Machine Learning for
- Data Management S5ystems

AutoAdmin

Amol Deshpande
February 2, 2023

Outline

» Architecture of Database System
* AutoAdmin

* Towards self-driving databases

Architecture of a Traditional DBMS

= Paper by: Hellerstein, Stonebraker, Hamilton

* Covers the main components of a typical relational DBMS

= Will cover briefly for now, and revisit as appropriate later

Main Components

Local Client Remote Client
Catalog
Protocols Protocols
Manager

Admission Client Communications Manager

Control
Memory
Query Parsing and Authorization Manager

Query Rewrite

DDL and Utili Administration,
Query Optimizer and DEiRy Monitoring &
Processing Utilities

Dispatch

and _ Plan Executor
Scheduling Replication and

Relational Query Processor (Section 4) Loading
Services

Access Methods Buffer Manager
Batch Utilities

Process Lock Manager Log Manager Shared
Components and

Manager
(Section 2) Transactional Storage Manager (Sections 5 & 6) Utilities (Section 7)

Life of a Query S—

standard or proprietary
protocols to submit
“queries”/"transactions”

Admission Control

£ .
browser ASS'gn a thl’ead Of

ODBC/JDBC computation”

Local Client Remote Client Catalog Parse, compile, optimize the
Protocols Protocols
Manager query

Admission Client Communications Manager
Control

Memory
Query Parsing and Authorization Manager

Start fetching or updating

|

| Query Rewrite | the data
| Administration,
|

Query Optimizer | DDL and Utility Monitoring & : get locks
Processing Utilities create log records if

— needed
3 i Replication and
Relational Query Processor (Section 4) Loading etc...

Dispatch
and
Scheduling

Plan Executor |

Services

Access Methods Buffer Manager

Batch Utilities Return data batch-at-a-time

Process Lock Manager Log Manager Shared
Manager Components and
(Section 2) Utilities (Section 7)

Transactional Storage Manager (Sections 5 & 6)

Process Models

Question: How do we handle multiple user requests/queries “concurrently”?

Lot of variations across Operating Systems
— OS Process: Private address-space — scheduled by kernel
(0N tKernel) Thread: Multiple threads per process — shared memory
» Support for this relatively recent (late 90’s, early 00’s)
= 0S can “see” these threads and does the scheduling
Lightweight threads in user space
* Scheduled by the application
* Need to be very very careful, because OS can’t pre-empt
* e.g., can’t do Synchronous I/O

DBM.S Threads

» Similar to general lightweight threads, but special-purpose

Process per DBMS Worker

Each query gets its own “process” (e.g., PostgreSQL, IBM D2, Oracle)*

- Heavy-weight, but easy to port to other systems

- Need support for “shared memory” (for lock tables, etc)

Connected Dispatcher

Clients Process
| O}

J

Execution
' Processes
OE=1 3 s

* All circa 2007 — may have changed since then.

Thread per DBMS Worker

= A single-multithreaded server

- Need support for “asynchronous” I/0 (so threads don’t block)

- Easy to share state, but also makes it easy for queries to interfere

O =] <t~ Multithreaded
\'\l)

Server

Process (or Thread) Pools

= Typically DBMS allots a pool of processes or threads, and multiplexes
clients/requests across those

Connections Multiplexed
Over Process Pool

Parallel Architectures

= Shared-memory and shared-nothing architectures prevalent today
= Shared-memory: easy to evolve to because of shared data structures

= Shared-nothing: require more coordination

- Data must be partitioned across disks, and query processing needs to be aware of that

llE
ll

- Single-machine failures need to be handled gracefully

Parallel Architectures

= Shared-disk (e.g., through use of Storage Area Networks)

- Somewhat easier to administer, but requires specialized hardware

- Main difference between this and shared-nothing is primarily the retrieval costs

= Non-uniform Memory Access (NUMA)
- Seen increasingly today with many-core systems

- Any processor can access any other processor’s memory, but the costs vary

Relational Query Processor

Query Parsing and Authorization

Query Rewrite

Query Optimizer

Query Executor

Access Methods

View expansion, subquery
flattening, logical rewrites of
expressions, etc.

Search plan space, selectivity
estimation, top-down vs bottom-
up, parallelism, query compilation

Iterator model, pipelining vs
materialization, Batch-at-a-time

uery Plan

Sort (AvgSal)
Group By/AVG
SELECT D.DeptName,
F! E T
WH .Dn - Deg

(IndexJoin :

A

IndexScan
DEPT

Fig. 4.1 A Query plan. Only the main physical operators are shown.

Transactions

Atomicity
— Need to ensure all actions of a transaction complete or not

- Guaranteed through “logging” (i.e., maintaining a log of all operations), and using the log to
*undo” or “redo” actions as needed

Consistency
- Handled by the programmer

Isolation
— Concurrent transactions don't interfere

— Guaranteed through mechanisms such as “locking” and “snapshot isolation”

Durability

— Through use of log and replication

Shared Data Structures

Buffer Pool
- Manages the disk blocks that are currently being used by the different workers

- Use some replacement strategy like Least-recently-used
Log Tail
- All updates generate “log” records that need to properly numbered and flushed to disk

Lock Table

- For synchronization across workers in case of conflicts

Client Communication Buffers

- To keep track of what data has already been sent back to clients, and to buffer more
outputs

Storage Management

Databases need to be able to control:
- Where data is physically stored on the storage devices, especially what is sequentially stored (i.e., spatial locality)
= To reduce/estimate costs of operations
What is in memory vs not in memory (temporal locality)
= .Jo optimize quéry execution
How is memory managed
= To avoid double copying of data
In which order data is written out of volatile storage (memory) into non-volatile storage (disks/SSDs)

= For guaranteeing correctness in presence of failures

Operating systems often get in the way

- Databases often allocate a large file on disk and manage spatial locality themselves (no guarantees that the file is sequential
though)

- Use memory mapping to reduce double copying within memory
- And many other tricks to get around OS restrictions...

Outline

» Architecture of a Database System
* AutoAdmin: Self-tuning Databases

* Towards Self-driving Databases

Databases Background: Indexes

o

Data structures built for faster search |
— i.e., queries that want to find tuples with specific properties
— Search key == the attribute on which you want to search on

B+-Tree Indexes
— Primary: data ordered by search key, Secondary: data not ordered by search key
- Today: “log-structured merge trees” are more common for this usercase

Hash Indexes (i.e., a persistent hash table)
- Good for “equality”, but doesn’t work well for “range” queries (10 < a < 20)

Multi-dimensional indexes
— Can support searches on multiple attributes simultaneously

Spatial indexes
— Support searches on spatial data (e.qg., find all rectangles that overlap with this rectangle)

A Secondary B+-Tree Index

Index Disk Blocks

S—

B 2 | Root node

|I|Einstein| | Gold ||| —|_| |I|Srinivasan||| | | | | Internal nodes
Leaf nodes-,
y o~ X o~ @0 P
| |Brandt| |Ca1iﬁeri| |Crick|-|->| |Einsteir\| |El Saidl | |-|->|_|_Gold | | Katz | | Kim|-|->|l|Mozart|I| Singh | | |-|->|T|S_rinivasar1||| Wu | | | |

| »>| 10101 | Srinivasan | Comp. Sci. [65000

> 12121 | Wu Finance 90000

> 15151 | Mozart Music 40000

> 22222 | Einstein Physics 95000

>| 32343 | ElSaid History 80000

>| 33456 | Gold Physics 87000

>| 45565 | Katz Comp. Sci. | 75000

>| 58583 | Califieri History 60000

> 76543 | Singh Finance 80000

> 76766 | Crick Biology 72000

> 83821 | Brandt Comp. Sci. | 92000

> 98345 | Kim Elec. Eng. 80000

R-Trees (for rectangles)

Ri R4 R11 | |
(I R3 R9 |
|
I RS R13 ;
|
R10
= | [R14 |
I .
» 1 |
R N |3 A Ry |
|Rz | | /'R6 [Ri18
| | l‘ R17
(I | (—— \
R7 ‘ | | |
| | R16 | I\ R19
lR1s | | I‘
| L ! |
|
ot e e e, T P e et el Sy Dlellt i il S, Tl gt il B §nl i S kit
(R1[R2| |
/‘//-/ E\\“\
- LS
R3 | R4 | RS | R6 | R7
. e — *i\ ' 5 =y g .
- b \‘\ \\"\ 1 R
“~ A N

i R8 R9 R10, |R11|R12 R13 | R14 R15 R16

T

R17 R18 R19

imeline

B-Tree

ell Tree
(Gunther 88)

Packed R-Tree
(Roussopoulos ct al, 85)

(Bayer et al. 72)

Grid File

R-Tree R+-Tree
(Guttman 84) (Sellis et al. 87)
BANG File
3 (Freeston 87)

[= General Grid File

P-Tree .
(Jagadish 90c) .
Cell Tree With Oversize
Shelves (Gunther 91) Parallel R-tree .
ves (Gunther
/ (Kamel/Faloutsos 92) .
Sphere Tree TR*-Tree X .
d Schneider/Kriegel 91 elree
(©osterom90) ¢ o) (Berchtold et al. 96) o
R*-Tree TV-Tree /
(Beckmann et al. 90) (Lin et al. 94)

P-Tree

(Blanken et al. 90)

(Nievergelt et al. 81)

F—— ——————> HilbenRuree

(Schiwietz 93) (Kamel/Faloutsos 94)

Extendible Hashing :j et §\ [Bud dy Tree
(Fagin et al. 79) (Tamminen 82) Two-Level Grid File (Seeger/Kriegel 90a)
(Hinrichs 85) BV-Tree
Multi-Level Grid File . R:"’ 00} (Freeston 95)
3 3 3 utflesz et al.
(Whang/Krishnamurthy 85) Twin Grid File
Linear Hashing (Hutflesz et al. 88b)
L B0 Luwii e Extended K-D-Tree Filter Tree
(Larson 80, Litwin 80) <7(Ma(suyama etal. 84 Multi-Layer Grid File {Sovelk Koudss 56)
DL eveik/Koudas
' (Six/Widmayer 88) Nested Interpolation-
4 MOLHPE based Grid File
Adaptive K-D-Tree (Kriegel/Seeger 86) ; (Ouksel/Mayer 92)
(Bentley 79) Z-Hashing
\{(Hulﬂesz et al. 88a)
:‘ e 8
K-D-B-Tree ~ Qtfanulc Heshing Segment Indexes
. \ (Kriegel/Seeger 87)
(Robinson 81) (Kolovson/Stonebraker 91)
K-D-Tree
(Bentley 75) *LSD-Tree 1z-hashing

BSP-Tree P SKD-Tree (Henrich et al. 89) (Hutflesz et a. 91)

Point Quadtree (Fuchs et al. 80) (Ooi et al. 87) KD2B-Tree

(Klinger 71) \ (Oosterom 90)
NS G-Tree
\ BD-Tree PLOP-Hashing (Kumar 94a)
Ohsawa/Sakauchi 83) oo
Region Quadtree egel/Seeger 88) GBD-Tree
(Finkel/Bentley 74) (Ohsawa/Sakauchi 90)
Space-Filling Curves Z-Orderis
" (M""l;i 66) (Orenslein/Men:fl 84) B Jree th-'lt\'Cne
(Lomet/Salzberg 89) (Evangelidis et al. 95)
Fieldtree Interpolation-Based DOT
(Frank 83) Grid File (Ouksel 85) (Faloutsos/Rong 91)
T I I I I I I [I 1 I [I I | I I I I I I
1966 71 75 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 9 96

Figure: A Timeline of Indexes (From Multidimensional Access
Methods; Gaede, Gunther; ACM Surveys 1998)

Databases Background: Indexes

o

B+-Tree Indexes traditionally the most common in Relational Databases
— More suitable for use on hard disks

Today: log-structured merge trees considered superior
— Bétter use of memory and better for SSDs

Hash Indexes more widely used in distributed systems

Other types of indexes used primarily in specialized systems (e.g., GIS)

Drawbacks:
- Expensive updates
- Space requirements

Databases Background Materialized
Views

= Originally: "named” expressions

create view physics_fall 2009 as
select course.course_id, sec_id, building, room_number
from course, section
where course.course_id = section.course_id
and course.dept_name = "Physics’
and section.semester = "Fall’
and section.year = "2009’;

= Can be used in any query

select course_id
from physics_fall_ 2009
where building="Watson’;

Databases Background Materialized
Views

Can be pre-computed and stored =» materialized
Faster query performance, but must be updated on every insert to the base relations

item_name | color clothes_size | quantity

small
medium

Many other types of summaries common large

small

N

medium

Data cubes (multi-dimensional aggregates) . e | s

3 % 2 i medium
- Widely used in Bl and data viz tools : ite | large
small
4 . medium
Projections large
medium
Indexes can be considered pre-computed structures also tel | large
K medium
large
small
medium
large
small

6
2
4
3
3
2
3
0
4
6
0
1
0
1
3
0
2
2
6
6
4

Databases Background

Vertical partitioning, aka columnar storage

Very common in data warehouses today
— Alsoin data lakes ("Parquet” format)

Speeds up queries substantially
— Only retrieve data that's needed

Writes are more expensive
— Need to update many different blocks/files

Block 1 | 7369 ISMITHI CLERK | 7902 |17.f12f2000|

Block2 [7499 | ALLEN | sALEsMAN | 7698 | 20/02/2001 |

Bock3 | 7521 | warD | satesman | 76e8 | 22022001 |

Row Database stores row values together

EName Job Mgr HireDate

SMITH CLERK 7902 17/12/1980

ALLEN SALESMAN 7698 20/02/1981

WARD SALESMAN 7698 22/02/1981

JONES MANAGER 7839 2/04/1981

MARTIN SALESMAN 7698 28/09/1981

BLAKE MANAGER 7839 1/05/1981

CLARK MANAGER 7839 9/06/1981

Block 1 |

7369 | 7499 | 7s21 | 7566 | 7654

Block2 |

SMITH | ALLEN | WARD | JONES | MARTIN

Block 3 |

CLERK [SALESMAN | SALESMAN | MANAGER | SALESMAN

Column Database stores column values together

ewayog |eabon e e noke eoishyd 810)S-Moy

e Jnofe|easfyd acjsuwno) e e

Databases Background

Vertical partitioning, aka columnar storage

Very common in data warehouses today
— Alsoin data lakes ("Parquet” format)

Speeds up queries substantially
— Only retrieve data that's needed

Writes are more expensive
— Need to update many different blocks/files

Block 1 | 7369 ISMITHI CLERK | 7902 |17.f12f2000|

Block2 [7499 | ALLEN | sALEsMAN | 7698 | 20/02/2001 |

Bock3 | 7521 | warD | satesman | 76e8 | 22022001 |

Row Database stores row values together

EName Job Mgr HireDate

SMITH CLERK 7902 17/12/1980

ALLEN SALESMAN 7698 20/02/1981

WARD SALESMAN 7698 22/02/1981

JONES MANAGER 7839 2/04/1981

MARTIN SALESMAN 7698 28/09/1981

BLAKE MANAGER 7839 1/05/1981

CLARK MANAGER 7839 9/06/1981

Block 1 |

7369 | 7499 | 7s21 | 7566 | 7654

Block2 |

SMITH | ALLEN | WARD | JONES | MARTIN

Block 3 |

CLERK [SALESMAN | SALESMAN | MANAGER | SALESMAN

Column Database stores column values together

ewayog |eabon e e noke eoishyd 810)S-Moy

e Jnofe|easfyd acjsuwno) e e

Databases Background: Partitioning

————

Horizontal Partitioning, or Sharding
Exploit parallelism naturally, for both reads and writes

Coordination more involved -- require expensive “shuffles” to collect data

Choice of partitioning attribute/strategy has significant impact

Machine 1 Machine 1 can
Partitions of R (Not ' directly read R1, S1

different relations)
If it wants R2,
Machine 2 must read

it and send it to

Machine 1
R3 83 Machine 3

Motivation for AutoAdmin

* Physical data independence =» can change physical structures
without affecting users

= Older work

— Stonebraker (1974): Choosing indexes using a parametric model

- Finkelstein et al. (1988): Collect workload (SQL queries and frequencies)
and use to decide which indexes to build

= Big question

- How to decide whether a proposed “configuration” is good
= In general: any change to the physical structures/design

Evaluating Configurations

= Option 1: Create a cost model that can assign a “score” to a
configuration

- Too many complex interactions between memory/disk/CPU, and between
the operations (updates/queries)

= Option 2: Try it out
— Infeasible

= Option 3: Ask the “query optimizer”, already has a cost model
- Still need to built the relevant statistics ’

- Can be quite expensive

VLDB 1997 Paper

= Challenges
— Much more complex optimizers
— Indexes used in many more waysthan before
— Only option: involve the query optimizer

Key issues
How to support this architecturally
How to build the relevant statistics (that the optimizer needs) efficiently
How to handle the more complex indexes
How to do this at large scale, with big workloads

VLDB 1997 Paper

Physical Database Design Tool

Create Create statistics Define Optimize | Query Execution
hypothetical configuration query Plan
physical design

Database Server

Figure 1. “What-if’ analysis architecture for
physical database design.

VLDB 1997 Paper

———— s

» "Create Hypothetical Index” command to create a proposed index

= "Create Statistics” using sampling to reduce time

= An optimization mode that told the optimizer which indexes to
consider

- Otherwise would need to repeatedly drop/create indexes
- "Define Configuration” before invoking optimizer

» Heuristics beyond that to restrict the search space of candidate
indexes

- Use approximations while computing costs, prune aggressively

 Shipped as Index Tuning Wizard in MS SQL Server

Materialized Views and Partitioning -

e ——— e I ——— et = =

= Space of candidates much much
larger Coions
» Developed a more general
architecture to handle all such T

Candidate

d e C i S i O n S Physical Selection

Database * Database Server
Design Tool

Merging

= Many heuristics to prune down the :
search space and reduce the Enumeration
overall cost of tuning

Y

7 Shlpped aS Database Englne Figure2.SearchArchite-ctureofaPhysical
Tuning Advisor in SQL Server 2005 e

Follow-up Work

1. Use the optimizer to generate the candidates

— Instead of trying to guess based on the query structure

Single-table sub-plan Physical plan

|
|
|
|
|
: |
. . ! Access Path Generation Module
Find best indexes |
for request !

, . p—
|
|
i What-if |
| simulation T - Available Indexes
|
|
|

|
Instrumentation ! Original optimizer

Figure 2: Instrumenting the Query Optimizer.

Follow-up Work

Lightweight monitoring tool that alerts the DBA if a
significant tuning opportunity exists

Consider the “"workload” as a sequence and exploit patterns

4. Dynamic, online tuning

— Need to ensure no back and forth
o ngine

- DBAs traditionally wary of such tools

Figure 4. An architecture for online index tuning.

Other Self-Tuning Work

Statistics and histograms
- Important to choose the right set for the optimizer to be effective

Monitoring of Internal Progress or State
- e.g., query progress

Learning Optimizer (LEO) in DB2 '
- Keeps track of where the optimizer made biggest mistakes

Adaptive Query Processing
- Will cover later

Other Self-Tuning Work

Statistics and histograms
- Important to choose the right set for the optimizer to be effective

Monitoring of Internal Progress or State
- e.g., query progress

Learning Optimizer (LEO) in DB2 '
- Keeps track of where the optimizer made biggest mistakes

Adaptive Query Processing
- Will cover later

GMAP: A more radical approach to physical design

Future Directions

———— s

* Benchmarking/comparing different approach for self-tuning

= More lightweight approaches to do tuning

- e.g., partial indexes/materialized views, small changes to physical layout at a time

Multi-tenant systems
— Workload forecasting much harder

How to use ML, Control Theory, etc.

Some Questions

—

* How relevant are these types of techniques in modern DMS?
= Can the dependence on the optimizer be reduced?
= How much are we being held back by legacy decisions?

* How do'we move towards a truly autonomous, self-driving
DMS? |

* When and how often should the updates be done?

