Machine Learning for Data Management Systems

Learned Indexes

Amol Deshpande February 2, 2023

Outline

The Case for Learned Indexes
Follow-up Work
Discussion

Indexes as Prediction Models !

Biology	-	├ →	76766	Crick	Biology	72000	-	>
Comp. Sci.	-	}>	10101	Srinivasan	Comp. Sci.	65000	+	\leq
Elec. Eng.			45565	Katz	Comp. Sci.	75000		\leq
Finance			83821	Brandt	Comp. Sci.	92000		\leq
History	\backslash		98345	Kim	Elec. Eng.	80000		\leq
Music			12121	Wu	Finance	90000		\leq
Physics	$\left \right\rangle$		76543	Singh	Finance	80000		\leq
	\	$ \rangle \rightarrow$	32343	El Said	History	60000		\leq
			58583	Califieri	History	62000		\leq
			15151	Mozart	Music	40000		\leq
		\searrow	22222	Einstein	Physics	95000		\checkmark
			33465	Gold	Physics	87000		\checkmark

Basically a function that predicts the position with some error bounds (assuming sorted order, i.e., primary index)

Indexes as Prediction Models !

- Doesn't work as well for secondary indexes
 - Multiple positions per search key
 - Also, no tolerance for errors
 - But can do the prediction on the lowest layer
 - i.e., predict the leaf that contains the pointers to the data

Bitmap Indexes

Widely used in Data Warehouses

- Allow quickly finding tuples that satisfy a predicate/property
- Can be seen as a classification function
- Approximations through Bloomfilters

 Next class

				Ditiliar			
record number	ID	gender	income_level	m	10010	11	1come_level
0	76766	m	L1	f	01101	L1	10100
1	22222	f	L2			L2	01000
2	12121	f	L1			L3	00001
3	15151	m	Ι.4				
1		f				L4	00010
4	58583	1	L3			L5	00000

Ritmans for ander

Hash Indexes

Predict the "bucket" in which a key would fall Not tolerant to errors

Learned "range" indexes

Replace the prediction model with a ML model

Learned "range" indexes

Alternate view: We are trying to learn a CDF
 Given a key K, we want to know prob(a random value < K)
 CDF(K) * N gives us the position of the search key K

Another Example

Figure 1: Index structures map each lookup key to a *search* bound. This search bound must contain the "lower bound" of the key (i.e., the smallest key greater than or equal to the lookup key). The depicted search bound is valid for the lookup key 72 because the key 95 is in the bound. A search function, such as binary search, is used to locate the correct index within the search bound.

Figure 2: The cumulative distribution function (CDF) view of a sorted array.

Benchmarking Learned Indexes; Marcus et al.; PVLDB 2021

Learned "range" indexes

- Replace the prediction model with a ML model
- Should be a "monotone" model
 - i.e., if x > y, then f(x) >= f(y)
 - Otherwise hard to handle keys that don't exist in the data
- Other challenges/issues
 - B+-Trees don't require the leaf level nodes to be contiguous
 - Most indexes have bounded insert/delete/update costs
 - B+-Trees work well with caches
 - Top 2 levels often in the cache

A First Attempt

Use a single 2-layer NN on a 200M web-server log records

- 1250 predictions per second
 - Much slower than B+-Trees (about 300x slower)
- Some notes
 - Tensorflow not designed to run small models too much overhead
 - B-Trees do a really good job on small amounts of data
- Raw performance improvements in GPU likely not enough to make up the gap

Recursive Model Index

Use a hierarchy of models instead

 Can use different models in different places, including decision trees (i.e., B+-trees)

Recursive Model Index

Works much better than B+-Trees across several datasets using fairly simple models

– Linear, or 1-2 layer NNs (for the first stage)

		Map Data			Web Data			Log-Normal Data		
Туре	Config	Size (MB)	Lookup (ns)	Model (ns)	Size (MB)	Lookup (ns)	Model (ns)	Size (MB)	Lookup (ns)	Model (ns)
Btree	page size: 32	52.45 (4.00x)	274 (0.97x)	198 (72.3%)	51.93 (4.00x)	276 (0.94x)	201 (72.7%)	49.83 (4.00x)	274 (0.96x)	198 (72.1%)
	page size: 64	26.23 (2.00x)	277 (0.96x)	172 (62.0%)	25.97 (2.00x)	274 (0.95x)	171 (62.4%)	24.92 (2.00x)	274 (0.96x)	169 (61.7%)
	page size: 128	13.11 (1.00x)	265 (1.00x)	134 (50.8%)	12.98 (1.00x)	260 (1.00x)	132 (50.8%)	12.46 (1.00x)	263 (1.00x)	131 (50.0%)
	page size: 256	6.56 (0.50x)	267 (0.99x)	114 (42.7%)	6.49 (0.50x)	266 (0.98x)	114 (42.9%)	6.23 (0.50x)	271 (0.97x)	117 (43.2%)
	page size: 512	3.28 (0.25x)	286 (0.93x)	101 (35.3%)	3.25 (0.25x)	291 (0.89x)	100 (34.3%)	3.11 (0.25x)	293 (0.90x)	101 (34.5%)
Learned	2nd stage models: 10k	0.15 (0.01x)	98 (2.70x)	31 (31.6%)	0.15 (0.01x)	222 (1.17x)	29 (13.1%)	0.15 (0.01x)	178 (1.47x)	26 (14.6%)
Index	2nd stage models: 50k	0.76 (0.06x)	85 (3.11x)	39 (45.9%)	0.76 (0.06x)	162 (1.60x)	36 (22.2%)	0.76 (0.06x)	162 (1.62x)	35 (21.6%)
	2nd stage models: 100k	1.53 (0.12x)	82 (3.21x)	41 (50.2%)	1.53 (0.12x)	144 (1.81x)	39 (26.9%)	1.53 (0.12x)	152 (1.73x)	36 (23.7%)
	2nd stage models: 200k	3.05 (0.23x)	86 (3.08x)	50 (58.1%)	3.05 (0.24x)	126 (2.07x)	41 (32.5%)	3.05 (0.24x)	146 (1.79x)	40 (27.6%)

Learned Hash Index

Learn a hash function with the goal to minimize conflicts
 Less focus on this in the follow-up work

Figure 7: Traditional Hash-map vs Learned Hash-map

Outline

The Case for Learned Indexes
Follow-up Work

Discussion

Spline Interpolation

- CDF can be approximated using splines
 - i.e., a collection of linear segments
- How about:
 - Increase the page size for the B+-Tree
 - So many more pointers/data values in each page
 - Much smaller index
 - Use Interpolation within each page
 - Instead of binary search
- Results appear to match learned index
- Much discussion on the link

http://databasearchitects.blogspot.com/2017/12/the-case-for-btree-index-structures.html

RadixSpline: A Single-Pass Learned Index

- Faster learning in a read-only setting
- Steps:
 - Learn a linear spline over the data
 - Build a small index on top using first few bits of the search key
- Results:
 - Generally comparable latencies, but higher storage space for some datasets

Figure 1: A radix spline index and example lookup process. The r (here, 3) most significant bits b of the lookup key are used as an index into the radix table. Then, a binary search is performed on the spline points between the bth pointer and the b + 1th pointer.

ALEX: Updatable Learned Index

Goals:

- Inserts competitive with B+-Trees
- Lookups faster than B+-Trees or RMI
- Better storage space
- Data storage space (leaf level) comparable with dynamic B+Trees
- Key ideas:
 - Have gaps in the leaves for new data
 - Use "exponential search" at the leaves (instead of binary)
 - Allow individual nodes to shrink/grow as needed (only works in memory)

'20, June 14–19, 2020, Portla

Ding et al.; SIGMOD 2020

ALEX: Updatable Learned Index

Some details: Learning for Databases II.

- Leaves have arrays with gaps in between (i.e., not just at the end)
- Use a bitmap to skip over gaps
- Allow a node to have a mix of internal and leaf children

Figure 3: Internal nodes allow different resolutions in different parts of the key space [0,1).

And more...

- PGM-Index: Built in a bottom-up fashion, fully dynamic
 - Ferragina, Vinciguerra; PVLDB 2020
 - Piecewise linear regressions (instead of spline)

- Hist-tree: More similar to B+-Trees
 - Crotty; CIDR 2021
 - Followup experiments: works very well but requires a lot of storage

Benchmarking Learned Indexes

Method	Updates	Ordered	Type
PGM [13]	Yes	Yes	Learned
RS [18]	No	Yes	Learned
RMI [19]	No	Yes	Learned
BTree [7]	Yes	Yes	Tree
IBTree [15]	Yes	Yes	Tree
FAST $[16]$	No	Yes	Tree
ART [20]	Yes	Yes	Trie
FST [33]	Yes	Yes	Trie
Wormhole [31]	Yes	Yes	Hybrid hash/trie
CuckooMap [6]	Yes	No	Hash
RobinHash [3]	Yes	No	Hash
RBS	No	Yes	Lookup table
BS	No	Yes	Binary search

 Table 1: Search techniques evaluated

Figure 6: CDF plots of each testing dataset. The face dataset contains ≈ 100 large outlier keys, not plotted.

Marcus et al.; PVLDB 2021

Benchmarking Learned Indexes

Figure 7: Performance and size tradeoffs provided by several index structures for four different datasets. The black horizontal line represents the performance of binary search (which has a size of zero). Extended plots with all techniques are available here: https://rm.cab/lis1

Marcus et al.; PVLDB 2021

Outline

The Case for Learned Indexes
Follow-up Work
Discussion

Some Thoughts

Relatively simple models being used by the recent work
Are these helping with autotuning, simplicity, etc.