Machine Learning for
’Data Management Systems

Learned Indexes

= —_ - e LS

Amol Deshpande
February 2, 2023

Outline

e ————

* The Case f'orLear‘ned Indexes
* Follow-up Work |

= Discussion

Indexes as Prediction Models !

B[]
Comp. S|
Flec Eng | |
“Fnance |
R

Mus1c

i

pos - 0 pos + pagezise

Basically a function that predicts the position
with some error bounds
(assuming sorted order, i.e. prlmary index)

76766 [Crick [Biology | 73000 |
10101 | Srinivasan_| Comp. Sei. | 65000 | 1
4553 |Katz | Comp.Sci. | 75000 |

Indexes as Prediction Models |

—

* Doesn’t work as well for
secondary indexes
— Multiple positions per search key
— Also, no tolerance for errors

- But can do the prediction on the
lowest layer

" i.e., predict the leaf that contains
the pointers to the data

inanc
76766 72000
53821 92000
98345 30000

Bitmap Indexes

= Widely used in Data Warehouses

— Allow quickly finding tuples that satisfy a predicate/property

= Can be seen as a c_IaSs’ification function

= Approximations through Bloomfilters
— Next class

Bitmaps for gender

Bitmaps for
income_level

10100
01000
00001

00010

Hash Indexes

« Predict the “bucket” in which a key would fall

= Not tolerant to errors

———

hash
keys function

o0 [

. 521-8976
John Smith
02 | 521-1234
: : 03
Lisa Smith

)
Sandra Dee

 T— » 14| 521-9655
s

Learned “range” indexes

— e

» Replace the prediction model W|th a I\/IL model

(a) B-Tree Index (b) Learned Index
Key Key

y v

Model
BTree (e g., NN)

[HDIMUIEEM

pos - pos + pagezise poOs - min_err poOs + max_er

Learned “range” 1ndexes

- Alternate view: We are trying to Iearn a CDF

- Given a key K, we want to know prob(a random value < K)
— CDF(K) * N gives us the position of the search key K

Key
Figure 2: Indexes as CDFs

Another Example

Data

. A query for a particular key (sorted)

is made.

Lookup Key

Index
Structure

An index structure maps the lookup
key to a search bound, which must
contain the correct index.

. Given a valid search
bound, a search
function (e.g., binary
search) is used to
locate the correct
index within the search
bound.

Search bound

O | 01|01 (=
HEREREINEERED

Figure 1: Index structures map each lookup key to a search
bound. This search bound must contain the “lower bound”
of the key (i.e., the smallest key greater than or equal to
the lookup key). The depicted search bound is valid for the
lookup key 72 because the key 95 is in the bound. A search
function, such as binary search, is used to locate the correct
index within the search bound.

Benchmarking Learned Indexes; Marcus et al.; PVLDB 2021

Data Relative position

9
%8
99

Figure 2: The cumulative distribution function (CDF) view

of a sorted array.

CDF Function

=
o

—— Approximation
CDF

e o ©o o9
N o0 ©

CDF Output (relative position)

o
o

20 40 60
CDF Input (key)

Learned “range” 1ndexes

» Replace the prediction model W|th a I\/IL model

« Should be a “monotone” model
- i.e., if x>y, then f(x) >= f(y)
- — Otherwise hard to handle keys that don't exist in the data

» Other challenges/issues
- B+-Trees don't require the leaf level nodes to be contiguous
— Most indexes have bounded insert/delete/update costs

— B+-Trees work well with caches
* Top 2 levels often in the cache

A First Attempt

* Use a smgle 2-layer NN on a 200M web-server log records

» 1250 predictions per second
- Much slower than B+-Trees (about 300x slower)

* Some notes

- Tensorflow not designed to run small models — too much overhead
— B-Trees do a really good job on small amounts of data

» Raw performance improvements in GPU Ilkely not enough to make
up the gap

Recursive Model Index

» Use a hierarchy of models instead

» Can use different models in different places, including decision
trees (i.e., B+-trees)

Position

Stage 1

N
)
=10)
<
-—
n
o
)
=10)
ay]
-—
9p]

Figure 3: Staged models

Recursive Model Index

N s

——— = - —

 Works much better than B+-Trees across several datasets using
fairly simple models
- Linear, or 1-2 layer NNs (for the first stage)

Btree 201 (72.7%)|49.83 (4.00x)|274 (0.96x)| 198 (72.1%)
171 (62.4%)| 24.92 (2.00x)]274 (0.96x)| 169 (61.7%)
132 (50.8%)f 12.46 (1.00)]263 (1.00x)] 131 (50.0%)
6.49 (0.50x)] 266 (0.98x)] 114 (42.9%)| 6.23 (0.50x)|271 (0.97x
101 (35.3%) 293 (0.90x
)) 1 :

)

)
Learned 78 (1.47x)
Index 0.76 (0.06x)] 162 (1.60x)| 36 (22.2%)] 0.76 (0.06x)| 162 (1.62x)| 35 (21.6%)
41 (50.2%)| 153 (0.12x)| 144 (1.81x)| 39 (26.9%)| 1.53 (0.12)]152 (1.73x)| 36 (23.7%)
2nd stage models: 200k 50 (58.1%)] 3.05 (0.24x)] 126 (2.07)] 41 (32.5%)] 3.05 (0.24x)|146 (1.79x)] 40 (27.6%)

Learned Hash Index

— e

= Learn a hash functlon W|th the goal to minimize conflicts
— Less focus on this in the follow-up work

(a) Traditional Hash-Map (b) Learned Hash-Map

Hash-
Function

Figure 7: Traditional Hash-map vs Learned Hash-map

. gt

Outline

e ————

« The Case for Learned Indexes
* Follow-up Work '

= Discussion

Spline Interpolation

CDF can be approximated using splines
— i.e., a collection of linear segments

How about:

— Increase the page size for the B+-Tree

= So many more pointers/data values in each page
= Much smaller index

— Use Interpolation within each page
» Instead of binary search

—
@
c
—
—
=
@
(=]
—
@
o
@
=
=
o
=
=
o

Results appear to match learned index

Much discussion on the link

Grain size (psi)

http://databasearchitects.blogspot.com/2017/12/the-case-for-b-
tree-index-structures.html

http://databasearchitects.blogspot.com/2017/12/the-case-for-b-tree-index-structures.html
http://databasearchitects.blogspot.com/2017/12/the-case-for-b-tree-index-structures.html

—

— S

RadixSpline: A Single-Pass Learned Index

= Faster learning in a read-only
setting

= Steps:
— Learn a linear spline over the data
- — Build a small index on top using first few bits

of the search key
= Results:

— Generally comparable latencies, but
higher storage space for some
datasets

Kipf et al.; aiDM 2020 (SIGMOD Workshop)

47183,
1011 1000 0100 1111,

Lookup key:

D Radix table

— Pointer

O Spline point

Figure 1: A radix spline index and example lookup
process. The r (here, 3) most significant bits b of the
lookup key are used as an index into the radix ta-
ble. Then, a binary search is performed on the spline
points between the bth pointer and the b + 1th pointer.

ALEX: Updatable Learned Index

= Goals:
- Inserts competitive with B+-Trees
— Lookups faster than B+-Trees or RMI Legend
— Better storage space
- — Data storage space (leaf level) Adaptive
comparable with dynamic B+Trees
« Key ideas: ——
— Have gaps in the leaves for new data 7 Gap

— Use “exponential search” at the leaves
(instead of binary)

exponential

— Allow individual nodes to shrink/grow search

as needed (only works in memory) Figure 2: ALEX Design

Ding et al.; SIGMOD 2020

ALEX: Updatable Learned Index

= Some details:

— Leaves have arrays with gaps in between (i.e.,
not just at the end)

— Use a bitmap to skip over gaps

- Allow a node to have a mix of internal and leaf
children

Ding et al.; SIGMOD 2020

keys € [0, 1)
CDF at Internal Node A
1.0

Internal
Node

0 1/4 1/2 3/4 1
Key

Data Node Data Node

Figure 3: Internal nodes allow different resolutions in
different parts of the key space [0,1).

And more...

— S

PGM Level 1 PGM Level 2

* PGM-Index: Built in a bottom-up
fashion, fully dynamic
— Ferragina, Vinciguerra; PVLDB 2020

2
56 } Key: 1 Model: f,
57 Key: 56 Model: f 56
. 4 2 . Key: 56 Model: f,
5

Key: 95 Model: f,

— Piecewise linear regressions (instead
of spline)

* Hist-tree: More similar to B+-Trees

- Crotty; CIDR 2021

— Followup experiments: works very well but
requires a lot of storage

[s[2]s]e] [s]z]o]e] [sfufe[r] [s]a]7]e] [s]w]s]s]

(b) Hist-Tree

Benchmarking Learned Indexes

Method
PGM [13]
RS [18]
RMI [19]
BTree [7]
IBTree [15]
FAST [16]

ART [20]

FST [33]

Wormbhole [31]
CuckooMap [6]
RobinHash [3]

RBS
BS

Marcus et al.; PVLDB 2021

Updates Ordered Type

Yes Yes Learned
No Yes Learned
No Yes Learned

Yes Yes Tree
Yes Yes Tree
No Yes Tree

Yes Yes Trie
Yes Yes Trie

Yes Yes Hybrid hash/trie
Yes No Hash
Yes No Hash

No Yes Lookup table
No Yes Binary search

Search techniques evaluated

— e —

1e8 amzn

ez e

wiki

.

le8

e

02 04 06 08 10 00 02 04 06 08 1.0
Normalized Key Normalized Key

Figure 6: CDF plots of each testing dataset. The face
dataset contains ~ 100 large outlier keys, not plotted.

Benchmarking Learned Indexes

amzn face

)

(s
o
o

L e e R e R
\ 14 .
! |
ol
.

AR R
| | e

-
- X
-

.
“a e

‘t

ce
S

‘l
b’

1074 10° 107* 10" 1074 10° 1074 10°
Size (MB) Size (MB) Size (MB) Size (MB)

—
c
Y
o
Part
Q
3
>
o
=
-d

‘-

Figure 7: Performance and saze tradeoits provided by several index structures for four different datasets. The black horizontal

line represents the performance of binary search (which has a size of zero). Extended plots with all techniques are available
here: https://ra.cab/lisl

Marcus et al.; PVLDB 2021

Outline

« The Case for Learned Indexes
* Follow-up Work |

* Discussion

Yolii[< Thoughts

e = — E— — S e

 Relatively S|mple models being used by the recent work

= Are these helping with autotunlng, simplicity, etc.

