
Machine Learning for
Data Management Systems

Learned Indexes
Amol Deshpande
February 2, 2023

Outline
▪ The Case for Learned Indexes

▪ Follow-up Work

▪ Discussion

Indexes as Prediction Models !
cost to execute a neural net or other ML models might actu-
ally be negligible in the future. For instance, both Nvidia and
Google’s TPUs are already able to perform thousands if not
tens of thousands of neural net operations in a single cycle [3].
Furthermore, it was stated that GPUs will improve 1000× in
performance by 2025, whereas Moore’s law for CPUs is essen-
tially dead [5]. By replacing branch-heavy index structures
with neural networks, databases and other systems can ben-
e!t from these hardware trends. While we see the future of
learned index structures on specialized hardware, like TPUs,
this paper focuses entirely on CPUs and surprisingly shows
that we can achieve signi!cant advantages even in this case.

It is important to note that we do not argue to completely re-
place traditional index structures with learned indexes. Rather,
the main contribution of this paper is to outline and
evaluate the potential of a novel approach to build in-
dexes, which complements existing work and, arguably,
opens up an entirely new research direction for a decades-
old!eld.This is based on the key observation thatmanydata
structures can be decomposed into a learnedmodel and
an auxiliary structure to provide the same semantic guaran-
tees. The potential power of this approach comes from the fact
that continuous functions, describing the data distribu-
tion, can be used to build more e"cient data structures
or algorithms. We empirically get very promising results
when evaluating our approach on synthetic and real-world
datasets for read-only analytical workloads. However, many
open challenges still remain, such as how to handle write-
heavy workloads, and we outline many possible directions
for future work. Furthermore, we believe that we can use the
same principle to replace other components and operations
commonly used in (database) systems. If successful, the core
idea of deeply embedding learned models into algorithms and
data structures could lead to a radical departure from the way
systems are currently developed.

The remainder of this paper is outlined as follows: In the
next two sections we introduce the general idea of learned
indexes using B-Trees as an example. In Section 4 we extend
this idea to Hash-maps and in Section 5 to Bloom !lters. All
sections contain a separate evaluation. Finally in Section 6 we
discuss related work and conclude in Section 7.

2 RANGE INDEX
Range index structure, like B-Trees, are already models: given
a key, they “predict” the location of a value within a key-
sorted set. To see this, consider a B-Tree index in an analytics
in-memory database (i.e., read-only) over the sorted primary
key column as shown in Figure 1(a). In this case, the B-Tree
provides a mapping from a look-up key to a position inside
the sorted array of records with the guarantee that the key
of the record at that position is the !rst key equal or higher
than the look-up key. The data has to be sorted to allow for
e"cient range requests. This same general concept also ap-
plies to secondary indexes where the data would be the list of

BTree

Key

pos

pos - 0 pos + pagezise

……

pos

pos - min_err pos + max_er

……

Model
(e.g., NN)

(b) Learned Index(a) B-Tree Index
Key

Figure 1: Why B-Trees are models

<key,record_pointer> pairs with the key being the indexed
value and the pointer a reference to the record.1

For e"ciency reasons it is common not to index every sin-
gle key of the sorted records, rather only the key of every
n-th record, i.e., the !rst key of a page. Here we only assume
!xed-length records and logical paging over a continuous
memory region, i.e., a single array, not physical pages which
are located in di#erent memory regions (physical pages and
variable length records are discussed in Appendix D.2). In-
dexing only the !rst key of every page helps to signi!cantly
reduce the number of keys the index has to store without any
signi!cant performance penalty. Thus, the B-Tree is a model,
or in ML terminology, a regression tree: it maps a key to a
position with a min- and max-error (a min-error of 0 and a
max-error of the page-size), with a guarantee that the key
can be found in that region if it exists. Consequently, we can
replace the index with other types of ML models, including
neural nets, as long as they are also able to provide similar
strong guarantees about the min- and max-error.

At !rst sight it may seem hard to provide the same guar-
antees with other types of ML models, but it is actually sur-
prisingly simple. First, the B-Tree only provides the strong
min- and max-error guarantee over the stored keys, not for all
possible keys. For new data, B-Trees need to be re-balanced,
or in machine learning terminology re-trained, to still be able
to provide the same error guarantees. That is, for monotonic
models the only thing we need to do is to execute the model for
every key and remember the worst over- and under-prediction
of a position to calculate the min- and max-error.2 Second, and
more importantly, the strong error bounds are not even needed.
The data has to be sorted anyway to support range requests,
so any error is easily corrected by a local search around the
prediction (e.g., using exponential search) and thus, even al-
lows for non-monotonic models. Consequently, we are able
to replace B-Trees with any other type of regression model,
including linear regression or neural nets (see Figure 1(b)).

Now, there are other technical challenges that we need to
address before we can replace B-Trees with learned indexes.
For instance, B-Trees have a bounded cost for inserts and
1Note, that against some de!nitions for secondary indexes we do not consider
the <key,record_pointer> pairs as part of the index; rather for secondary
index the data are the <key,record_pointer> pairs. This is similar to how
indexes are implemented in key value stores [12, 21] or how B-Trees on modern
hardware are designed [44].
2The model has to be monotonic to also guarantee the min- and max-error for
look-up keys, which do not exist in the stored set.

Research 6: Storage & Indexing SIGMOD’18, June 10-15, 2018, Houston, TX, USA

490

Basically a function that predicts the position
with some error bounds
(assuming sorted order, i.e., primary index)

628 Chapter 14 Indexing

Biology
Comp. Sci.
Elec. Eng.
Finance
History
Music
Physics

76766 Crick

76543 Singh
32343 El Said
58583 Califieri
15151 Mozart
22222 Einstein
33465 Gold

10101 Srinivasan
45565 Katz
83821 Brandt
98345 Kim
12121 Wu

Biology

Physics

Finance
History
History
Music

Physics

Comp. Sci.
Comp. Sci.
Comp. Sci.
Elec. Eng.
Finance

72000

80000
60000
62000
40000
95000
87000

65000
75000
92000
80000
90000

Figure 14.4 Dense index with search key dept name.

block. The reason this design is a good trade-off is that the dominant cost in processing a
database request is the time that it takes to bring a block from disk into main memory.
Once we have brought in the block, the time to scan the entire block is negligible.
Using this sparse index, we locate the block containing the record that we are seeking.
Thus, unless the record is on an overflow block (see Section 13.3.2), we minimize block
accesses while keeping the size of the index (and thus our space overhead) as small as
possible.

For the preceding technique to be fully general, we must consider the case where
records for one search-key value occupy several blocks. It is easy to modify our scheme
to handle this situation.

14.2.2 Multilevel Indices

Suppose we build a dense index on a relation with 1,000,000 tuples. Index entries are
smaller than data records, so let us assume that 100 index entries fit on a 4-kilobyte
block. Thus, our index occupies 10,000 blocks. If the relation instead had 100,000,000
tuples, the index would instead occupy 1,000,000 blocks, or 4 gigabytes of space. Such
large indices are stored as sequential files on disk.

If an index is small enough to be kept entirely in main memory, the search time
to find an entry is low. However, if the index is so large that not all of it can be kept
in memory, index blocks must be fetched from disk when required. (Even if an index
is smaller than the main memory of a computer, main memory is also required for a
number of other tasks, so it may not be possible to keep the entire index in memory.)
The search for an entry in the index then requires several disk-block reads.

Binary search can be used on the index file to locate an entry, but the search still
has a large cost. If the index would occupy b blocks, binary search requires as many as
⌈log2(b)⌉ blocks to be read. (⌈x⌉ denotes the least integer that is greater than or equal
to x; that is, we round upward.) Note that the blocks that are read are not adjacent

Indexes as Prediction Models !
▪ Doesn’t work as well for

secondary indexes
– Multiple positions per search key
– Also, no tolerance for errors
– But can do the prediction on the

lowest layer
▪ i.e., predict the leaf that contains

the pointers to the data

636 Chapter 14 Indexing

Gold Katz Kim Mozart Singh Srinivasan Wu

Internal nodes

Root node

Leaf nodes

Einstein

Einstein El Said

Gold

Mozart

Srinivasan

Srinivasan Comp. Sci. 65000
Wu Finance 90000
Mozart Music 40000
Einstein Physics 95000
El Said History 80000
Gold Physics 87000
Katz Comp. Sci. 75000
Califieri History 60000
Singh Finance 80000
Crick Biology 72000
Brandt Comp. Sci. 92000

15151

10101

Brandt Califieri Crick

12121

22222
32343
33456
45565
58583
76543
76766
83821
98345 Kim Elec. Eng. 80000

Figure 14.9 B+-tree for instructor file (n = 4).

Let us consider a node containing m pointers (m ≤ n). For i = 2, 3,… , m − 1,
pointer Pi points to the subtree that contains search-key values less than Ki and greater
than or equal to Ki− 1. Pointer Pm points to the part of the subtree that contains those
key values greater than or equal to Km− 1, and pointer P1 points to the part of the subtree
that contains those search-key values less than K1.

Unlike other nonleaf nodes, the root node can hold fewer than ⌈n∕2⌉ pointers;
however, it must hold at least two pointers, unless the tree consists of only one node. It
is always possible to construct a B+-tree, for any n, that satisfies the preceding require-
ments.

Figure 14.9 shows a complete B+-tree for the instructor file (with n = 4). We have
omitted null pointers for simplicity; any pointer field in the figure that does not have
an arrow is understood to have a null value.

Figure 14.10 shows another B+-tree for the instructor file, this time with n = 6.
Observe that the height of this tree is less than that of the previous tree, which had
n = 4.

Brandt CrickCalifieri Einstein El Said Gold Katz Kim Mozart Singh Srinivasan Wu

El Said Mozart

Figure 14.10 B+-tree for instructor file with n = 6.

Bitmap Indexes
▪ Widely used in Data Warehouses
– Allow quickly finding tuples that satisfy a predicate/property

▪ Can be seen as a classification function

▪ Approximations through Bloomfilters
– Next class

ID income_levelgender

76766

22222

12121

15151

58583

m

m

f

f

f

L1

L1

L2

L4

L3

record
number

1

0

2

3

4

m

f

Bitmaps for gender

10010

01101

Bitmaps for
income_level

L1

L2

L3

L4

L5

10100

01000

00001

00010

00000

Hash Indexes
▪ Predict the “bucket” in which a key would fall

▪ Not tolerant to errors

Learned “range” indexes
▪ Replace the prediction model with a ML model

cost to execute a neural net or other ML models might actu-
ally be negligible in the future. For instance, both Nvidia and
Google’s TPUs are already able to perform thousands if not
tens of thousands of neural net operations in a single cycle [3].
Furthermore, it was stated that GPUs will improve 1000× in
performance by 2025, whereas Moore’s law for CPUs is essen-
tially dead [5]. By replacing branch-heavy index structures
with neural networks, databases and other systems can ben-
e!t from these hardware trends. While we see the future of
learned index structures on specialized hardware, like TPUs,
this paper focuses entirely on CPUs and surprisingly shows
that we can achieve signi!cant advantages even in this case.

It is important to note that we do not argue to completely re-
place traditional index structures with learned indexes. Rather,
the main contribution of this paper is to outline and
evaluate the potential of a novel approach to build in-
dexes, which complements existing work and, arguably,
opens up an entirely new research direction for a decades-
old!eld.This is based on the key observation thatmanydata
structures can be decomposed into a learnedmodel and
an auxiliary structure to provide the same semantic guaran-
tees. The potential power of this approach comes from the fact
that continuous functions, describing the data distribu-
tion, can be used to build more e"cient data structures
or algorithms. We empirically get very promising results
when evaluating our approach on synthetic and real-world
datasets for read-only analytical workloads. However, many
open challenges still remain, such as how to handle write-
heavy workloads, and we outline many possible directions
for future work. Furthermore, we believe that we can use the
same principle to replace other components and operations
commonly used in (database) systems. If successful, the core
idea of deeply embedding learned models into algorithms and
data structures could lead to a radical departure from the way
systems are currently developed.

The remainder of this paper is outlined as follows: In the
next two sections we introduce the general idea of learned
indexes using B-Trees as an example. In Section 4 we extend
this idea to Hash-maps and in Section 5 to Bloom !lters. All
sections contain a separate evaluation. Finally in Section 6 we
discuss related work and conclude in Section 7.

2 RANGE INDEX
Range index structure, like B-Trees, are already models: given
a key, they “predict” the location of a value within a key-
sorted set. To see this, consider a B-Tree index in an analytics
in-memory database (i.e., read-only) over the sorted primary
key column as shown in Figure 1(a). In this case, the B-Tree
provides a mapping from a look-up key to a position inside
the sorted array of records with the guarantee that the key
of the record at that position is the !rst key equal or higher
than the look-up key. The data has to be sorted to allow for
e"cient range requests. This same general concept also ap-
plies to secondary indexes where the data would be the list of

BTree

Key

pos

pos - 0 pos + pagezise

……

pos

pos - min_err pos + max_er

……

Model
(e.g., NN)

(b) Learned Index(a) B-Tree Index
Key

Figure 1: Why B-Trees are models

<key,record_pointer> pairs with the key being the indexed
value and the pointer a reference to the record.1

For e"ciency reasons it is common not to index every sin-
gle key of the sorted records, rather only the key of every
n-th record, i.e., the !rst key of a page. Here we only assume
!xed-length records and logical paging over a continuous
memory region, i.e., a single array, not physical pages which
are located in di#erent memory regions (physical pages and
variable length records are discussed in Appendix D.2). In-
dexing only the !rst key of every page helps to signi!cantly
reduce the number of keys the index has to store without any
signi!cant performance penalty. Thus, the B-Tree is a model,
or in ML terminology, a regression tree: it maps a key to a
position with a min- and max-error (a min-error of 0 and a
max-error of the page-size), with a guarantee that the key
can be found in that region if it exists. Consequently, we can
replace the index with other types of ML models, including
neural nets, as long as they are also able to provide similar
strong guarantees about the min- and max-error.

At !rst sight it may seem hard to provide the same guar-
antees with other types of ML models, but it is actually sur-
prisingly simple. First, the B-Tree only provides the strong
min- and max-error guarantee over the stored keys, not for all
possible keys. For new data, B-Trees need to be re-balanced,
or in machine learning terminology re-trained, to still be able
to provide the same error guarantees. That is, for monotonic
models the only thing we need to do is to execute the model for
every key and remember the worst over- and under-prediction
of a position to calculate the min- and max-error.2 Second, and
more importantly, the strong error bounds are not even needed.
The data has to be sorted anyway to support range requests,
so any error is easily corrected by a local search around the
prediction (e.g., using exponential search) and thus, even al-
lows for non-monotonic models. Consequently, we are able
to replace B-Trees with any other type of regression model,
including linear regression or neural nets (see Figure 1(b)).

Now, there are other technical challenges that we need to
address before we can replace B-Trees with learned indexes.
For instance, B-Trees have a bounded cost for inserts and
1Note, that against some de!nitions for secondary indexes we do not consider
the <key,record_pointer> pairs as part of the index; rather for secondary
index the data are the <key,record_pointer> pairs. This is similar to how
indexes are implemented in key value stores [12, 21] or how B-Trees on modern
hardware are designed [44].
2The model has to be monotonic to also guarantee the min- and max-error for
look-up keys, which do not exist in the stored set.

Research 6: Storage & Indexing SIGMOD’18, June 10-15, 2018, Houston, TX, USA

490

Learned “range” indexes
▪ Alternate view: We are trying to learn a CDF
– Given a key K, we want to know prob(a random value < K)
– CDF(K) * N gives us the position of the search key K

1PT

,FZ
Figure 2: Indexes as CDFs

later in this paper. Fourth, there is a long history of research
on how closely theoretical CDFs approximate empirical CDFs
that gives a foothold to theoretically understand the bene!ts
of this approach [28]. We give a high-level theoretical analysis
of how well our approach scales in Appendix A.
2.3 A First, Naïve Learned Index
To better understand the requirements to replace B-Trees
through learned models, we used 200M web-server log records
with the goal of building a secondary index over the times-
tamps using Tensor"ow [9]. We trained a two-layer fully-
connected neural network with 32 neurons per layer using
ReLU activation functions; the timestamps are the input fea-
tures and the positions in the sorted array are the labels. After-
wards we measured the look-up time for a randomly selected
key (averaged over several runs disregarding the !rst numbers)
with Tensor"ow and Python as the front-end.

In this setting we achieved ≈ 1250 predictions per second,
i.e., it takes ≈ 80, 000 nano-seconds (ns) to execute the model
with Tensor"ow, without the search time (the time to !nd the
actual record from the predicted position). As a comparison
point, a B-Tree traversal over the same data takes ≈ 300ns and
binary search over the entire data roughly ≈ 900ns . With a
closer look, we !nd our naïve approach is limited in a few key
ways: (1) Tensor"ow was designed to e#ciently run larger
models, not small models, and thus, has a signi!cant invocation
overhead, especially with Python as the front-end. (2) B-Trees,
or decision trees in general, are really good in over!tting the
data with a few operations as they recursively divide the space
using simple if-statements. In contrast, other models can be
signi!cantlymore e#cient to approximate the general shape of
a CDF, but have problems being accurate at the individual data
instance level. To see this, consider again Figure 2. The !gure
demonstrates, that from a top-level view, the CDF function
appears very smooth and regular. However, if one zooms in
to the individual records, more and more irregularities show;
a well known statistical e$ect. Thus models like neural nets,
polynomial regression, etc. might be more CPU and space
e#cient to narrow down the position for an item from the
entire dataset to a region of thousands, but a single neural net
usually requires signi!cantly more space and CPU time for the
“last mile” to reduce the error further down from thousands
to hundreds. (3) B-Trees are extremely cache- and operation-
e#cient as they keep the top nodes always in cache and access
other pages if needed. In contrast, standard neural nets require
all weights to compute a prediction, which has a high cost in
the number of multiplications.

3 THE RM-INDEX
In order to overcome the challenges and explore the potential
of models as index replacements or optimizations, we devel-
oped the learning index framework (LIF), recursive-model
indexes (RMI), and standard-error-based search strategies. We
primarily focus on simple, fully-connected neural nets because
of their simplicity and "exibility, but we believe other types
of models may provide additional bene!ts.

3.1 The Learning Index Framework (LIF)
The LIF can be regarded as an index synthesis system; given
an index speci!cation, LIF generates di$erent index con!gu-
rations, optimizes them, and tests them automatically. While
LIF can learn simple models on-the-"y (e.g., linear regression
models), it relies on Tensor"ow for more complex models
(e.g., NN). However, it never uses Tensor"ow at inference.
Rather, given a trained Tensor"ow model, LIF automatically
extracts all weights from the model and generates e#cient
index structures in C++ based on the model speci!cation. Our
code-generation is particularly designed for small models and
removes all unnecessary overhead and instrumentation that
Tensor"ow has to manage the larger models. Here we leverage
ideas from [25], which already showed how to avoid unnec-
essary overhead from the Spark-runtime. As a result, we are
able to execute simple models on the order of 30 nano-seconds.
However, it should be pointed out that LIF is still an experi-
mental framework and is instrumentalized to quickly evaluate
di$erent index con!gurations (e.g., ML models, page-sizes,
search strategies, etc.), which introduces additional overhead
in form of additional counters, virtual function calls, etc. Also
besides the vectorization done by the compiler, we do not make
use of special SIMD intrinisics. While these ine#ciencies do
not matter in our evaluation as we ensure a fair compari-
son by always using our framework, for a production setting
or when comparing the reported performance numbers with
other implementations, these ine#ciencies should be taking
into account/be avoided.

3.2 The Recursive Model Index
As outlined in Section 2.3 one of the key challenges of building
alternative learned models to replace B-Trees is the accuracy
for last-mile search. For example, reducing the prediction error
to the order of hundreds from 100M records using a single
model is often di#cult. At the same time, reducing the error
to 10k from 100M, e.g., a precision gain of 100 ∗ 100 = 10000 to
replace the !rst 2 layers of a B-Tree through a model, is much
easier to achieve even with simple models. Similarly, reducing
the error from 10k to 100 is a simpler problem as the model
can focus only on a subset of the data.

Based on that observation and inspired by the mixture of
experts work [62], we propose the recursive regression model
(see Figure 3). That is, we build a hierarchy of models, where
at each stage the model takes the key as an input and based
on it picks another model, until the !nal stage predicts the
position. More formally, for our model f (x) where x is the key
and y ∈ [0,N) the position, we assume at stage ! there are

Research 6: Storage & Indexing SIGMOD’18, June 10-15, 2018, Houston, TX, USA

492

Another Example

Lookup Key

Index
Structure

1

3

9

12

56

57

58

95

98

99

Data
 (sorted)

(e.g., 72)

Search bound

1
A query for a particular key
is made.

2 An index structure maps the lookup
key to a search bound, which must
contain the correct index.

3 Given a valid search
bound, a search
function (e.g., binary
search) is used to
locate the correct
index within the search
bound.

Figure 1: Index structures map each lookup key to a search
bound. This search bound must contain the “lower bound”
of the key (i.e., the smallest key greater than or equal to
the lookup key). The depicted search bound is valid for the
lookup key 72 because the key 95 is in the bound. A search
function, such as binary search, is used to locate the correct
index within the search bound.

index structures use branching e�ciently.
Third, we analyze the performance of a wide range of in-

dex structures in the presence of memory fences, cold caches,
and multi-threaded environments, to test their behavior un-
der more realistic settings. In all scenarios, we found that
learned approaches perform surprisingly well.

However, our study is not without its limitations. We fo-
cused only on read-only workloads, and we tested each index
structure in isolation (e.g., a lookup loop, not with integra-
tion into any broader application). While this certainly does
not cover all potential use cases, in-memory performance is
increasingly important, and many write-heavy DBMS archi-
tectures are also moving towards immutable read-only data-
structures (for example, see LSM-trees in RocksDB [4,21]).
Hence, we believe our benchmark can still guide the design
of many systems to come and, more importantly, serve as
a foundation to develop benchmarks for mixed read/write
workloads and the next generation of learned index struc-
tures which supports writes [11, 13,14].

2. FORMULATION & DEFINITIONS

As depicted in Figure 1, we define an index structure I

over a zero-indexed sorted array D as a mapping between
an integer lookup key x 2 Z and a search bound (lo, hi) 2
(Z+ ⇥ Z+), where Z+ is the positive integers and zero:

I : Z ! (Z+ ⇥ Z+)

We do not consider indexes over unsorted data, nor do we
consider non-integer keys. We assume that data is stored in
a way supporting fast random access (e.g., an array).

Search bounds are indexes into D. A valid index structure
maps any possible lookup key x to a bound that contains
the “lower bound” of x: the smallest key in D that is greater
than or equal to x. Formally, we define the lower bound of
a key x, LB(x), as:

LB(x) = i $ [Di � x ^ ¬9j(j < i ^Dj � x)]

As a special case, we define the lower bound of any key
greater than or equal to the largest key in D as one more
than the size of D: LB(maxD) = |D|. Our definition of
“lower bound” corresponds to the C++ standard [2].

Figure 2: The cumulative distribution function (CDF) view
of a sorted array.

We say that an index structure is valid if and only if it
produces search bounds that contain the lower bound for
every possible lookup key.

8x 2 Z [I(x) = (lo, hi) ! Dlo LB(x) Dhi]

Intuitively, this view of index structures corresponds to
an approximate index, an index that returns a search range
instead of the exact position of a key. We are not the first
to note that both traditional structures like B-Trees and
learned index structures can be viewed in this way [8, 19].
Given a valid index, the actual index of the lower bound

for a lookup key is located via a “last mile” search (e.g.,
binary search). This last mile search only needs to examine
the keys within the provided search bound (e.g., Figure 1).

2.1 Approximating the CDF

Learned index structures use machine learning techniques
ranging from deep neural networks to simple regression in
order to model the cumulative distribution function, or CDF,
of a sorted array [19]. Here, we use the term CDF to mean
the function mapping keys to their relative position in an
array. This is strongly connected to the traditional interpre-
tation of the CDF from statistics: the CDF of a particular
key x is the proportion of keys less than x. Figure 2 shows
the CDF for some example data.
Given the CDF of a dataset, finding the lower bound of a

lookup key x in a dataset D with a CDF CDFD is trivial:
one simply computes CDFD(x)⇥ |D|. Learned index struc-
tures function by approximating the CDF of the dataset us-
ing learned models (e.g., linear regressions). Of course, such
learned models are never entirely accurate. For example,
the blue line in Figure 2 represents one possible imperfect
approximation of the CDF. While imperfect, this approx-
imation has a bounded error: the largest deviation from
the blue line to the actual CDF occurs at key 12, which
has a true CDF value of 0.4 but an approximated value
of 0.24. The maximum error of this approximation is thus
0.4 � 0.24 = 0.16 (some adjustments may be required for
lookups of absent keys). Given this approximation function
A and the maximum error of A, we can define an index
structure IA as such:

IA(x) = (A(x)� |D|⇥ 0.16, A(x) + |D|⇥ 0.16)

In other words, we can use the approximation of the CDF
as an index structure by estimating the position of a given
key and then computing the search bound of that estimate

2

Figure 1: Index structures map each lookup key to a search
bound. This search bound must contain the “lower bound”
of the key (i.e., the smallest key greater than or equal to
the lookup key). The depicted search bound is valid for the
lookup key 72 because the key 95 is in the bound. A search
function, such as binary search, is used to locate the correct
index within the search bound.

index structures use branching e�ciently.
Third, we analyze the performance of a wide range of in-

dex structures in the presence of memory fences, cold caches,
and multi-threaded environments, to test their behavior un-
der more realistic settings. In all scenarios, we found that
learned approaches perform surprisingly well.

However, our study is not without its limitations. We fo-
cused only on read-only workloads, and we tested each index
structure in isolation (e.g., a lookup loop, not with integra-
tion into any broader application). While this certainly does
not cover all potential use cases, in-memory performance is
increasingly important, and many write-heavy DBMS archi-
tectures are also moving towards immutable read-only data-
structures (for example, see LSM-trees in RocksDB [4,21]).
Hence, we believe our benchmark can still guide the design
of many systems to come and, more importantly, serve as
a foundation to develop benchmarks for mixed read/write
workloads and the next generation of learned index struc-
tures which supports writes [11, 13,14].

2. FORMULATION & DEFINITIONS

As depicted in Figure 1, we define an index structure I

over a zero-indexed sorted array D as a mapping between
an integer lookup key x 2 Z and a search bound (lo, hi) 2
(Z+ ⇥ Z+), where Z+ is the positive integers and zero:

I : Z ! (Z+ ⇥ Z+)

We do not consider indexes over unsorted data, nor do we
consider non-integer keys. We assume that data is stored in
a way supporting fast random access (e.g., an array).

Search bounds are indexes into D. A valid index structure
maps any possible lookup key x to a bound that contains
the “lower bound” of x: the smallest key in D that is greater
than or equal to x. Formally, we define the lower bound of
a key x, LB(x), as:

LB(x) = i $ [Di � x ^ ¬9j(j < i ^Dj � x)]

As a special case, we define the lower bound of any key
greater than or equal to the largest key in D as one more
than the size of D: LB(maxD) = |D|. Our definition of
“lower bound” corresponds to the C++ standard [2].

1

3

9

12

56

57

58

95

98

99

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

CDF Function
Data Relative position

Figure 2: The cumulative distribution function (CDF) view
of a sorted array.

We say that an index structure is valid if and only if it
produces search bounds that contain the lower bound for
every possible lookup key.

8x 2 Z [I(x) = (lo, hi) ! Dlo LB(x) Dhi]

Intuitively, this view of index structures corresponds to
an approximate index, an index that returns a search range
instead of the exact position of a key. We are not the first
to note that both traditional structures like B-Trees and
learned index structures can be viewed in this way [8, 19].
Given a valid index, the actual index of the lower bound

for a lookup key is located via a “last mile” search (e.g.,
binary search). This last mile search only needs to examine
the keys within the provided search bound (e.g., Figure 1).

2.1 Approximating the CDF

Learned index structures use machine learning techniques
ranging from deep neural networks to simple regression in
order to model the cumulative distribution function, or CDF,
of a sorted array [19]. Here, we use the term CDF to mean
the function mapping keys to their relative position in an
array. This is strongly connected to the traditional interpre-
tation of the CDF from statistics: the CDF of a particular
key x is the proportion of keys less than x. Figure 2 shows
the CDF for some example data.
Given the CDF of a dataset, finding the lower bound of a

lookup key x in a dataset D with a CDF CDFD is trivial:
one simply computes CDFD(x)⇥ |D|. Learned index struc-
tures function by approximating the CDF of the dataset us-
ing learned models (e.g., linear regressions). Of course, such
learned models are never entirely accurate. For example,
the blue line in Figure 2 represents one possible imperfect
approximation of the CDF. While imperfect, this approx-
imation has a bounded error: the largest deviation from
the blue line to the actual CDF occurs at key 12, which
has a true CDF value of 0.4 but an approximated value
of 0.24. The maximum error of this approximation is thus
0.4 � 0.24 = 0.16 (some adjustments may be required for
lookups of absent keys). Given this approximation function
A and the maximum error of A, we can define an index
structure IA as such:

IA(x) = (A(x)� |D|⇥ 0.16, A(x) + |D|⇥ 0.16)

In other words, we can use the approximation of the CDF
as an index structure by estimating the position of a given
key and then computing the search bound of that estimate

2

Benchmarking Learned Indexes; Marcus et al.; PVLDB 2021

Learned “range” indexes
▪ Replace the prediction model with a ML model

▪ Should be a “monotone” model
– i.e., if x > y, then f(x) >= f(y)
– Otherwise hard to handle keys that don’t exist in the data

▪ Other challenges/issues
– B+-Trees don’t require the leaf level nodes to be contiguous
– Most indexes have bounded insert/delete/update costs
– B+-Trees work well with caches
▪ Top 2 levels often in the cache

A First Attempt
▪ Use a single 2-layer NN on a 200M web-server log records

▪ 1250 predictions per second
– Much slower than B+-Trees (about 300x slower)

▪ Some notes
– Tensorflow not designed to run small models – too much overhead
– B-Trees do a really good job on small amounts of data

▪ Raw performance improvements in GPU likely not enough to make
up the gap

Recursive Model Index
▪ Use a hierarchy of models instead

▪ Can use different models in different places, including decision
trees (i.e., B+-trees)

.PEFM����

.PEFM���� .PEFM���� .PEFM����

.PEFM���� .PEFM���� .PEFM���� .PEFM����

۪

۪
4U
BH
F��

����
�4
UB
HF
���

��4
UB
HF
��

1PTJUJPO

,FZ

Figure 3: Staged models

M! models. We train the model at stage 0, f0(x) ≈ y. As such,
model k in stage !, denoted by f (k)

!
, is trained with loss:

L! =
∑
(x,y)

(f ("M! f!−1(x)/N $)
! (x) − y)2 L0 =

∑
(x,y)

(f0(x) − y)2

Note, we use here the notation of f!−1(x) recursively exe-
cuting f!−1(x) = f

("M!−1f!−2(x)/N $)
!−1 (x). In total, we iteratively

train each stage with loss L! to build the complete model.
One way to think about the di!erent models is that each

model makes a prediction with a certain error about the po-
sition for the key and that the prediction is used to select the
next model, which is responsible for a certain area of the key-
space to make a better prediction with a lower error. However,
recursive model indexes do not have to be trees. As shown in
Figure 3 it is possible that di!erent models of one stage pick
the same models at the stage below. Furthermore, each model
does not necessarily cover the same amount of records like
B-Trees do (i.e., a B-Tree with a page-size of 100 covers 100
or less records).4 Finally, depending on the used models the
predictions between the di!erent stages can not necessarily
be interpreted as positions estimates, rather should be consid-
ered as picking an expert which has a better knowledge about
certain keys (see also [62]).

This model architecture has several bene"ts: (1) It separates
model size and complexity from execution cost. (2) It leverages
the fact that it is easy to learn the overall shape of the data
distribution. (3) It e!ectively divides the space into smaller sub-
ranges, like a B-Tree, to make it easier to achieve the required
“last mile” accuracy with fewer operations. (4) There is no
search process required in-between the stages. For example,
the output ofModel 1.1 is directly used to pick the model in the
next stage. This not only reduces the number of instructions to
manage the structure, but also allows representing the entire
index as a sparse matrix-multiplication for a TPU/GPU.
3.3 Hybrid Indexes
Another advantage of the recursive model index is, that we
are able to build mixtures of models. For example, whereas on
the top-layer a small ReLU neural net might be the best choice
as they are usually able to learn a wide-range of complex data
distributions, the models at the bottom of the model hierarchy
might be thousands of simple linear regression models as they
are inexpensive in space and execution time. Furthermore, we
4Note, that we currently train stage-wise and not fully end-to-end. End-to-end
training would be even better and remains future work.

can even use traditional B-Trees at the bottom stage if the data
is particularly hard to learn.

For this paper, we focus on 2 types of models, simple neural
nets with zero to two fully-connected hidden layers and ReLU
activation functions and a layer width of up to 32 neurons
and B-Trees (a.k.a. decision trees). Note, that a zero hidden-
layer NN is equivalent to linear regression. Given an index
con"guration, which speci"es the number of stages and the
number of models per stage as an array of sizes, the end-to-end
training for hybrid indexes is done as shown in Algorithm 1

Algorithm 1: Hybrid End-To-End Training
Input: int threshold, int stages[], NN_complexity
Data: record data[], Model index[][]
Result: trained index

1 M = stages.size;
2 tmp_records[][];
3 tmp_records[1][1] = all_data;
4 for i ← 1 to M do
5 for j ← 1 to staдes[i] do
6 index[i][j] = new NN trained on tmp_records[i][j];
7 if i < M then
8 for r ∈ tmp_records[i][j] do
9 p = index[i][j](r .key) / stages[i + 1];

10 tmp_records[i + 1][p].add(r);
11 for j ← 1 to index [M].size do
12 index[M][j].calc_err(tmp_records[M][j]);
13 if index [M][j].max_abs_err > threshold then
14 index[M][j] = new B-Tree trained on tmp_records[M][j];
15 return index;

Starting from the entire dataset (line 3), it trains "rst the top-
node model. Based on the prediction of this top-node model, it
then picks the model from the next stage (lines 9 and 10) and
adds all keys which fall into that model (line 10). Finally, in
the case of hybrid indexes, the index is optimized by replacing
NN models with B-Trees if absolute min-/max-error is above
a prede"ned threshold (lines 11-14).

Note, that we store the standard and min- and max-error
for every model on the last stage. That has the advantage,
that we can individually restrict the search space based on
the used model for every key. Currently, we tune the various
parameters of the model (i.e., number of stages, hidden layers
per model, etc.) with a simple simple grid-search. However,
many potential optimizations exists to speed up the training
process from ML auto tuning to sampling.

Note, that hybrid indexes allow us to bound theworst
case performance of learned indexes to the performance
of B-Trees. That is, in the case of an extremely di#cult to
learn data distribution, all models would be automatically re-
placed by B-Trees, making it virtually an entire B-Tree.
3.4 Search Strategies and Monotonicity
Range indexes usually implement anupper_bound(key) [lower_
bound(key)] interface to "nd the position of the "rst keywithin
the sorted array that is equal or higher [lower] than the look-
up key to e#ciently support range requests. For learned range
indexes we therefore have to "nd the "rst key higher [lower]
from the look-up key based on the prediction. Despite many

Research 6: Storage & Indexing SIGMOD’18, June 10-15, 2018, Houston, TX, USA

493

Recursive Model Index
▪ Works much better than B+-Trees across several datasets using

fairly simple models
– Linear, or 1-2 layer NNs (for the first stage)

���	
'$�&' �&�""�� $)& �"�+)�� #+* �)$�%.� '#�+% �&�""�� $)(�"�+&�� $"# �)$�).� &+�*% �&�""�� $)& �"�+(�� #+* �)$�#.�
$(�$% �$�""�� $)) �"�+(�� #)$ �($�".� $'�+) �$�""�� $)& �"�+'�� #)# �($�&.� $&�+$ �$�""�� $)& �"�+(�� #(+ �(#�).�
#%�## �#�""�� $(' �#�""�� #%& �'"�*.� #$�+* �#�""�� $(" �#�""�� #%$ �'"�*.� #$�&(�#�""�� $(% �#�""�� #%# �'"�".�
(�'(�"�'"�� $() �"�++�� ##& �&$�).� (�&+ �"�'"�� $((�"�+*�� ##& �&$�+.� (�$% �"�'"�� $)# �"�+)�� ##) �&%�$.�
%�$* �"�$'�� $*(�"�+%�� #"# �%'�%.� %�$' �"�$'�� $+# �"�*+�� #"" �%&�%.� %�## �"�$'�� $+% �"�+"�� #"# �%&�'.�

$�����	������������#"� "�#' �"�"#�� +* �$�)"�� %# �%#�(.� "�#' �"�"#�� $$$ �#�#)�� $+ �#%�#.� "�#' �"�"#�� #)* �#�&)�� $(�#&�(.�
"�)(�"�"(�� *' �%�##�� %+ �&'�+.� "�)(�"�"(�� #($ �#�("�� %(�$$�$.� "�)(�"�"(�� #($ �#�($�� %' �$#�(.�
#�'% �"�#$�� *$ �%�$#�� &# �'"�$.� #�'% �"�#$�� #&& �#�*#�� %+ �$(�+.� #�'% �"�#$�� #'$ �#�)%�� %(�$%�).�
%�"' �"�$%�� *(�%�"*�� '" �'*�#.� %�"' �"�$&�� #$(�$�")�� &# �%$�'.� %�"' �"�$&�� #&(�#�)+�� &" �$)�(.�

�	��	��
��	�

�	���	�	 ��
��	�	 �������	���	�	
��������� ����������� ���������� ��������� ����������� ���������� ��������� ����������� ����������

���		

�	��������'#$

$�����	������������'"�
$�����	����������#""�
$�����	����������$""�

��
��
�	����������%$
�	����������(&
�	��������#$*
�	��������$'(

Figure 4: Learned Index vs B-Tree

contains very complex time patterns caused by class sched-
ules, weekends, holidays, lunch-breaks, department events,
semester breaks, etc., which are notoriously hard to learn. For
the maps dataset we indexed the longitude of ≈ 200M user-
maintained features (e.g., roads, museums, co!ee shops) across
the world. Unsurprisingly, the longitude of locations is rela-
tively linear and has fewer irregularities than the Weblogs
dataset. Finally, to test how the index works on heavy-tail dis-
tributions, we generated a synthetic dataset of 190M unique
values sampled from a log-normal distribution with µ = 0
and σ = 2. The values are scaled up to be integers up to 1B.
This data is of course highly non-linear, making the CDF more
di"cult to learn using neural nets. For all B-Tree experiments
we used 64-bit keys and 64-bit payload/value.

As our baseline, we used a production quality B-Tree imple-
mentation which is similar to the stx::btree but with further
cache-line optimization, dense pages (i.e., #ll factor of 100%),
and very competitive performance. To tune the 2-stage learned
indexes we used simple grid-search over neural nets with zero
to two hidden layers and layer-width ranging from 4 to 32
nodes. In general we found that a simple (0 hidden layers) to
semi-complex (2 hidden layers and 8- or 16-wide) models for
the #rst stage work the best. For the second stage, simple, lin-
ear models, had the best performance. This is not surprising as
for the last mile it is often not worthwhile to execute complex
models, and linear models can be learned optimally.

Learned Index vs B-Tree performance: The main re-
sults are shown in Figure 4. Note, that the page size for B-Trees
indicates the number of keys per page not the size in Bytes,
which is actually larger. As the main metrics we show the size
in MB, the total look-up time in nano-seconds, and the time to
execution the model (either B-Tree traversal or ML model) also
in nano-seconds and as a percentage compared to the total
time in paranthesis. Furthermore, we show the speedup and
space savings compared to a B-Tree with page size of 128 in
parenthesis as part of the size and lookup column. We choose
a page size of 128 as the #xed reference point as it provides
the best lookup performance for B-Trees (note, that it is al-
ways easy to save space at the expense of lookup performance
by simply having no index at all). The color-encoding in the
speedup and size columns indicates howmuch faster or slower
(larger or smaller) the index is against the reference point.

As can be seen, the learned index dominates the B-Tree
index in almost all con#gurations by being up to 1.5 − 3×

faster while being up to two orders-of-magnitude smaller. Of
course, B-Trees can be further compressed at the cost of CPU-
time for decompressing. However, most of these optimizations
are orthogonal and apply equally (if not more) to neural nets.
For example, neural nets can be compressed by using 4- or
8-bit integers instead of 32- or 64-bit $oating point values
to represent the model parameters (a process referred to as
quantization). This level of compression can unlock additional
gains for learned indexes.

Unsurprisingly the second stage size has a signi#cant im-
pact on the index size and look-up performance. Using 10,000
or more models in the second stage is particularly impressive
with respect to the analysis in §2.1, as it demonstrates that our
#rst-stage model can make a much larger jump in precision
than a single node in the B-Tree. Finally, we do not report on
hybrid models or other search techniques than binary search
for these datasets as they did not provide signi#cant bene#t.

Learned Index vs Alternative Baselines: In addition to
the detailed evaluation of learned indexes against our read-
optimized B-Trees, we also compared learned indexes against
other alternative baselines, including third party implementa-
tions. In the following, we discuss some alternative baselines
and compare them against learned indexes if appropriate:

Histogram: B-Trees approximate the CDF of the underlying
data distribution. An obvious question is whether histograms
can be used as a CDF model. In principle the answer is yes,
but to enable fast data access, the histogram must be a low-
error approximation of the CDF. Typically this requires a large
number of buckets, which makes it expensive to search the
histogram itself. This is especially true, if the buckets have
varying bucket boundaries to e"ciently handle data skew,
so that only few buckets are empty or too full. The obvious
solutions to this issues would yield a B-Tree, and histograms
are therefore not further discussed.

Lookup-Table: A simple alternative to B-Trees are (hierar-
chical) lookup-tables. Often lookup-tables have a #xed size
and structure (e.g., 64 slots for which each slot points to an-
other 64 slots, etc.). The advantage of lookup-tables is that
because of their #xed size they can be highly optimized using
AVX instructions. We included a comparison against a 3-stage
lookup table, which is constructed by taking every 64th key
and putting it into an array including padding to make it a
multiple of 64. Then we repeat that process one more time over
the array without padding, creating two arrays in total. To

Research 6: Storage & Indexing SIGMOD’18, June 10-15, 2018, Houston, TX, USA

495

Learned Hash Index
▪ Learn a hash function with the goal to minimize conflicts
– Less focus on this in the follow-up work

)BTI�
'VODUJPO

,FZ .PEFM
,FZ

	B
�5SBEJUJPOBM�)BTI�.BQ 	C
�-FBSOFE�)BTI�.BQ

Figure 7: Traditional Hash-map vs Learned Hash-map

4.1 The Hash-Model Index
Surprisingly, learning the CDF of the key distribution is one
potential way to learn a better hash function. However, in
contrast to range indexes, we do not aim to store the records
compactly or in strictly sorted order. Rather we can scale
the CDF by the targeted size M of the Hash-map and use
h(K) = F (K)∗M , with keyK as our hash-function. If the model
F perfectly learned the empirical CDF of the keys, no con!icts
would exist. Furthermore, the hash-function is orthogonal to
the actual Hash-map architecture and can be combined with
separate chaining or any other Hash-map type.

For the model, we can again leverage the recursive model
architecture from the previous section. Obviously, like before,
there exists a trade-o" between the size of the index and per-
formance, which is in!uenced by the model and dataset.

Note, that how inserts, look-ups, and con!icts are handled
is dependent on the Hash-map architecture. As a result, the
bene#ts learned hash functions provide over traditional hash
functions, which map keys to a uniformly distributed space
depend on two key factors: (1) How accurately the model rep-
resents the observed CDF. For example, if the data is generated
by a uniform distribution, a simple linear model will be able
to learn the general data distribution, but the resulting hash
function will not be better than any su$ciently randomized
hash function. (2) Hash map architecture: depending on the
architecture, implementation details, the payload (i.e., value),
the con!ict resolution policy, as well as how much more mem-
ory (i.e., slots) will or can be allocated, signi#cantly in!uences
the performance. For example, for small keys and small or no
values, traditional hash functions with Cuckoo hashing will
probably work well, whereas larger payloads or distributed
hash maps might bene#t more from avoiding con!icts, and
thus from learned hash functions.

4.2 Results
We evaluated the con!ict rate of learned hash functions over
the three integer data sets from the previous section. As our
model hash-functions we used the 2-stage RMI models from
the previous section with 100k models on the 2nd stage and
without any hidden layers. As the baseline we used a simple
MurmurHash3-like hash-function and compared the number
of con!icts for a table with the same number of slots as records.

As can be seen in Figure 8, the learned models can reduce
the number of con!icts by up to 77% over our datasets by
learning the empirical CDF at a reasonable cost; the execution

�������������
����
� ���������������� ��������
�
���
�
 ���� �	�
 		��
	����
�
 ���� ���	 ����
��������
� ���� ���
 ���	

Figure 8: Reduction of Con!icts
time is the same as the model execution time in Figure 4,
around 25-40ns.

How bene#cial the reduction of con!icts is given the model
execution time depends on the Hash-map architecture, pay-
load, and many other factors. For example, our experiments
(see Appendix B) show that for a separate chaining Hash-map
architecture with 20 Byte records learned hash functions can
reduce the wasted amount of storage by up to 80% at an in-
crease of only 13ns in latency compared to random hashing.
The reason why it only increases the latency by 13ns and not
40ns is, that often fewer con!icts also yield to fewer cache
misses, and thus better performance. On the other hand, for
very small payloads Cuckoo-hashing with standard hash-maps
probably remains the best choice. However, as we show in Ap-
pendix C, for larger payloads a chained-hashmap with learned
hash function can be faster than cuckoo-hashing and/or tra-
ditional randomized hashing. Finally, we see the biggest po-
tential for distributed settings. For example, NAM-DB [74]
employs a hash function to look-up data on remote machines
using RDMA. Because of the extremely high cost for every con-
!ict (i.e., every con!ict requires an additional RDMA request
which is in the order of micro-seconds), the model execution
time is negligible and even small reductions in the con!ict
rate can signi#cantly improve the overall performance. To
conclude, learned hash functions are independent of the used
Hash-map architecture and depending on the Hash-map ar-
chitecture their complexity may or may not pay o".

5 EXISTENCE INDEX
The last common index type of DBMS are existence indexes,
most importantly Bloom #lters, a space e$cient probabilistic
data structure to test whether an element is a member of a set.
They are commonly used to determine if a key exists on cold
storage. For example, Bigtable uses them to determine if a key
is contained in an SSTable [23].

Internally, Bloom #lters use a bit array of size m and k
hash functions, which each map a key to one of them array
positions (see Figure9(a)). To add an element to the set, a key
is fed to the k hash-functions and the bits of the returned
positions are set to 1. To test if a key is a member of the set,
the key is again fed into the k hash functions to receive k array
positions. If any of the bits at those k positions is 0, the key
is not a member of a set. In other words, a Bloom #lter does
guarantee that there exists no false negatives, but has potential
false positives.

While Bloom #lters are highly space-e$cient, they can still
occupy a signi#cant amount of memory. For example for one
billion records roughly ≈ 1.76 Gigabytes are needed. For a FPR
of 0.01% we would require ≈ 2.23 Gigabytes. There have been
several attempts to improve the e$ciency of Bloom #lters [52],
but the general observation remains.

Research 6: Storage & Indexing SIGMOD’18, June 10-15, 2018, Houston, TX, USA

497

Outline
▪ The Case for Learned Indexes

▪ Follow-up Work

▪ Discussion

Spline Interpolation
▪ CDF can be approximated using splines
– i.e., a collection of linear segments

▪ How about:
– Increase the page size for the B+-Tree
▪ So many more pointers/data values in each page
▪ Much smaller index

– Use Interpolation within each page
▪ Instead of binary search

▪ Results appear to match learned index

▪ Much discussion on the link

http://databasearchitects.blogspot.com/2017/12/the-case-for-b-
tree-index-structures.html

http://databasearchitects.blogspot.com/2017/12/the-case-for-b-tree-index-structures.html
http://databasearchitects.blogspot.com/2017/12/the-case-for-b-tree-index-structures.html

RadixSpline: A Single-Pass Learned Index
▪ Faster learning in a read-only

setting

▪ Steps:
– Learn a linear spline over the data
– Build a small index on top using first few bits

of the search key

▪ Results:
– Generally comparable latencies, but

higher storage space for some
datasets

Kipf et al.; aiDM 2020 (SIGMOD Workshop)

RadixSpline: A Single-Pass Learned Index

Andreas Kipf? Ryan Marcus?† Alexander van Renen Mihail Stoian
Alfons Kemper Tim Kraska? Thomas Neumann

TUM MIT CSAIL? Intel Labs †
{renen, stoian, kemper, neumann}@in.tum.de {kipf, ryanmarcus, kraska}@mit.edu

ABSTRACT
Recent research has shown that learned models can outper-
form state-of-the-art index structures in size and lookup
performance. While this is a very promising result, existing
learned structures are often cumbersome to implement and
are slow to build. In fact, most approaches that we are aware
of require multiple training passes over the data.
We introduce RadixSpline (RS), a learned index that can

be built in a single pass over the data and is competitive
with state-of-the-art learned index models, like RMI, in size
and lookup performance. We evaluate RS using the SOSD
benchmark and show that it achieves competitive results on
all datasets, despite the fact that it only has two parameters.

1 INTRODUCTION
In [13], Kraska et al. proposed learned index structures, a
new type of index for sorted data which use learned models
to predict the position of a lookup key. These learned index
structures can be realized via supervised learning techniques,
using the cumulative distribution function (CDF) of the un-
derlying data for training. More recently, the SOSD bench-
mark [11] demonstrated that learned index structures (which
can be viewed as CDF approximators) can compete favorably
with state-of-the-art index structures [2, 4, 8, 9, 14, 32] in
terms of size and lookup performance.

However, some learned index structures, such as RMIs [13],
do not support inserts and cannot be constructed in a single
pass over the data, which severely limits their applications.
The recent learned index proposals ALEX [3] and PGM [5]

Andreas Kipf, Ryan Marcus, and Alexander van Renen contributed equally.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for pro�t or commercial advantage and that
copies bear this notice and the full citation on the �rst page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c
permission and/or a fee. Request permissions from permissions@acm.org.
aiDM’20, June 14–19, 2020, Portland, OR, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-8029-4/20/06. . . $15.00
https://doi.org/10.1145/3401071.3401659

0 1 2 3 4 5 6 7

Key

In
d

e
x

4718310
1011 1000 0100 11112

Lookup key:

Radix table

Spline point

CDF

Pointer

Figure 1: A radix spline index and example lookup
process. The r (here, 3) most signi�cant bits b of the
lookup key are used as an index into the radix ta-
ble. Then, a binary search is performed on the spline
points between the bth pointer and the b+1th pointer.

add support for inserts. In this work, we argue that there are
applications where indexes do not need to support individual
updates and where it is su�cient to be able to build them
e�ciently. The most prominent example are LSM-trees [23].

In an LSM-tree, data is stored in several �les, each of which
is sorted by a key column. Each �le generally stores addi-
tional metadata, such as a Bloom �lter or an index. This
metadata can be used at query time to either exclude a �le
from a lookup (via the Bloom �lters or lower/upper bound)
or to quickly locate the relevant tuples in a �le (via the index).
These �les are organized into multiple levels, with higher
levels containing exponentially more �les than lower lev-
els. New data is inserted into �les in lower levels, which
are periodically merged with �les in higher levels. Unfamil-
iar readers may wish to see [15] for an in-depth survey of
LSM-trees, but for this work one only needs to note that
this merge process between two �les is the perfect time to
re-build a learned index. The merge produces data in sorted
order, which can be passed through a single-pass training
algorithm before it is written back to disk. Since the merge
operation is expensive on its own and is usually done asyn-
chronously, training such a one-pass learned index could
only incur a negligible constant overhead. However, existing
learned indexes do not allow for an e�cient build.

ALEX: Updatable Learned Index

▪ Goals:
– Inserts competitive with B+-Trees
– Lookups faster than B+-Trees or RMI
– Better storage space
– Data storage space (leaf level)

comparable with dynamic B+Trees

▪ Key ideas:
– Have gaps in the leaves for new data
– Use “exponential search” at the leaves

(instead of binary)
– Allow individual nodes to shrink/grow

as needed (only works in memory)

Ding et al.; SIGMOD 2020

search, [20] keepsmin andmax error bounds for each model
in RMI and performs binary search within these bounds.
Last, each model in RMI can be a di�erent type of model.

Both linear regression and neural network based models are
considered in [20]. There is a trade-o� between model accu-
racy andmodel complexity. The root of the RMI is tuned to be
either a neural network or a linear regression, depending on
which provides better performance, while the simplicity and
the speed of computation for linear regression model is bene-
�cial at the non-root levels. A linear regression model can be
represented as�= ba⇤x+bc, where x is the key and� is the
predicted position. A linear regression model needs to store
just two parameters a and b, so storage overhead is low. The
inference with a single linear regression model requires only
onemultiplication, one addition and one rounding, which are
fast to execute on modern processors.

Unlike B+Tree,which could havemany internal levels, RMI
uses two or three levels. Also, the storage space required for
models (two or four 8-byte double values per model) is much
smaller than the storage space for internal nodes in B+Tree
(which store keys and pointers). A Learned Index can be an
order ofmagnitude smaller inmainmemory storage (vs. inter-
nal B+Tree nodes), while outperforming a B+Tree in lookup
performance by a factor of up to three [20].
The main drawback of the Learned Index is that it does

not support any modi�cations, including inserts, updates, or
deletes. Let us demonstrate a naïve insertion strategy for such
an index. Given a keyk to insert, we �rst use themodel to �nd
the insertionposition fork . Thenwe create a newarraywhose
length is oneplus the length of the old array.Next,we copy the
data from the old array to the new array, where the elements
on the right of the insertion position are shifted to the right
by one position. We insert k at the insertion position of the
new array. Finally, we update themodels to re�ect the change
in the data distribution. Such a strategy has a linear time com-
plexity with respect to the data size, which is unacceptable in
practice. Kraska et al. suggest building delta-indexes to han-
dle inserts [20], which is complementary to our strategy. In
this paper, we describe an alternative data structure to make
modi�cations in a learned index more e�cient.

3 ALEXOVERVIEW
The ALEX design (Fig. 2) takes advantage of two key insights.
First, we propose a careful space-time trade-o� that not only
leads to an updatable data structure, but is also faster for
lookups. To explore this trade-o�, ALEX supports aGapped
Array (GA) layout for the leaf nodes, which we present in Sec-
tion 3.2. Second, the Learned Index supports static RMI (SRMI)
only, where the number of levels and the number of models in
each level is�xedat initialization. SRMIperformspoorlyon in-
serts if the data distribution is di�cult to model. ALEX can be

0

.H\

5RRW
1RGH

0

0 0

0

0

���
00

000

H[SRQHQWLDO
VHDUFK

0
SRVLWLRQ 0

*DSSHG¬
$UUD\

���

,QWHUQDO
1RGH

'DWD
1RGH

/HJHQG

*DS

.H\

$GDSWLYH
50,

Figure 2: ALEXDesign

updateddynamically ande�ciently at runtimeanduses linear
cost models that predict the latency of lookup and insert oper-
ations basedon simple statisticsmeasured fromanRMI.ALEX
uses these cost models to initialize the RMI structure and to
dynamically adapt the RMI structure based on the workload.

ALEX aims to achieve the following goals w.r.t. the B+Tree
and Learned Index. (1) Insert time should be competitive with
B+Tree, (2) lookup time should be faster than B+Tree and
Learned Index, (3) index storage space should be smaller than
B+Tree and Learned Index (4) data storage space (leaf level)
should be comparable to dynamic B+Tree. In general, data
storage space will overshadow index storage space, but the
space bene�t from smaller index storage space is still im-
portant because it allows more indexes to �t into the same
memory budget. The rest of this section describes how our
ALEX design achieves these goals.

3.1 Design Overview
ALEX is an in-memory, updatable learned index. ALEX has
a number of di�erences from the Learned Index [20].
The �rst di�erence lies in the data structure used to store

the data at the leaf level. Like B+Tree, ALEX uses a node per
leaf. This allows the individual nodes to expand and splitmore
�exibly and also limits the number of shifts required during
an insert. In a typical B+Tree, every leaf node stores an array
of keys and payloads and has “free space” at the end of the
array to absorb inserts. ALEX uses a similar design but more
carefully chooses how to use the free space. The insight is
that by introducing gaps that are strategically placed between
elements of the array, we can achieve faster insert and lookup
times. As shown in Fig. 2, ALEX uses a Gapped Array (GA)
layout for each data node, which we describe in Section 3.2.

The second di�erence is thatALEXuses exponential search
to �nd keys at the leaf level to correct mispredictions of the
RMI, as shown in Fig. 2. In contrast, [20] uses binary search
within the error bounds provided by the models. We exper-
imentally veri�ed that exponential search without bounds

Research 11: Machine Learning for Databases II SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

971

ALEX: Updatable Learned Index
▪ Some details:
– Leaves have arrays with gaps in between (i.e.,

not just at the end)
– Use a bitmap to skip over gaps
– Allow a node to have a mix of internal and leaf

children

Ding et al.; SIGMOD 2020

is faster than binary search with bounds (Section 6.3.1). This
is because if the models are good, their prediction is close
enough to the correct position. Exponential search also re-
moves the need to store error bounds in themodels of the RMI.
The third di�erence is that ALEX inserts keys into data

nodes at the position where the models predict that the key
should be. We call thismodel-based insertion. In contrast, the
Learned Index produces an RMI on an array of records with-
out changing the position of records in the array.Model-based
insertion has better search performance because it reduces
model misprediction errors.

The fourth di�erence is that ALEX dynamically adjusts the
shape and height of the RMI depending on the workload. We
describe the design of initializing and dynamically growing
the RMI structure in Section 4.
The �nal di�erence is that ALEX has no parameters that

need to be re-tuned for each dataset or workload, unlike the
Learned Index, in which the number of models must be tuned.
ALEX automatically bulk loads and adjusts the structure of
RMI to achieve high performance by using a cost model.

3.2 Node Layout
3.2.1 Data Nodes. Like a B+Tree, the leaf nodes of ALEX

store the data records and thus are referred to as data nodes,
shown as circles in Fig. 2. A data node stores a linear regres-
sionmodel (two double values for slope and intercept), which
maps a key to a position, and two Gapped Arrays (described
below), one for keys and one for payloads. We show only the
keys array in Fig. 2. By default, both keys and payloads are
�xed-size. (Note that payloads could be records or pointers to
variable-sized records, stored in separately allocated spaces
in memory). We also impose a max node size for practical
reasons (see details in Section 4).

ALEX uses aGapped Array layout which uses model-based
inserts to distribute extra space between the elements of the
array, thereby achieving faster inserts and lookups. In con-
trast, B+Treeplaces all the gaps at the endof the array.Gapped
Arrays �ll the gaps with the closest key to the right of the gap,
which helps maintain exponential search performance. In
order to e�ciently skip gaps when scanning, each data node
maintains a bitmapwhich tracks whether each location in the
node isoccupiedbyakeyor is agap.Thebitmap is fast toquery
and has low space overhead compared to the Gapped Array.
We compare Gapped Array to an existing gapped data struc-
ture called Packed Memory Array [4] in Appendix E in [10].

3.2.2 Internal Nodes. We refer to all the nodes which are
part of the RMI structure as internal nodes, shown as rectan-
gles in Fig. 2. Internal nodes store a linear regression model
and an array containing pointers to children nodes. Like a
B+Tree, internal nodes direct traversals down the tree, but un-
like B+Tree, internal nodes in ALEX use models to “compute”

0

0

'DWD�1RGH

0

'DWD�1RGH

0

,QWHUQDO
1RGH

,QWHUQDO�1RGH�$

NH\V¬ ¬>�����Ǻ

Figure 3: Internal nodes allow di�erent resolutions in
di�erent parts of the key space [0,1).
the location, in the pointers array, of the next child pointer
to follow. Similar to data nodes, we impose amax node size.

The internal nodes of ALEX serve a conceptually di�erent
purpose than those of the Learned Index. Learned Index’s
internal nodes have models that are �t to the data; an inter-
nal node with a perfect model partitions keys equally to its
children, and an RMI with perfect internal nodes results in an
equal number of keys in each data node. However, the goal of
the RMI structure is not to produce equally sized data nodes,
but rather data nodes whose key distributions are roughly
linear, so that a linear model can be accurately �t to its keys.

Therefore, the role of the internal nodes in ALEX is to pro-
vide a�exibleway to partition the key space. Suppose internal
node A in Fig. 3 covers the key space [0,1) and has four child
pointers.ALearned Indexwould assignanode to eachof these
pointers, either all internal nodes or all data nodes. However,
ALEXmore �exibly partitions the space. Internal node A as-
signs the key spaces [0,1/4) and [1/2,1) to data nodes (because
the CDF in those spaces are linear), and assigns [1/4,1/2) to
another internal node (because the CDF is non-linear and the
RMI requires more resolution into this key space). As shown
in the �gure, multiple pointers can point to the same child
node; this is useful for handling inserts (Section 4.3.3). We re-
strict the number of pointers in every internal node to always
be a power of 2. This allows nodes to split without retraining
its subtree (Section 4.3.3).

4 ALEXALGORITHMS
In this section, we describe the algorithms for lookups, inserts
(including how to dynamically grow the RMI and the data
nodes), deletes, out of bounds inserts, and bulk load.

4.1 Lookups and Range Queries
To look up a key, starting at the root node of the RMI, we
iteratively use the model to “compute” a location in the point-
ers array, and we follow the pointer to a child node at the
next level, until we reach a data node. By construction, the
internal node models have perfect accuracy, so there is no
search involved in the internal nodes.We use themodel in the
data node to predict the position of the search key in the keys

Research 11: Machine Learning for Databases II SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

972

And more…
▪ PGM-Index: Built in a bottom-up

fashion, fully dynamic
– Ferragina, Vinciguerra; PVLDB 2020
– Piecewise linear regressions (instead

of spline)

▪ Hist-tree: More similar to B+-Trees
– Crotty; CIDR 2021
– Followup experiments: works very well but

requires a lot of storage

1

3

9

12

56

57

58

95

98

99

Data

Key: 1 Model: f
1

Key: 56 Model: f
2

Key: 95 Model: f
3

1

56

95
Key: 56 Model: f

5

Key: 1 Model: f
4

PGM Level 1 PGM Level 2

Figure 5: A piecewise geometric model (PGM) index.

o↵sets stored at the bth and the b+1th position (e.g., the 5th
and the 6th position). Next, RS performs a binary search
between the two o↵sets on the sorted array of spline points
to locate the two spline points that encompass the lookup
key. Once the relevant spline segment has been identified,
it uses linear interpolation between the two spline points to
estimate position of the lookup key in the underlying data.

Training. To build the spline layer, RS uses a one-pass
spline fitting algorithm [25] that is similar to the shrink-
ing cone algorithm of FITing-Tree [14]. The spline algo-
rithm guarantees a user-defined error bound. At a high
level, whenever the current error corridor exceeds the user-
supplied bound, a new spline point is created. Whenever
the spline algorithm encounters a new r-bit prefix, a new
entry is inserted into the pre-allocated radix table.

RS has only two hyperparameters (spline error and num-
ber of radix bits), which makes it straightforward to tune.
In practice, few configurations need to be tested to reach a
desired performance / size tradeo↵ on a given dataset [18].

3.3 Piecewise geometric model indexes (PGM)

The PGM index is a multi-level structure, where each level
represents an error-bounded piecewise linear regression [13].
An example PGM index is depicted in Figure 5. In the
first level, the data is partitioned into three segments, each
represented by a simple linear model (f1, f2, f3). By con-
struction, each of these linear models predicts the CDF of
keys in their corresponding segments to within a preset er-
ror bound. The partition boundaries of this first level are
then treated as their own sorted dataset, and another error-
bounded piecewise linear regression is computed. This is
repeated until the top level of the PGM is su�ciently small.

Structure. A piecewise linear regression partitions the data
into n+ 1 segments with a set of points p0, p1, . . . , pn. The
entire piecewise linear regression is expressed as a piecewise
function:

F (x) =

8
>>>>><

>>>>>:

a0 ⇥ x+ b0 if x < p0

a1 ⇥ x+ b1 if x � p0 and x < p1

a2 ⇥ x+ b2 if x � p1 and x < p2

. . .

an ⇥ x+ bn if x � pn and x < pn

Each regression in the PGM index is constructed with
a fixed error bound ✏. Such a regression can trivially be
used as an approximate index. PGM indexes apply this
trick recursively, first building an error-bounded piecewise

regression model over the underlying data, then building
another error-bounded piecewise regression model over the
partitioning points of the first regression. Key lookups are
performed by searching each index layer until the regression
over the underlying data is reached.

Training. Each regression is constructed optimally, in the
sense that the fewest pieces are used to achieve a preset max-
imum error. This can be done quickly using the approach
of [32]. The first regression is performed on the underly-
ing data, resulting in a set of split points (the boundaries
of each piece of the regression) and regression coe�cients.
These split points are then treated as if they were a new
dataset, and the process is repeated, resulting in fewer and
fewer pieces at each level. Since each piecewise linear regres-
sion contains the fewest possible segments, the PGM index
is optimal in the sense of piecewise linear models [13].
Intuitively, PGM indexes are constructed “bottom-up”:

first, an error bound is chosen, and then a minimal piece-
wise linear model is found that achieves that error bound.
This process is repeated until the piecewise models become
smaller than some threshold. The PGM index can also han-
dle inserts, and can be adapted to a particular query work-
load. We do not evaluate either capability here.

3.4 Discussion

RMIs, RS indexes, and PGM indexes all provide an ap-
proximation of the CDF of some underlying data using ma-
chine learning techniques. However, the specifics vary.

Model types. While RS indexes and PGM indexes use
only a single type of model (spline regression and piecewise
linear regression, respectively), RMIs can use a wide variety
of model types. This gives the RMI a greater degree of
flexibility, but also increases the complexity of tuning the
RMI. While both the PGM index and RS index can be tuned
by adjusting just two knobs, automatically optimizing an
RMI requires a more involved approach, such as [22]. Both
the PGM index authors and the RS index authors mention
integrating other model types as future work [13,18].

Top-down vs. bottom-up. RMIs are trained “top down”,
first fitting the topmost model and training subsequent lay-
ers to correct errors. PGM and RS indexes are trained “bot-
tom up”, first fitting the bottommost layer to a fixed accu-
racy and then building subsequent layers to quickly search
the bottommost layer for the appropriate model. Because
both PGM and RS indexes require searching this bottom-
most layer (PGMmay require searching several intermediate
layers), they may require more branches or cache misses than
an RMI. While an RMI uses its topmost model to directly
index into the next layer, avoiding a search entirely, the bot-
tommost layer of the RMI does not have a fixed error bound;
any bottom-layer model could have a large maximum error.
RS indexes and PGM indexes also di↵er in how the bot-

tommost layer is searched. PGM indexes decompose the
problem recursively, essentially building a second PGM in-
dex on top of the bottommost layer. Thus, a PGM in-
dex may have many layers, each of which must be searched
(within a fixed range) during inference. On the other hand,
an RS index uses a radix table to narrow the search range,
but there is no guarantee on the search range’s size. If the
radix table provides a comparable search range as the up-
per level of a PGM index, then an RS index locates the
proper final model with a comparatively cheaper operation

4

Benchmarking Learned Indexes

Marcus et al.; PVLDB 2021

Method Updates Ordered Type

PGM [13] Yes Yes Learned
RS [18] No Yes Learned
RMI [19] No Yes Learned

BTree [7] Yes Yes Tree
IBTree [15] Yes Yes Tree
FAST [16] No Yes Tree

ART [20] Yes Yes Trie
FST [33] Yes Yes Trie

Wormhole [31] Yes Yes Hybrid hash/trie
CuckooMap [6] Yes No Hash
RobinHash [3] Yes No Hash

RBS No Yes Lookup table
BS No Yes Binary search

Table 1: Search techniques evaluated

(a bitshift and an array lookup). If the radix table does
not provide a narrow search range, significant time may be
spent searching for the appropriate bottom-layer model.

4. EXPERIMENTS

Our experimental analysis is divided into six sections.

1. Setup (Section 4.1): we describe the index structures,
baselines, and datasets used.

2. Pareto analysis (Section 4.2): we analyze the size and
performance tradeo↵s o↵ered by each index structure,
including variations in dataset and key size. We find that
learned index structures o↵er competitive performance.

3. Explanatory analysis (Section 4.3): we analyze indexes
via performance counters (e.g., cache misses) and other
descriptive statistics. We find that no single metric can
fully account for the performance of learned structures.

4. CPU interactions (Section 4.4): we analyze how CPU
cache and operator reordering impacts the performance
of index structures. We find that learned index struc-
tures benefit disproportionately from these e↵ects.

5. Multithreading (Section 4.5): we analyze the through-
put of each index in a multithreaded environment. We
find that learned structures have comparatively high
throughput, possibly attributable to the fact that they
incur fewer cache misses per lookup.

6. Build times (Section 4.6): we analyze the time to build
each index structure. We find that RMIs are slow to
build compared to PGM and RS indexes, but that (un-
surprisingly) no learned structure yet provides builds as
fast as insert-optimized traditional index structures.

4.1 Setup

Experiments are conducted on a machine with 256 GB of
RAM and an Intel(R) Xeon(R) Gold 6230 CPU @ 2.10GHz.

4.1.1 Indexes
In this section, we describe the index structures we evalu-

ate, and how we tune their size/performance tradeo↵s. Ta-
ble 1 lists each technique and its capabilities.

Learned indexes. We compare with RMIs, PGM indexes,
and RadixSpline indexes (RS), each of which are described

Figure 6: CDF plots of each testing dataset. The face
dataset contains ⇡ 100 large outlier keys, not plotted.

in Section 3. We use implementations tuned by each struc-
ture’s original authors. RMIs are tuned using CDFShop [22],
an automatic RMI optimizer. RS and PGM are tuned by
varying the error tolerance of the underlying models.

Tree structures. We compare with several tree-structured
indexes: the STX B-Tree (BTree) [7], an interpolating BTree
(IBTree) [15], the Adaptive Radix Trie (ART) [20], the Fast
Architectural-Sensitive Tree (FAST) [16], Fast Succinct Trie
(FST) [33], and Wormhole [31].
For each tree structure, we tune the size/performance

tradeo↵ by inserting a subset of the data as described in
Section 2.1. To build a tree of maximum size with per-
fect accuracy, we insert every key. To build a tree with a
smaller size and decreased accuracy, we insert every other
key. We note that this technique, while simple, may not
be the ideal way to trade space for accuracy in each tree
structure. Specifically, ART may admit a smarter method
in which keys are retained or discarded based on the fill level
of a node. We only evaluate the simple and universal tech-
nique of inserting fewer keys into each structure, and leave
structure-specific optimizations to future work.

Hashing. While most hash tables do not support range
queries, hash tables are still an interesting point of compari-
son due to their unmatched lookup performance. Unordered
hash tables cannot be shrunk using the same technique as
we use for trees.1 Therefore, we only evaluate hash tables
that contain every key. We evaluate a standard implemen-
tation of a Robinhood hash table (RobinHash) [3] and a
SIMD-optimized Cuckoo map (CuckooMap) [6].

Baselines. We also include two naive baselines: binary
search (BS), and a radix binary search (RBS). Radix binary
search [17] stores only the radix table used by the learned
RS approach. We vary the size of the radix table to achieve
di↵erent size/performance tradeo↵s.

4.1.2 Datasets
We use four real-world datasets for our evaluation. Each

dataset consists of 200 million unsigned 64-bit integer keys.
We test larger datasets in Section 4.2.1, and we test 32-
bit datasets in Section 4.2.2. We generate 8-byte (random)

1Wormhole [31], which we evaluate, represents a state-of-
the-art ordered hashing approach.

5

Method Updates Ordered Type

PGM [13] Yes Yes Learned
RS [18] No Yes Learned
RMI [19] No Yes Learned

BTree [7] Yes Yes Tree
IBTree [15] Yes Yes Tree
FAST [16] No Yes Tree

ART [20] Yes Yes Trie
FST [33] Yes Yes Trie

Wormhole [31] Yes Yes Hybrid hash/trie
CuckooMap [6] Yes No Hash
RobinHash [3] Yes No Hash

RBS No Yes Lookup table
BS No Yes Binary search

Table 1: Search techniques evaluated

(a bitshift and an array lookup). If the radix table does
not provide a narrow search range, significant time may be
spent searching for the appropriate bottom-layer model.

4. EXPERIMENTS

Our experimental analysis is divided into six sections.

1. Setup (Section 4.1): we describe the index structures,
baselines, and datasets used.

2. Pareto analysis (Section 4.2): we analyze the size and
performance tradeo↵s o↵ered by each index structure,
including variations in dataset and key size. We find that
learned index structures o↵er competitive performance.

3. Explanatory analysis (Section 4.3): we analyze indexes
via performance counters (e.g., cache misses) and other
descriptive statistics. We find that no single metric can
fully account for the performance of learned structures.

4. CPU interactions (Section 4.4): we analyze how CPU
cache and operator reordering impacts the performance
of index structures. We find that learned index struc-
tures benefit disproportionately from these e↵ects.

5. Multithreading (Section 4.5): we analyze the through-
put of each index in a multithreaded environment. We
find that learned structures have comparatively high
throughput, possibly attributable to the fact that they
incur fewer cache misses per lookup.

6. Build times (Section 4.6): we analyze the time to build
each index structure. We find that RMIs are slow to
build compared to PGM and RS indexes, but that (un-
surprisingly) no learned structure yet provides builds as
fast as insert-optimized traditional index structures.

4.1 Setup

Experiments are conducted on a machine with 256 GB of
RAM and an Intel(R) Xeon(R) Gold 6230 CPU @ 2.10GHz.

4.1.1 Indexes
In this section, we describe the index structures we evalu-

ate, and how we tune their size/performance tradeo↵s. Ta-
ble 1 lists each technique and its capabilities.

Learned indexes. We compare with RMIs, PGM indexes,
and RadixSpline indexes (RS), each of which are described

Figure 6: CDF plots of each testing dataset. The face
dataset contains ⇡ 100 large outlier keys, not plotted.

in Section 3. We use implementations tuned by each struc-
ture’s original authors. RMIs are tuned using CDFShop [22],
an automatic RMI optimizer. RS and PGM are tuned by
varying the error tolerance of the underlying models.

Tree structures. We compare with several tree-structured
indexes: the STX B-Tree (BTree) [7], an interpolating BTree
(IBTree) [15], the Adaptive Radix Trie (ART) [20], the Fast
Architectural-Sensitive Tree (FAST) [16], Fast Succinct Trie
(FST) [33], and Wormhole [31].
For each tree structure, we tune the size/performance

tradeo↵ by inserting a subset of the data as described in
Section 2.1. To build a tree of maximum size with per-
fect accuracy, we insert every key. To build a tree with a
smaller size and decreased accuracy, we insert every other
key. We note that this technique, while simple, may not
be the ideal way to trade space for accuracy in each tree
structure. Specifically, ART may admit a smarter method
in which keys are retained or discarded based on the fill level
of a node. We only evaluate the simple and universal tech-
nique of inserting fewer keys into each structure, and leave
structure-specific optimizations to future work.

Hashing. While most hash tables do not support range
queries, hash tables are still an interesting point of compari-
son due to their unmatched lookup performance. Unordered
hash tables cannot be shrunk using the same technique as
we use for trees.1 Therefore, we only evaluate hash tables
that contain every key. We evaluate a standard implemen-
tation of a Robinhood hash table (RobinHash) [3] and a
SIMD-optimized Cuckoo map (CuckooMap) [6].

Baselines. We also include two naive baselines: binary
search (BS), and a radix binary search (RBS). Radix binary
search [17] stores only the radix table used by the learned
RS approach. We vary the size of the radix table to achieve
di↵erent size/performance tradeo↵s.

4.1.2 Datasets
We use four real-world datasets for our evaluation. Each

dataset consists of 200 million unsigned 64-bit integer keys.
We test larger datasets in Section 4.2.1, and we test 32-
bit datasets in Section 4.2.2. We generate 8-byte (random)

1Wormhole [31], which we evaluate, represents a state-of-
the-art ordered hashing approach.

5

Benchmarking Learned Indexes

Marcus et al.; PVLDB 2021

Outline
▪ The Case for Learned Indexes

▪ Follow-up Work

▪ Discussion

Some Thoughts
▪ Relatively simple models being used by the recent work

▪ Are these helping with autotuning, simplicity, etc.

