared

▪ Shared-memory and shared-nothing architectures prevalent today

▪ Shared-memory: easy to evolve to because of shared data structures

▪ Shared-nothing: require more coordination
– Data must be partitioned across disks, and query processing needs to be aware of that

– Single-machine failures need to be handled gracefully

Parallel Architectures

166 Parallel Architecture: Processes and Memory Coordination

Fig. 3.1 Shared-memory architecture.

buying a smaller number of large, very expensive systems is sometimes
viewed to be an acceptable trade-off.1

Multi-core processors support multiple processing cores on a sin-
gle chip and share some infrastructure such as caches and the memory
bus. This makes them quite similar to a shared-memory architecture in
terms of their programming model. Today, nearly all serious database
deployments involve multiple processors, with each processor having
more than one CPU. DBMS architectures need to be able to fully
exploit this potential parallelism. Fortunately, all three of the DBMS
architectures described in Section 2 run well on modern shared-memory
hardware architectures.

The process model for shared-memory machines follows quite
naturally from the uniprocessor approach. In fact, most database
systems evolved from their initial uniprocessor implementations to
shared-memory implementations. On shared-memory machines, the OS
typically supports the transparent assignment of workers (processes or

1 The dominant cost for DBMS customers is typically paying qualified people to adminis-
ter high-end systems. This includes Database Administrators (DBAs) who configure and
maintain the DBMS, and System Administrators who configure and maintain the hard-
ware and operating systems.

3.2 Shared-Nothing 167

threads) across the processors, and the shared data structures continue
to be accessible to all. All three models run well on these systems and
support the execution of multiple, independent SQL requests in paral-
lel. The main challenge is to modify the query execution layers to take
advantage of the ability to parallelize a single query across multiple
CPUs; we defer this to Section 5.

3.2 Shared-Nothing

A shared-nothing parallel system (Figure 3.2) is made up of a cluster
of independent machines that communicate over a high-speed network
interconnect or, increasingly frequently, over commodity networking
components. There is no way for a given system to directly access the
memory or disk of another system.

Shared-nothing systems provide no hardware sharing abstractions,
leaving coordination of the various machines entirely in the hands of the
DBMS. The most common technique employed by DBMSs to support
these clusters is to run their standard process model on each machine,
or node, in the cluster. Each node is capable of accepting client SQL

Fig. 3.2 Shared-nothing architecture.

▪ Shared-disk (e.g., through use of Storage Area Networks)
– Somewhat easier to administer, but requires specialized hardware

– Main difference between this and shared-nothing is primarily the retrieval costs

▪ Non-uniform Memory Access (NUMA)
– Seen increasingly today with many-core systems

– Any processor can access any other processor’s memory, but the costs vary

Parallel Architectures

170 Parallel Architecture: Processes and Memory Coordination

3.3 Shared-Disk

A shared-disk parallel system (Figure 3.3) is one in which all processors
can access the disks with about the same performance, but are unable
to access each other’s RAM. This architecture is quite common with
two prominent examples being Oracle RAC and DB2 for zSeries SYS-
PLEX. Shared-disk has become more common in recent years with the
increasing popularity of Storage Area Networks (SAN). A SAN allows
one or more logical disks to be mounted by one or more host systems
making it easy to create shared disk configurations.

One potential advantage of shared-disk over shared-nothing systems
is their lower cost of administration. DBAs of shared-disk systems do
not have to consider partitioning tables across machines in order to
achieve parallelism. But very large databases still typically do require
partitioning so, at this scale, the difference becomes less pronounced.
Another compelling feature of the shared-disk architecture is that the
failure of a single DBMS processing node does not affect the other
nodes’ ability to access the entire database. This is in contrast to both
shared-memory systems that fail as a unit, and shared-nothing sys-
tems that lose access to at least some data upon a node failure (unless
some alternative data redundancy scheme is used). However, even with
these advantages, shared-disk systems are still vulnerable to some single

Fig. 3.3 Shared-disk architecture.

Relational Query Processor

Query Parsing and Authorization

Query Rewrite

Query Optimizer

Query Executor

Access Methods

View expansion, subquery
flattening, logical rewrites of

expressions, etc.

Search plan space, selectivity
estimation, top-down vs bottom-
up, parallelism, query compilation

Iterator model, pipelining vs
materialization, Batch-at-a-time

A Query Plan

▪ Atomicity
– Need to ensure all actions of a transaction complete or not

– Guaranteed through “logging” (i.e., maintaining a log of all operations), and using the log to
“undo” or “redo” actions as needed

▪ Consistency
– Handled by the programmer

▪ Isolation
– Concurrent transactions don’t interfere

– Guaranteed through mechanisms such as ”locking” and “snapshot isolation”

▪ Durability
– Through use of log and replication

Transactions

▪ Buffer Pool

– Manages the disk blocks that are currently being used by the different workers

– Use some replacement strategy like Least-recently-used

▪ Log Tail
– All updates generate “log” records that need to properly numbered and flushed to disk

▪ Lock Table
– For synchronization across workers in case of conflicts

▪ Client Communication Buffers
– To keep track of what data has already been sent back to clients, and to buffer more

outputs

Shared Data Structures

▪ Databases need to be able to control:
– Where data is physically stored on the storage devices, especially what is sequentially stored (i.e., spatial locality)

▪ To reduce/estimate costs of operations

– What is in memory vs not in memory (temporal locality)
▪ To optimize query execution

– How is memory managed
▪ To avoid double copying of data

– In which order data is written out of volatile storage (memory) into non-volatile storage (disks/SSDs)
▪ For guaranteeing correctness in presence of failures

▪ Operating systems often get in the way
– Databases often allocate a large file on disk and manage spatial locality themselves (no guarantees that the file is sequential

though)
– Use memory mapping to reduce double copying within memory
– And many other tricks to get around OS restrictions…

Storage Management

Outline

▪ Architecture of a Database System

▪ AutoAdmin: Self-tuning Databases

▪ Towards Self-driving Databases

Databases Background: Indexes
▪ Data structures built for faster search
– i.e., queries that want to find tuples with specific properties
– Search key == the attribute on which you want to search on

▪ B+-Tree Indexes
– Primary: data ordered by search key, Secondary: data not ordered by search key
– Today: “log-structured merge trees” are more common for this usercase

▪ Hash Indexes (i.e., a persistent hash table)
– Good for “equality”, but doesn’t work well for “range” queries (10 < a < 20)

▪ Multi-dimensional indexes
– Can support searches on multiple attributes simultaneously

▪ Spatial indexes
– Support searches on spatial data (e.g., find all rectangles that overlap with this rectangle)

A Secondary B+-Tree Index
488 Chapter 11 Indexing and Hashing

Gold Katz Kim Mozart Singh Srinivasan Wu

Internal nodes

Root node

Leaf nodes

Einstein

Einstein El Said

Gold

Mozart

Srinivasan

Srinivasan Comp. Sci. 65000
Wu Finance 90000
Mozart Music 40000
Einstein Physics 95000
El Said History 80000
Gold Physics 87000
Katz Comp. Sci. 75000
Califieri History 60000
Singh Finance 80000
Crick Biology 72000
Brandt Comp. Sci. 92000

15151

10101

Brandt Califieri Crick

12121

22222
32343
33456
45565
58583
76543
76766
83821
98345 Kim Elec. Eng. 80000

Figure 11.9 B+-tree for instructor file (n = 4).

Observe that the height of this tree is less than that of the previous tree, which
had n = 4.

These examples of B+-trees are all balanced. That is, the length of every path
from the root to a leaf node is the same. This property is a requirement for a B+-
tree. Indeed, the “B” in B+-tree stands for “balanced.” It is the balance property of
B+-trees that ensures good performance for lookup, insertion, and deletion.

11.3.2 Queries on B+-Trees

Let us consider how we process queries on a B+-tree. Suppose that we wish to
find records with a search-key value of V. Figure 11.11 presents pseudocode for
a function find() to carry out this task.

Intuitively, the function starts at the root of the tree, and traverses the tree
down until it reaches a leaf node that would contain the specified value if it exists
in the tree. Specifically, starting with the root as the current node, the function
repeats the following steps until a leaf node is reached. First, the current node
is examined, looking for the smallest i such that search-key value Ki is greater

Brandt CrickCalifieri Einstein El Said Gold Katz Kim Mozart Singh Srinivasan Wu

El Said Mozart

Figure 11.10 B+-tree for instructor file with n = 6.

Index Disk Blocks

R-Trees (for rectangles)

A Timeline

Databases Background: Indexes

▪ B+-Tree Indexes traditionally the most common in Relational Databases
– More suitable for use on hard disks

▪ Today: log-structured merge trees considered superior
– Better use of memory and better for SSDs

▪ Hash Indexes more widely used in distributed systems

▪ Other types of indexes used primarily in specialized systems (e.g., GIS)

▪ Drawbacks:
– Expensive updates
– Space requirements

Databases Background: Materialized
Views

▪ Originally: “named” expressions

▪ Can be used in any query

122 Chapter 4 Intermediate SQL

where <query expression> is any legal query expression. The view name is
represented by v.

Consider again the clerk who needs to access all data in the instructor relation,
except salary. The clerk should not be authorized to access the instructor relation
(we see later, in Section 4.6, how authorizations can be specified). Instead, a
view relation faculty can be made available to the clerk, with the view defined as
follows:

create view faculty as
select ID, name, dept name
from instructor;

As explained earlier, the view relation conceptually contains the tuples in the
query result, but is not precomputed and stored. Instead, the database system
stores the query expression associated with the view relation. Whenever the view
relation is accessed, its tuples are created by computing the query result. Thus,
the view relation is created whenever needed, on demand.

To create a view that lists all course sections offered by the Physics department
in the Fall 2009 semester with the building and room number of each section, we
write:

create view physics fall 2009 as
select course.course id, sec id, building, room number
from course, section
where course.course id = section.course id

and course.dept name = ’Physics’
and section.semester = ’Fall’
and section.year = ’2009’;

4.2.2 Using Views in SQL Queries

Once we have defined a view, we can use the view name to refer to the virtual
relation that the view generates. Using the view physics fall 2009, we can find
all Physics courses offered in the Fall 2009 semester in the Watson building by
writing:

select course id
from physics fall 2009
where building= ’Watson’;

View names may appear in a query any place where a relation name may appear,
The attribute names of a view can be specified explicitly as follows:

create view departments total salary(dept name, total salary) as
select dept name, sum (salary)
from instructor
group by dept name;

122 Chapter 4 Intermediate SQL

where <query expression> is any legal query expression. The view name is
represented by v.

Consider again the clerk who needs to access all data in the instructor relation,
except salary. The clerk should not be authorized to access the instructor relation
(we see later, in Section 4.6, how authorizations can be specified). Instead, a
view relation faculty can be made available to the clerk, with the view defined as
follows:

create view faculty as
select ID, name, dept name
from instructor;

As explained earlier, the view relation conceptually contains the tuples in the
query result, but is not precomputed and stored. Instead, the database system
stores the query expression associated with the view relation. Whenever the view
relation is accessed, its tuples are created by computing the query result. Thus,
the view relation is created whenever needed, on demand.

To create a view that lists all course sections offered by the Physics department
in the Fall 2009 semester with the building and room number of each section, we
write:

create view physics fall 2009 as
select course.course id, sec id, building, room number
from course, section
where course.course id = section.course id

and course.dept name = ’Physics’
and section.semester = ’Fall’
and section.year = ’2009’;

4.2.2 Using Views in SQL Queries

Once we have defined a view, we can use the view name to refer to the virtual
relation that the view generates. Using the view physics fall 2009, we can find
all Physics courses offered in the Fall 2009 semester in the Watson building by
writing:

select course id
from physics fall 2009
where building= ’Watson’;

View names may appear in a query any place where a relation name may appear,
The attribute names of a view can be specified explicitly as follows:

create view departments total salary(dept name, total salary) as
select dept name, sum (salary)
from instructor
group by dept name;

Databases Background: Materialized
Views

▪ Can be pre-computed and stored è materialized

▪ Faster query performance, but must be updated on every insert to the base relations

▪ Many other types of summaries common

▪ Data cubes (multi-dimensional aggregates)
– Widely used in BI and data viz tools

▪ Projections

▪ Indexes can be considered pre-computed structures also

Databases Background: Partitioning

▪ Vertical partitioning, aka columnar storage

▪ Very common in data warehouses today
– Also in data lakes (“Parquet” format)

▪ Speeds up queries substantially
– Only retrieve data that’s needed

▪ Writes are more expensive
– Need to update many different blocks/files

Databases Background: Partitioning

▪ Vertical partitioning, aka columnar storage

▪ Very common in data warehouses today
– Also in data lakes (“Parquet” format)

▪ Speeds up queries substantially
– Only retrieve data that’s needed

▪ Writes are more expensive
– Need to update many different blocks/files

Databases Background: Partitioning

▪ Horizontal Partitioning, or Sharding

▪ Exploit parallelism naturally, for both reads and writes

▪ Coordination more involved -- require expensive “shuffles” to collect data

▪ Choice of partitioning attribute/strategy has significant impact

R3, S3

R2, S2

R1, S1
Partitions of R (Not
different relations)

Machine 1

Machine 2

Machine 3

Machine 1 can
directly read R1, S1

If it wants R2,
Machine 2 must read
it and send it to
Machine 1

▪ Physical data independence è can change physical structures
without affecting users

▪ Older work
– Stonebraker (1974): Choosing indexes using a parametric model
– Finkelstein et al. (1988): Collect workload (SQL queries and frequencies)

and use to decide which indexes to build

▪ Big question
– How to decide whether a proposed “configuration” is good
▪ In general: any change to the physical structures/design

Motivation for AutoAdmin

▪ Option 1: Create a cost model that can assign a ”score” to a
configuration
– Too many complex interactions between memory/disk/CPU, and between

the operations (updates/queries)

▪ Option 2: Try it out
– Infeasible

▪ Option 3: Ask the “query optimizer”, already has a cost model
– Still need to built the relevant statistics
– Can be quite expensive

Evaluating Configurations

▪ Challenges
– Much more complex optimizers
– Indexes used in many more ways than before
– Only option: involve the query optimizer

▪ Key issues
– How to support this architecturally
– How to build the relevant statistics (that the optimizer needs) efficiently
– How to handle the more complex indexes
– How to do this at large scale, with big workloads

VLDB 1997 Paper

VLDB 1997 Paper

▪ "Create Hypothetical Index” command to create a proposed index

▪ “Create Statistics” using sampling to reduce time

▪ An optimization mode that told the optimizer which indexes to
consider
– Otherwise would need to repeatedly drop/create indexes
– “Define Configuration” before invoking optimizer

▪ Heuristics beyond that to restrict the search space of candidate
indexes
– Use approximations while computing costs, prune aggressively

▪ Shipped as Index Tuning Wizard in MS SQL Server

VLDB 1997 Paper

▪ Space of candidates much much
larger

▪ Developed a more general
architecture to handle all such
decisions

▪ Many heuristics to prune down the
search space and reduce the
overall cost of tuning

▪ Shipped as Database Engine
Tuning Advisor in SQL Server 2005

Materialized Views and Partitioning

against the new schema. Alternatively, views can be defined that
hide the schema changes from application queries. If the above
class of views is updateable, then update statements in the
application do not need to be modified either.

4.2 Search Algorithms
The introduction of materialized views and partitioning results in
an explosion in the space of physical design alternatives. In this
section, we present three techniques that enable physical design
tools to explore this large space in a scalable manner. The use of
these techniques led to significant extensions and changes in the
search architecture presented in [26]. These techniques are general
in the sense that the concepts are applicable to all physical design
structures discussed in this paper. They enable a uniform search
architecture for structuring the code of a physical design tool. The
architecture that evolved as a result of these advances is shown in
Figure 2. These extensions are in fact part of the product releases
of Index Tuning Wizard in SQL Server 2000 [4] and Database
Engine Tuning Advisor in SQL Server 2005 [8]. In the rest of
this section we describe the key steps in this architecture;
highlighting the challenges and solutions. Note that the candidate
selection step is unchanged with respect to [26] and hence we do
not focus on it here.

Workload

Recommendation

Candidate
Selection

Merging

Enumeration

Prune Table /
Column Sets

Physical
Database

Design Tool

“What-If” Database Server

4.2.1 Pruning Table and Column Sets
Whenever there is a query over multiple tables in the workload,
materialized views over tables mentioned in the query (henceforth
called table sets), or subsets of those tables, can be relevant.
Therefore it becomes crucial to prune the search space early on,
since otherwise even the candidate selection step does not scale as
there could be a very large number of materialized views over
table sets in the workload. One key observation presented in [5] is
that in many real workloads, a large number of table sets occur
infrequently. However, any materialized views on table sets that
occur infrequently cannot have a significant impact on overall
workload performance. Of course, the impact cannot be measured
by frequency alone, but needs to be weighted by the cost of
queries. The above observation allows leveraging a variation of
frequent itemsets technique [3] to eliminate from consideration a

large number of such table sets very efficiently. Only table sets
that survive the frequent itemset pruning are considered during
the candidate selection step. The same intuition was subsequently
extended in [10] to prune out a large number of column sets.
Column sets determine which multi-column indexes and
partitioning keys are considered during the candidate selection
step. This technique allowed the elimination of the iterative multi-
column index generation step in [26] (see Section 3.2), while still
retaining the scalability and quality of recommendations.

4.2.2 Merging
The initial candidate set results in an optimal (or close-to-optimal)
configuration for queries in the workload, but often is either too
large to fit in the available storage, or causes updates to slow
down significantly. Given an initial set of candidates for the
workload, the merging step augments the set with additional
structures that have lower storage and update overhead without
sacrificing too much of the querying advantages. The need for
merging indexes becomes crucial for decision support queries,
where e.g., different queries are served best by different covering
indexes, yet the union of those indexes do not fit within the
available storage or incur too high an update cost. Consider a case
where the optimal index for query Q1 is (A,B) and the optimal
index for Q2 is (A,C). A single “merged” index (A,B,C) is sub-
optimal for each of the queries but could be optimal for the
workload e.g., if there is only enough storage to build one index.
In general, given a physical design structure S1 that is a candidate
for query Q1 and a structure S2 for query Q2, merging generates a
new structure S12 with the following properties: (a) Lower
storage: |S12| < |S1| + |S2|. (b) More general: S12 can be used to
answer both Q1 and Q2. Techniques for merging indexes were
presented in [28]. The key ideas were to: (1) define how a given
pair of indexes is merged, and (2) generate merged indexes from a
given set, using (1) as the building block.
View merging introduces challenges over and beyond index
merging. Merging a pair of views (each of which is a SQL
expression with selections, joins, group by) is non-trivial since the
space of merged views itself is very large. Furthermore, the
expressiveness of SQL allows interesting transformations during
merging. For example, given a multi-table materialized view V1
with a selection condition (State=’CA’) and V2 with (State =
‘WA’), the space of merged views can also include a view V12 in
which the selection condition on the State column is eliminated,
and the State column is pushed into the projection (or group by)
list of the view. Scalable techniques for merging views that
explored this space are presented in [5],[16].
An alternative approach for generating additional candidate MVs
that can serve multiple queries in the workload by leveraging
multi-query optimization techniques was presented in [70]. An
open problem is to analyze and compare the above approaches in
terms of their impact on the quality of recommendations and
scalability of the tool.

4.2.3 Enumeration
Given a workload and a set of candidates, obtained from the
candidate selection step and augmented by the merging step, the
goal of the enumeration is to find a configuration (i.e., subset of
candidates) with the smallest total cost for the workload. Note
also that we also allow DBAs to specify a set of constraints that
the enumeration step must respect, e.g., to keep all existing

Figure 2. Search Architecture of a Physical
Database Design tool.

6

1. Use the optimizer to generate the candidates
– Instead of trying to guess based on the query structure

Follow-up Work

2. Lightweight monitoring tool that alerts the DBA if a
significant tuning opportunity exists

3. Consider the “workload” as a sequence and exploit patterns

4. Dynamic, online tuning
– Need to ensure no back and forth
– DBAs traditionally wary of such tools

Follow-up Work

invoke the tool. (2) Decide what “representative” workload to
provide as input to the tool. (3) Run the tool and examine the
recommended physical design changes, and implement them if
appropriate. In this section, we describe some of our recent work
in trying to further simplify the above tasks that the DBA faces.
While Sections 5.2.1 and 5.2.2 describe techniques that still
retains the model of physical design tuning based on static
workload, the work on Dynamic Tuning, described in Section
5.2.3, describes initial work on an online approach that
continuously monitors the workload and makes changes without
the DBA having to intervene.

5.2.1 Alerter (When to Tune)
One way to address the issue of changing workloads and data
characteristics requirement on the DBA is deciding when the
physical design tool must be invoked. This can be challenging
particularly since the workload pattern and data distributions may
change. Therefore, a useful functionality is having a lightweight
“alerter” capability that can notify the DBA when significant
tuning opportunities exist. The work in [14] (see also Section
7.2.2) presents a low overhead approach that piggybacks on
normal query optimization to enable such functionality. The idea
is to have a lightweight adaptation of the optimizer
instrumentation techniques presented in Section 5.1 by only
recording index requests for the plan chosen by the optimizer. As
detailed in [14], this enables the alerter to provide a lower bound
on the improvement that would be obtained if the workload were
to be tuned by a physical design tool.

5.2.2 Workload as a Sequence
Our tuning model assumes that the workload is a set of queries
and updates. If we were to instead view the workload as a
sequence or a sequence of sets, then better modeling of real world
situations are possible. For example, in many data warehouses,
there are mostly queries during the day followed by updates at
night. Thus, viewing workload a sequence of “set of read queries”
followed by a “set of update queries” makes it possible to handle
variations in workload over time and to exploit properties of the
sequence to give a better performance improvement by creating
and dropping structures at appropriate points in the sequence. Of
course, the tool has to now take into account the cost of
creating/dropping the physical design structure as well (e.g., in the
data warehouse situation, the cost to drop the index before the
nightly updates, and recreate indexes after the updates are
completed). A framework for automated physical design when the
workload is treated as a sequence is presented in [9].

5.2.3 Dynamic (Online) Tuning
The goal of Dynamic Tuning is to have a server-side “always-on”
solution for physical database design that requires little or no
DBA intervention [13],[57],[58]. Thus, dynamic tuning
component tracks the workload and makes an online decision to
make changes to physical design as needed. In fact, in some
situations where the workload may change too unpredictably,
dynamic tuning may be the only option. For example, in a hosted
application environment, a new application can be deployed, run
and removed, all in a relatively short period of time. Naturally,
dynamic tuning needs to depend on the enabling technology of
online index creation and drop, which is supported by today’s
commercial DBMSs.

There are three key new challenges for a continuous tuning
system. First, since it is always-on, the solution has to have very
low overhead and not interfere with the normal functioning of the
DBMS. Second, the solution must balance the cost of
transitioning between physical design configurations and the
potential benefits of such design changes. Finally, the solution
must be able to avoid unwanted oscillations, in which the same
indexes are continuously created and dropped.

The work in [13] presents an online algorithm that can modify the
physical design as needed. It is prototyped inside the Microsoft
SQL Server engine. The broad architecture of the solution is
shown in Figure 4. At query optimization time, the set of
candidate indexes desirable for the query are recorded by
augmenting the execution plan. During execution time the Online
Tuning Engine component tracks the potential benefits that are
lost by not creating these candidate indexes, as well as the utility
of existing indexes. When sufficient evidence has been gathered
that a physical design change is beneficial, then the index creation
(or deletion) is triggered online. Since an online algorithm cannot
see the future, its choices are bound to be suboptimal compared to
an optimal offline solution (which knows the future), but the
design of the algorithm attempts to bound the degree of such sub-
optimality. The work in [57],[58] share similar goals as [13] but
differ in the design points of: (a) the degree to which they are
coupled with the query optimizer (b) permissible overheads for
online index tuning.

A new approach for online physical design tuning is database
cracking [45],[46]. In this work, each query is interpreted not only
as a request for a particular result set, but also as a suggestion to
crack the physical database store into smaller pieces. Each piece
is described by a query expression, and a “cracker index” tracks
the current pieces so that they can be efficiently assembled as
needed for answering queries. The cracker index is built
dynamically while queries are processed and thus can adapt to
changing query workloads. In the future, a careful comparison of
database cracking to other online tuning approaches such as the
ones described above, needs to be done.

6. IMPACT ON COMMERCIAL DBMS
All major commercial database vendors today ship automated
physical design tools. We discuss these commercial tools in
Section 6.1. Building an industrial strength physical design tool
poses additional challenges not discussed thus far. We highlight
three such challenges and approaches for handling them in
Section 6.2-6.4.

Figure 4. An architecture for online index tuning.

8

▪ Statistics and histograms
– Important to choose the right set for the optimizer to be effective

▪ Monitoring of Internal Progress or State
– e.g., query progress

▪ Learning Optimizer (LEO) in DB2
– Keeps track of where the optimizer made biggest mistakes

▪ Adaptive Query Processing
– Will cover later

Other Self-Tuning Work

▪ Statistics and histograms
– Important to choose the right set for the optimizer to be effective

▪ Monitoring of Internal Progress or State
– e.g., query progress

▪ Learning Optimizer (LEO) in DB2
– Keeps track of where the optimizer made biggest mistakes

▪ Adaptive Query Processing
– Will cover later

▪ GMAP: A more radical approach to physical design

Other Self-Tuning Work

▪ Benchmarking/comparing different approach for self-tuning

▪ More lightweight approaches to do tuning
– e.g., partial indexes/materialized views, small changes to physical layout at a time

▪ Multi-tenant systems
– Workload forecasting much harder

▪ How to use ML, Control Theory, etc.

Future Directions

▪ How relevant are these types of techniques in modern DMS?

▪ Can the dependence on the optimizer be reduced?

▪ How much are we being held back by legacy decisions?

▪ How do we move towards a truly autonomous, self-driving
DMS?

▪ When and how often should the updates be done?

Some Questions

