
Machine Learning for
Data Management Systems

Bloom Filters; QD-Trees
Amol Deshpande
February 9, 2023

Outline
▪ Bloom Filters

▪ Storage Layout Problem and Prior Work

▪ QD-Tree

Bloom Filters
Simplest one: Use a single hash function -- for each key, set h(key) = 1
Standard practice: Use 3 or more hash functions
No false negatives à if the key exists, we will return 1
Need to bound “false positives”

No updates allowed
Other data structures (e.g., counting bloom filter) that allow it

Bloom Filters
▪ Widely used in many contexts
– e.g., Indexes use them to filter searches quickly (like log-structured

merge trees)
– Network problems (e.g., routing, etc)
– Data streams
– Can improve “joins” using them

▪ But, standard Bloom Filters too big
– 2.23 GB for a FPR of 0.01, for 1 billion records

Learned Bloom Filters
▪ Train a classification model instead
– Positive examples we have, but Negative examples are needed
– Some positive examples may get classified as negative

▪ Approach:
– Check the model first -- if positive, return TRUE
– If not, consult an auxiliary Bloomfilter to confirm
▪ Hopefully this BF is much smaller

Learned Bloom Filters
▪ Results:

– 1.7 M URLs; normal BF for 1% FPR = 2.04 MB
– Model
▪ 6-dimensional GRU with a 32-dimensional embedding for each character
▪ 0.0259MB

– Spillover Bloom Filter = 1.31

Sandwiched Bloom Filter
▪ Mitzenmacher; NeurIPS 2018

▪ Theoretical analysis of learned bloom filters

▪ Proposed adding another BF on top (model == learned oracle)

▪ Better theoretical guarantees

Follow-up Work
▪ Metalearning Bloom Filters

– Uses a Recurrent Neural Network for one-shot (one-pass) learning
– Maintains a small memory (analogous to Bloom Filter Bitmap) that’s updated with new data items

▪ Partitioned Bloom Filters; ICLR 2020
– Maintain different auxiliary BFs for different score-ranges of the model
– Figure out the “threshold” (to accept a key) automatically

Outline
▪ Bloom Filters

▪ Storage Layout Problem and Prior Work

▪ QD-Tree

Storage Data Layouts
▪ Most big datasets split by columns/rows
–Usually by date (horizontal), and then columns (vertical)

Fine-grained Partitioning for Aggressive Data Skipping

Liwen Sun, Michael J. Franklin, Sanjay Krishnan, Reynold S. Xin†

AMPLab, UC Berkeley and †Databricks Inc.
{liwen, franklin, sanjay, rxin}@cs.berkeley.edu

ABSTRACT
Modern query engines are increasingly being required to pro-
cess enormous datasets in near real-time. While much can
be done to speed up the data access, a promising technique
is to reduce the need to access data through data skipping.
By maintaining some metadata for each block of tuples, a
query may skip a data block if the metadata indicates that
the block does not contain relevant data. The e↵ectiveness
of data skipping, however, depends on how well the blocking
scheme matches the query filters.

In this paper, we propose a fine-grained blocking tech-
nique that reorganizes the data tuples into blocks with a
goal of enabling queries to skip blocks aggressively. We first
extract representative filters in a workload as features using
frequent itemset mining. Based on these features, each data
tuple can be represented as a feature vector. We then for-
mulate the blocking problem as a optimization problem on
the feature vectors, called Balanced MaxSkip Partitioning,
which we prove is NP-hard. To find an approximate solu-
tion e�ciently, we adopt the bottom-up clustering frame-
work. We prototyped our blocking techniques on Shark, an
open-source data warehouse system. Our experiments on
TPC-H and a real-world workload show that our blocking
technique leads to 2-5x improvement in query response time
over traditional range-based blocking techniques.

Categories and Subject Descriptors
H.2.2 [Database Management]: Physical Design

Keywords
Data warehouse; Partitioning; Query processing; Algorithms

1. INTRODUCTION
Data analytics has been proven critical in many applica-

tions, ranging from business decision making to scientific
discovery. Many of these applications require interactively
unlocking insights from enormous data. To meet this need,
designs of modern query engines (e.g., [8, 37, 32, 2, 35]) are

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’14, June 22–27, 2014, Snowbird, UT, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2376-5/14/06 ...$15.00.
http://dx.doi.org/10.1145/2588555.2610515.

!

par%%on!1
!par%%on!2
!

data!source

ETL

range/hash
par%%oning

query!
log

par%%on7wise
blocking

storage+engine

par%%on!3
!

blocked!tuples

blocking

!

par%%oned!table

unpar%%oned!table

par%%on!1
!par%%on!2
!par%%on!3
!

Figure 1: Blocking at Data Loading

striving to identify opportunities to shorten query response
time. One dimension of this e↵ort focuses on improving the
data scan throughput, such as memory caching, paralleliza-
tion, and data compression. Another dimension is to reduce
the data access. For example, columnar-oriented data layout
prevents the queries from accessing irrelevant columns, and
sampling provides approximate answers by scanning only a
small subset of data. Along these lines, there has recently
been an increasing interest in reducing data access through
data skipping [1, 6, 35, 37]. Intelligently skipping blocks of
tuples can significantly speed up the query processing.

1.1 Background
Traditionally, data skipping has long been implemented

via partition pruning. In a data warehouse environment,
many tables are partitioned by time and most queries have
a time range filter. A query can check the time ranges of
the partitions and decide which partitions to scan and which
to skip. While this is an e↵ective way to prune data, the
remaining partitions can still contain a lot of tuples.
Recent systems [28, 1, 34, 7, 6, 37, 35] support skipping

data blocks. A block in these systems is a horizontal parti-
tion that is fairly small (e.g., 1000’s or 10,000’s of tuples).
Each block is associated with some metadata such as min
and max values. Before scanning a block, data skipping first
evaluates the query filter against this metadata and then
decides if the block can be skipped, i.e., the block does not
need to be accessed. The salient features of data skipping
include avoiding random disk access and incurring minimal
storage and maintenance overhead [28, 34, 6, 35]. Block
skipping speeds up table scans by accessing less data, which
is beneficial to both disk- and memory-resident tables.

1.2 Goals
The e↵ectiveness of block skipping depends on how the

data tuples are partitioned into blocks. We refer to this

Sun et al.; SIGMOD 14; Fine-grained data partitioning for aggressive skipping

Storage Data Layouts
▪ Most big datasets split by columns/rows
–Usually by date (horizontal), and then columns (vertical)

Sun et al.; SIGMOD 14; Fine-grained data partitioning for aggressive skipping

t6
t5
t4
t3
t2
t1

!me

08:01:01

08:01:01

08:01:01

08:01:02

08:01:03

08:01:04

id

102

103

104

105

106

107

event

click

click

click

buy

click

buy

category

jeans

shirts

shirts

jeans

jeans

shoes

publisher

groupon

google

groupon

google

google

shoedeal

revenue

0.0

?0.5

0.0

12.0

?0.5

30.0

features

event='buy'

product='jeans'

publisher='google'
revenue6<60

F1

F2

F3

weight

50

20

10

vector
(F1,$F2,$F3)

(0,1,0)

(0,0,1)

(0,0,0)

(1,1,0)

(0,1,1)

(1,0,0)t6
t5
t4
t3
t2
t1

blocking

t1"(0,1,0)
t4"(1,1,0)

t2"(0,0,1)
t5"(0,1,1)

t3"(0,0,0)
t6"(1,0,0)

P1"
(1,1,0)

P2"
(0,1,1)

P3"
(1,0,0)

(a) tuples (b) features (c) vectors (d) blocks

Figure 2: Example of Blocking

process as blocking. Current systems adopt very small block
sizes for data skipping. For example, IBM DB2 BLU [35]
uses 1, 000-tuple blocks; Google’s PowerDrill [6] suggests
50, 000 tuples; Shark [37] skips data on HDFS blocks, each
of which is 128MB by default. These systems rely on range
partitioning to generate such blocks. While range partition-
ing has been useful for many purposes, it may not be ideal
for generating fine-grained blocks for skipping. Specifically,
range partitioning lacks of a principled way of: (1) setting
the fine-grained ranges on each column that matches the
data skew and workload skew, (2) allocating the number
of partitions for di↵erent columns and (3) capturing inter-
column data correlation and filter correlation.

In this paper, we propose a workload-driven blocking tech-
nique, with a goal of (horizontally) partitioning the data into
fine-grained, balance-sized blocks in a way that queries can
maximally skip the blocks. This is an o✏ine process that ex-
ecutes at data loading time and may be re-executed later to
account for a more recent workload. Figure 1 depicts the use
of blocking in an ETL process. Note that our blocking tech-
niques can co-exist with traditional horizontal partitioning
techniques, as these techniques may be used for a di↵erent
purpose, such as load balancing and roll-in/roll-out opera-
tions. Specifically, our techniques can be applied to further
segment each individual partition. As shown in Figure 1, we
take as input the data tuples and a query log, and write the
blocked tuples to the storage engine; if the incoming tuples
are partitioned, we can block each partition individually (in
parallel). A newly-inserted partition can be blocked on its
own and will not a↵ect existing partitions.

First, we extract some filter predicates as features from a
past query workload using frequent itemset mining. We then
generate feature vectors by precomputing these filter predi-
cates on the data and solve an optimization problem to guide
the data blocking. In many real-world workloads, especially
the reporting and scheduled workloads, similar queries are
repeatedly run on di↵erent time-ranged data. We also an-
alyze real-world workloads in Section 2, which show that
(1) a small set of representative filters are commonly used
by many queries and (2) many queries use recurring filters.
These findings suggest that our workload-driven approach
can be e↵ective for real query workloads.

Some previous work also utilizes workloads for physical
database design, e.g., [17, 21, 12, 10]. Specifically, our work
is related to materialized view selection (MVS) [16, 10]. Like
MVS, we exploit precomputation. However, our partition-
ing techniques are at the physical-record level and are com-
plementary to materialized views. In fact, our techniques
can be applied to partition large materialized views, e.g.,
data cubes. As we will show shortly, we maintain concise

feature-based metadata derived from precomputation. An-
other proposed data skipping technique involves the use of
small materialized aggregates (SMAs) associated with par-
titions [28, 34]. These SMAs have been shown to improve
query performance in range-partitioned systems. In con-
trast, our work is focused on constructing fine-grained par-
titions that more closely capture the access patterns of com-
plex analytics workloads. Like materialized views, SMAs are
also complementary to our approach and in fact could be im-
plemented on our partitions as well. We defer the detailed
discussion of related work to Section 8.

1.3 Example
Suppose we are given a table as shown in Figure 2(a), an

example log of online events. We first look at the log of
queries that were posed on this table and extract a set of
features, each of which is a representative filter with pos-
sibly multiple conjunctive predicates. Suppose the features
extracted are as shown in Figure 2(b). Given these features,
we then transform the data tuples into feature vectors. This
process can be done by scanning the table once and batch-
evaluating the features on each tuple. As shown in Fig-
ure 2(c), each feature vector is (in this case) a 3-dimensional
bit vector, whose i-th bit indicates whether this tuple sat-
isfies filter Fi. In practice, the number of features can be
kept small, e.g., < 50. We then partition the tuples accord-
ing to these vectors. Intuitively, tuples that do not satisfy
the same features should be placed in the same block such
that, when a query uses one of these features as filter, this
block of tuples can be skipped altogether. An example of
the resulting blocked tuples is shown in Figure 2(d). For
each block, we compute a union vector by taking a bitwise
OR of all the feature vectors in it. If the i-th bit of the union
vector is 0, then we know that no tuple in this block satis-
fies feature i. In this case, any query whose filter is Fi can
skip this block. For example, a query on F3 can skip the
blocks P1 and P3. More generally, a query can skip blocks if
its filter is subsumed by (i.e., is stricter than) some features.
For example, a query with filter event = ‘buy’ ^ product =
‘jeans’ is subsumed by both features F1 and F2, which lead
to the skipping of P2 and P3 respectively.

1.4 Contributions
To realize this design, we address a few technical chal-

lenges as outlined below.
Feature Selection. Indeed, selecting the right features

to guide partitioning is critical. We develop a workload an-
alyzer to identify representative filters as features from a
query log. We consider a feature representative if it could be
used to help many queries. If some filter predicates are fre-

Storage Data Layouts
▪ Most big datasets split by columns/rows
– Usually by date (horizontal), and then columns (vertical)

▪ Sun et al., approach
– Pick some “filters” that would be useful for skipping (i.e., commonly seen in queries)
– Try to combine tuples into blocks that have similar feature vectors
▪ Use bottom-up clustering for this

– Try to maximize the zeros (more zeros è more skipping)
– A block tagged (1, 1, 0) è has tuples with features 1 and 2, but no tuples with feature 3
▪ Serves as a “semantic” description of the block

– ”Complete-ness” not guaranteed
▪ A tuple with features (1, 0, 0) could be in a few different blocks

Sun et al.; SIGMOD 14; Fine-grained data partitioning for aggressive skipping

Outline
▪ Bloom Filters

▪ Storage Layout Problem and Prior Work

▪ QD-Tree

Main Ideas
▪ Aim for complete and semantic partitioning

▪ Roughly based on k-d-trees
–Partition the multi-dimensional space recursively
– In essence, build out a “decision tree” that partitions the tuples
–Each leaf partition has a clear semantic description

▪ Question:
–How to build this tree?

k-d-trees

⌫1 ⌫2 ⌫3 ⌫4

mem=10GB? cpu<5%?

cpu<10%?

Figure 2: An example qd-tree with four leaf blocks.

is not true. So choosing the pair of blocks minimizing the
penalty does not necessarily maximize ⇠ (P). Second, no
theoretical guarantee is provided by the greedy merging al-
gorithm. Third, the complexity of the algorithm is quadratic
to the number of unique feature vectors, which can be as
large as the number of tuples and grows exponentially with
respect to the number of features. Practical application of this
algorithm requires using a small number of features, which
poses an additional challenge of selecting a good, small set
of features. Last, while each block can be described using
the “OR” of all the feature bitmap vectors contained in that
block, such description is not complete. For example, there
can be two blocks with identical bitmap description, and a
new tuple does not have a deterministic destination partition
using this description.

3 QD-TREE
A qd-tree describes how a high-dimensional data space is cut.
Each node corresponds to a subspace of an # -dimensional
table, modeled as a discrete hypercube, ([0, |⇡><8 |),88 2
[0,#)). Each node logically holds all records that belong to
its hypercube. The root of the tree, ([0, |⇡><8 |),88), repre-
sents the whole table. We assume that the domain of each di-
mension is known, and its attribute values are in [0, |⇡><8 |).

Each internal node = has two children, where the left child
satis�es a particular predicate ?—attached to node=—and the
right child satis�es ¬? . For now, we assume each predicate
to be a simple unary form, (a�r, op, literal), where op is a
numeric comparison, but the framework supports arbitrary
predicates as well. We call predicate ? a cut on node =.

qd-tree di�ers from the classical k-d tree [5]. k-d tree can
be seen as a simple form of qd-tree, in that they typically
come with heuristics such as assuming cuts to be unary, cuts
alternating among dimensions, and cuts points chosen as
each dimension’s median value. qd-tree does not assume
these construction heuristics.

Example. Figure 2 shows an example qd-tree on two
columns, (cpu,mem). The root is cut with predicate 2?D <
10%. The resultant two children are cut with<4< = 10⌧⌫
and 2?D < 5%, respectively. In our implementation, the liter-
als, e.g., “10%”, are dictionary-encoded as integers.

We next describe the usage of qd-tree in data routing and
query processing. We later present algorithms to construct
qd-tree in Sections 4 and 5.

Fields of node = De�nition

n.range Hypercube describing the node’s sub-
space. 2# -dimensional array.

n.categorical_mask Map: categorical column 8’s name !
|⇡><8 |-dim of bits. 0 means that value
is not present.

Table 1: Semantic description of a qd-tree node.

3.1 Routing Data
Our overall strategy is to use a qd-tree to assign data to
blocks on storage. The routing of data to blocks is carried
out as follows. Each record “arrives” at the root and is re-
cursively routed down. At each node, the tagged predicate
? is evaluated; if ? (A42>A3) is true, it is routed to the left,
otherwise to the right. Each record uniquely lands in a leaf
due to the binary split (? or ¬?). Each leaf thus represents
a set of physical blocks to be persisted. Records are stored
with an additional block ID (BID) �eld to denote the block
they belong to, and the dataset is partitioned by this �eld.
In practice, we route large batches of records at a time,

taking advantage of vectorized instructions. Further, threads
can load di�erent batches of records in parallel (assuming
the appends at the leaves are protected with locking).

3.2 Semantic Description of Nodes
As mentioned above, each allowed cut (predicate) is of the
form (a�r, op, literal). We allow each operator to be range
comparisons, {<, , >, �}, or equality comparisons, {=, IN}.
We now describe what node metadata we need to store to
process each cut. Table 1 presents a summary.

Handling range comparisons is straightforward, as we
only need to restrict a parent’s hypercube description. For
example, Figure 2’s root node has the hypercube

root.range: [0,"�-2?D), [0,"�-<4<),
and the cut on this node, 2?D < 10%, produces two restricted
versions for its left and right child,

le�.range: [0, 10%), [0,"�-<4<)
right.range: [10%,"�-2?D), [0,"�-<4<)

Handling equality comparisons, i.e.,= and IN, requires
storing additional metadata. We assume that these predicates
are only issued to categorical columns. Each node stores, for
each categorical column 8 , a |⇡><8 |-dimensional bit vector,
representing the distinct values of this column. If 1 is present
at a position, the value that corresponds to that position may
appear under the node’s subspace; otherwise, if 0, that value
de�nitively does not appear. It is then straightforward to
process = and IN cuts, by simply keeping (for the left child,
since it satis�es the cut) or zeroing out (for the right child) the
corresponding slots in the bit vector. For example, consider

Research 3: Machine Learning for Databases I SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

196

Qd-Trees

online

offline

learned
tree

Qd-tree Constructor
Greedy / Deep RL

Queries

Data Router

Query Router

Data Blocks

candidate
cuts

Block IDs

sample

learned
tree

DBMS

Data

Figure 1: System Architecture.

a workload is minimized, or equivalently, the number of
tuples that can be skipped for the workload is maximized.
Consider a partitioning P = {%1, . . . , %: } over + , i.e., P is a
set of disjoint subsets of + whose union is + . Each subset
%8 is called a block. We use ⇠ (%8) to denote the number of
tuples that can be skipped when we execute all the queries
in a workload, = {@1, . . . ,@<}. For a scan-oriented system,
it can be calculated as:

⇠ (%8) = |%8 |
’
@2,

((%8 ,@) (1)

where ((%,@) is a binary function indicating whether parti-
tion % can be skipped when processing query @. The de�ni-
tion of (depends on the type of meta informationmaintained
at each block. The most common type of meta information
is the max-min �lters, i.e., the maximal and minimal values
of each dimension over all the tuples in a block. For this case,
((%,@) = 1 if the hypercube de�ned by the max-min �lters
intersects with the range of query @.
Given a workload, , the overall e�ectiveness of a parti-

tioning P is measured by the total number of tuples skipped
⇠ (P) = Õ

%8 2P ⇠ (%8). Without constraints on block size, the
number can be trivially maximized by putting every tuple
in an individual block. For reasons like I/O batching and
columnar compression, a real system requires blocks to have
certain minimal size, e.g., 1 million tuples in SQL Server [25].
We use 1 to refer to this minimal size.

The partitioning problem is formulated as follows.

P������ 1 (M��S��� P�����������). Given a set + of
tuples, a workload, of queries, a skipping function (, and a
minimal block size 1, �nd a partitioning P to maximize⇠ (P),
s.t. |%8 | � 1 for all %8 2 P.

This formulation is appropriate for static data. To handle
dynamically ingested data, it is desirable to learn a parti-
tioning function from o�ine data, and apply the function to
online data ingestion to save data reshu�ing cost.

P������ 2 (L������M��S��� P�����������). Given a
set + of tuples, a workload, of queries, a skipping function
(, and a minimal block size 1, �nd a partitioning function � ,

such that for the next + tuples ingested, the partitioning P
generated by � (+) maximizes ⇠ (P).

In general, no partitioning function is guaranteed to work
for future unseen data. In this work, we focus on the scenario
where the current+ tuples have the same distribution as the
next + tuples. Therefore, solving Problem 2 is reduced to
solving Problem 1 in addition with a descriptive partitioning
function, such that any new tuple can be mapped to a right
partition identi�er. For e�ciently ingesting data, we also
desire the partitioning function to be lightweight to compute.

2.2 Current Approaches
2.2.1 Date Partitioning. In this basic partitioning scheme,
we partition data by time of ingestion. The skipping function
((%,@) = 1 if query @’s date range intersects with partition
% , and is 0 otherwise.

2.2.2 Bo�om-up Row Grouping. This technique was pro-
posed by Sun et al. [45], and uses feature-based data skipping.
Basically, each feature 58 is a predicate over the data." fea-
tures are extracted from the workload in the beginning using
frequent pattern mining. Each block has a bitmap of length
" , indicating whether predicate 58 , 8 2 ["] is satis�ed by
any tuple in this block. If the 8-th bit for this block is 0, i.e.,
no tuple satis�es 58 , then we can skip all queries subsumed
by (i.e., stricter than) 58 . Sun et al.’s problem formulation
is slightly di�erent, requiring each partition to have equal
size. They name the problem Balanced MaxSkip Partitioning,
and prove its NP-hardness by reduction from hypergraph
bisection. Using the same reduction technique, we can prove
that Problem 1 is NP-hard.
Sun et al.’s solution uses bottom-up clustering and is ac-

tually a solution to Problem 1, rather than the Balanced
MaxSkip Partitioning problem. This is because the output of
that algorithm has varying block sizes, and the sizes are no
smaller than 1. The algorithm converts tuples into unique
binary feature vectors, and record the weight of each unique
feature vector (row weight), as well as the number of queries
subsumed by each feature (column weight). Initially every
unique feature vector is in its own block. Then blocks are
merged greedily using a heuristic criterion: in each iteration,
a heuristic penalty is calculated for all pairs of blocks; and
the pair with lowest penalty is chosen to be merged into a
new block. Once the size of a block reaches 1, it does not
further merge with other blocks. Hence, merging eventually
stops with every block having size no smaller than 1.
This solution is shown to be more e�ective than date

partitioning and simple multi-dimensional range partition-
ing. There are several drawbacks of that approach. First, the
heuristic penalty criterion used in the greedy algorithm only
matches the optimization objective when the query sets sub-
sumed by all features are disjoint. In general that assumption

Research 3: Machine Learning for Databases I SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

195

Qd-Trees

⌫1 ⌫2 ⌫3 ⌫4

mem=10GB? cpu<5%?

cpu<10%?

Figure 2: An example qd-tree with four leaf blocks.

is not true. So choosing the pair of blocks minimizing the
penalty does not necessarily maximize ⇠ (P). Second, no
theoretical guarantee is provided by the greedy merging al-
gorithm. Third, the complexity of the algorithm is quadratic
to the number of unique feature vectors, which can be as
large as the number of tuples and grows exponentially with
respect to the number of features. Practical application of this
algorithm requires using a small number of features, which
poses an additional challenge of selecting a good, small set
of features. Last, while each block can be described using
the “OR” of all the feature bitmap vectors contained in that
block, such description is not complete. For example, there
can be two blocks with identical bitmap description, and a
new tuple does not have a deterministic destination partition
using this description.

3 QD-TREE
A qd-tree describes how a high-dimensional data space is cut.
Each node corresponds to a subspace of an # -dimensional
table, modeled as a discrete hypercube, ([0, |⇡><8 |),88 2
[0,#)). Each node logically holds all records that belong to
its hypercube. The root of the tree, ([0, |⇡><8 |),88), repre-
sents the whole table. We assume that the domain of each di-
mension is known, and its attribute values are in [0, |⇡><8 |).

Each internal node = has two children, where the left child
satis�es a particular predicate ?—attached to node=—and the
right child satis�es ¬? . For now, we assume each predicate
to be a simple unary form, (a�r, op, literal), where op is a
numeric comparison, but the framework supports arbitrary
predicates as well. We call predicate ? a cut on node =.

qd-tree di�ers from the classical k-d tree [5]. k-d tree can
be seen as a simple form of qd-tree, in that they typically
come with heuristics such as assuming cuts to be unary, cuts
alternating among dimensions, and cuts points chosen as
each dimension’s median value. qd-tree does not assume
these construction heuristics.
Example. Figure 2 shows an example qd-tree on two

columns, (cpu,mem). The root is cut with predicate 2?D <
10%. The resultant two children are cut with<4< = 10⌧⌫
and 2?D < 5%, respectively. In our implementation, the liter-
als, e.g., “10%”, are dictionary-encoded as integers.

We next describe the usage of qd-tree in data routing and
query processing. We later present algorithms to construct
qd-tree in Sections 4 and 5.

Fields of node = De�nition

n.range Hypercube describing the node’s sub-
space. 2# -dimensional array.

n.categorical_mask Map: categorical column 8’s name !
|⇡><8 |-dim of bits. 0 means that value
is not present.

Table 1: Semantic description of a qd-tree node.

3.1 Routing Data
Our overall strategy is to use a qd-tree to assign data to
blocks on storage. The routing of data to blocks is carried
out as follows. Each record “arrives” at the root and is re-
cursively routed down. At each node, the tagged predicate
? is evaluated; if ? (A42>A3) is true, it is routed to the left,
otherwise to the right. Each record uniquely lands in a leaf
due to the binary split (? or ¬?). Each leaf thus represents
a set of physical blocks to be persisted. Records are stored
with an additional block ID (BID) �eld to denote the block
they belong to, and the dataset is partitioned by this �eld.
In practice, we route large batches of records at a time,

taking advantage of vectorized instructions. Further, threads
can load di�erent batches of records in parallel (assuming
the appends at the leaves are protected with locking).

3.2 Semantic Description of Nodes
As mentioned above, each allowed cut (predicate) is of the
form (a�r, op, literal). We allow each operator to be range
comparisons, {<, , >, �}, or equality comparisons, {=, IN}.
We now describe what node metadata we need to store to
process each cut. Table 1 presents a summary.
Handling range comparisons is straightforward, as we

only need to restrict a parent’s hypercube description. For
example, Figure 2’s root node has the hypercube

root.range: [0,"�-2?D), [0,"�-<4<),
and the cut on this node, 2?D < 10%, produces two restricted
versions for its left and right child,

le�.range: [0, 10%), [0,"�-<4<)
right.range: [10%,"�-2?D), [0,"�-<4<)

Handling equality comparisons, i.e.,= and IN, requires
storing additional metadata. We assume that these predicates
are only issued to categorical columns. Each node stores, for
each categorical column 8 , a |⇡><8 |-dimensional bit vector,
representing the distinct values of this column. If 1 is present
at a position, the value that corresponds to that position may
appear under the node’s subspace; otherwise, if 0, that value
de�nitively does not appear. It is then straightforward to
process = and IN cuts, by simply keeping (for the left child,
since it satis�es the cut) or zeroing out (for the right child) the
corresponding slots in the bit vector. For example, consider

Research 3: Machine Learning for Databases I SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

196

⌫1 ⌫2 ⌫3 ⌫4

mem=10GB? cpu<5%?

cpu<10%?

Figure 2: An example qd-tree with four leaf blocks.

is not true. So choosing the pair of blocks minimizing the
penalty does not necessarily maximize ⇠ (P). Second, no
theoretical guarantee is provided by the greedy merging al-
gorithm. Third, the complexity of the algorithm is quadratic
to the number of unique feature vectors, which can be as
large as the number of tuples and grows exponentially with
respect to the number of features. Practical application of this
algorithm requires using a small number of features, which
poses an additional challenge of selecting a good, small set
of features. Last, while each block can be described using
the “OR” of all the feature bitmap vectors contained in that
block, such description is not complete. For example, there
can be two blocks with identical bitmap description, and a
new tuple does not have a deterministic destination partition
using this description.

3 QD-TREE
A qd-tree describes how a high-dimensional data space is cut.
Each node corresponds to a subspace of an # -dimensional
table, modeled as a discrete hypercube, ([0, |⇡><8 |),88 2
[0,#)). Each node logically holds all records that belong to
its hypercube. The root of the tree, ([0, |⇡><8 |),88), repre-
sents the whole table. We assume that the domain of each di-
mension is known, and its attribute values are in [0, |⇡><8 |).

Each internal node = has two children, where the left child
satis�es a particular predicate ?—attached to node=—and the
right child satis�es ¬? . For now, we assume each predicate
to be a simple unary form, (a�r, op, literal), where op is a
numeric comparison, but the framework supports arbitrary
predicates as well. We call predicate ? a cut on node =.

qd-tree di�ers from the classical k-d tree [5]. k-d tree can
be seen as a simple form of qd-tree, in that they typically
come with heuristics such as assuming cuts to be unary, cuts
alternating among dimensions, and cuts points chosen as
each dimension’s median value. qd-tree does not assume
these construction heuristics.

Example. Figure 2 shows an example qd-tree on two
columns, (cpu,mem). The root is cut with predicate 2?D <
10%. The resultant two children are cut with<4< = 10⌧⌫
and 2?D < 5%, respectively. In our implementation, the liter-
als, e.g., “10%”, are dictionary-encoded as integers.

We next describe the usage of qd-tree in data routing and
query processing. We later present algorithms to construct
qd-tree in Sections 4 and 5.

Fields of node = De�nition

n.range Hypercube describing the node’s sub-
space. 2# -dimensional array.

n.categorical_mask Map: categorical column 8’s name !
|⇡><8 |-dim of bits. 0 means that value
is not present.

Table 1: Semantic description of a qd-tree node.

3.1 Routing Data
Our overall strategy is to use a qd-tree to assign data to
blocks on storage. The routing of data to blocks is carried
out as follows. Each record “arrives” at the root and is re-
cursively routed down. At each node, the tagged predicate
? is evaluated; if ? (A42>A3) is true, it is routed to the left,
otherwise to the right. Each record uniquely lands in a leaf
due to the binary split (? or ¬?). Each leaf thus represents
a set of physical blocks to be persisted. Records are stored
with an additional block ID (BID) �eld to denote the block
they belong to, and the dataset is partitioned by this �eld.
In practice, we route large batches of records at a time,

taking advantage of vectorized instructions. Further, threads
can load di�erent batches of records in parallel (assuming
the appends at the leaves are protected with locking).

3.2 Semantic Description of Nodes
As mentioned above, each allowed cut (predicate) is of the
form (a�r, op, literal). We allow each operator to be range
comparisons, {<, , >, �}, or equality comparisons, {=, IN}.
We now describe what node metadata we need to store to
process each cut. Table 1 presents a summary.

Handling range comparisons is straightforward, as we
only need to restrict a parent’s hypercube description. For
example, Figure 2’s root node has the hypercube

root.range: [0,"�-2?D), [0,"�-<4<),
and the cut on this node, 2?D < 10%, produces two restricted
versions for its left and right child,

le�.range: [0, 10%), [0,"�-<4<)
right.range: [10%,"�-2?D), [0,"�-<4<)

Handling equality comparisons, i.e.,= and IN, requires
storing additional metadata. We assume that these predicates
are only issued to categorical columns. Each node stores, for
each categorical column 8 , a |⇡><8 |-dimensional bit vector,
representing the distinct values of this column. If 1 is present
at a position, the value that corresponds to that position may
appear under the node’s subspace; otherwise, if 0, that value
de�nitively does not appear. It is then straightforward to
process = and IN cuts, by simply keeping (for the left child,
since it satis�es the cut) or zeroing out (for the right child) the
corresponding slots in the bit vector. For example, consider

Research 3: Machine Learning for Databases I SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

196

⌫1 ⌫2 ⌫3 ⌫4

mem=10GB? cpu<5%?

cpu<10%?

Figure 2: An example qd-tree with four leaf blocks.

is not true. So choosing the pair of blocks minimizing the
penalty does not necessarily maximize ⇠ (P). Second, no
theoretical guarantee is provided by the greedy merging al-
gorithm. Third, the complexity of the algorithm is quadratic
to the number of unique feature vectors, which can be as
large as the number of tuples and grows exponentially with
respect to the number of features. Practical application of this
algorithm requires using a small number of features, which
poses an additional challenge of selecting a good, small set
of features. Last, while each block can be described using
the “OR” of all the feature bitmap vectors contained in that
block, such description is not complete. For example, there
can be two blocks with identical bitmap description, and a
new tuple does not have a deterministic destination partition
using this description.

3 QD-TREE
A qd-tree describes how a high-dimensional data space is cut.
Each node corresponds to a subspace of an # -dimensional
table, modeled as a discrete hypercube, ([0, |⇡><8 |),88 2
[0,#)). Each node logically holds all records that belong to
its hypercube. The root of the tree, ([0, |⇡><8 |),88), repre-
sents the whole table. We assume that the domain of each di-
mension is known, and its attribute values are in [0, |⇡><8 |).

Each internal node = has two children, where the left child
satis�es a particular predicate ?—attached to node=—and the
right child satis�es ¬? . For now, we assume each predicate
to be a simple unary form, (a�r, op, literal), where op is a
numeric comparison, but the framework supports arbitrary
predicates as well. We call predicate ? a cut on node =.

qd-tree di�ers from the classical k-d tree [5]. k-d tree can
be seen as a simple form of qd-tree, in that they typically
come with heuristics such as assuming cuts to be unary, cuts
alternating among dimensions, and cuts points chosen as
each dimension’s median value. qd-tree does not assume
these construction heuristics.

Example. Figure 2 shows an example qd-tree on two
columns, (cpu,mem). The root is cut with predicate 2?D <
10%. The resultant two children are cut with<4< = 10⌧⌫
and 2?D < 5%, respectively. In our implementation, the liter-
als, e.g., “10%”, are dictionary-encoded as integers.

We next describe the usage of qd-tree in data routing and
query processing. We later present algorithms to construct
qd-tree in Sections 4 and 5.

Fields of node = De�nition

n.range Hypercube describing the node’s sub-
space. 2# -dimensional array.

n.categorical_mask Map: categorical column 8’s name !
|⇡><8 |-dim of bits. 0 means that value
is not present.

Table 1: Semantic description of a qd-tree node.

3.1 Routing Data
Our overall strategy is to use a qd-tree to assign data to
blocks on storage. The routing of data to blocks is carried
out as follows. Each record “arrives” at the root and is re-
cursively routed down. At each node, the tagged predicate
? is evaluated; if ? (A42>A3) is true, it is routed to the left,
otherwise to the right. Each record uniquely lands in a leaf
due to the binary split (? or ¬?). Each leaf thus represents
a set of physical blocks to be persisted. Records are stored
with an additional block ID (BID) �eld to denote the block
they belong to, and the dataset is partitioned by this �eld.
In practice, we route large batches of records at a time,

taking advantage of vectorized instructions. Further, threads
can load di�erent batches of records in parallel (assuming
the appends at the leaves are protected with locking).

3.2 Semantic Description of Nodes
As mentioned above, each allowed cut (predicate) is of the
form (a�r, op, literal). We allow each operator to be range
comparisons, {<, , >, �}, or equality comparisons, {=, IN}.
We now describe what node metadata we need to store to
process each cut. Table 1 presents a summary.

Handling range comparisons is straightforward, as we
only need to restrict a parent’s hypercube description. For
example, Figure 2’s root node has the hypercube

root.range: [0,"�-2?D), [0,"�-<4<),
and the cut on this node, 2?D < 10%, produces two restricted
versions for its left and right child,

le�.range: [0, 10%), [0,"�-<4<)
right.range: [10%,"�-2?D), [0,"�-<4<)

Handling equality comparisons, i.e.,= and IN, requires
storing additional metadata. We assume that these predicates
are only issued to categorical columns. Each node stores, for
each categorical column 8 , a |⇡><8 |-dimensional bit vector,
representing the distinct values of this column. If 1 is present
at a position, the value that corresponds to that position may
appear under the node’s subspace; otherwise, if 0, that value
de�nitively does not appear. It is then straightforward to
process = and IN cuts, by simply keeping (for the left child,
since it satis�es the cut) or zeroing out (for the right child) the
corresponding slots in the bit vector. For example, consider

Research 3: Machine Learning for Databases I SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

196

a categorical column, ?A8>A8C~ 2 {!$, ,"⇢⇡,��⌧� }. The
root is initialized with

root.categorical_mask: (?A8>A8C~ ! [1, 1, 1])
since any of the three values may potentially appear. If we
cut the root with ?A8>A8C~ = "⇢⇡ (say, second value in the
ordered domain), the left and right child would have the
following categorical masks:

le�.categorical_mask: (?A8>A8C~ ! [1, 1, 1])
right.categorical_mask: (?A8>A8C~ ! [1, 0, 1])

because the right child must satisfy ¬(?A8>A8C~ = "⇢⇡).
Overall, this scheme is similar to “dictionary �ltering” in
popular persistent formats such as Parquet.

Thus, (range, categorical_mask) make up a node’s seman-
tic description. We make an optimization in the case of when
data has fully been routed down a qd-tree. In this scenario,
we can freeze the tree and replace each leaf’s range with a
min-max index over the leaf’s records. The min-max index
serves to “tighten” the range hypercube.
Each node of the qd-tree has a semantic description as

described. Further, based on our routing strategy, the blocks
assigned to each leaf together have the completeness prop-
erty, i.e., for a given leaf’s semantic description, every record
satisfying the description is stored at the corresponding leaf.

3.3 Query Processing
A simple way to process queries is to directly execute them
on a dataset partitioned by the block ID (BID) �eld introduced
by qd-tree (Sec. 3.1). In this case, which requires no inter-
vention during query processing, the traditional partition-
pruning [11, 16, 30] block-level indexes (e.g., min-max) are
used for actual block-skipping on a best-e�ort basis. For fur-
ther e�ectiveness, we instead intercept queries submitted
by users and augment them to e�ectively use qd-tree for
partition pruning as follows. Queries are routed through the
qd-tree and augmented with a BID IN (...) clause that lists
the pruned set of block IDs. Modern databases can use this
explicit predicate to prune blocks, without modi�cations to
the database internals. If desired, the query routing func-
tionality can also be integrated into the DBMS to make the
process entirely transparent.
To obtain the BID list, we loop over each leaf descrip-

tion, check whether the query logically intersects with the
leaf subspace, and return the IDs of all intersecting leaves.
Concretely, for any (unary) range predicate (recall from last
section, these include {<, , >, �}), we perform a simple in-
terval intersection check against each leaf.range. For any
equality predicate (= and IN), we check the corresponding
bit vector slot in leaf.categorical_mask. Alternatively, we
could also “route” the query down the tree to reach a set
of leaves; however, we �nd scanning leaf metadata to be

e�cient enough, especially when leaf metadata is grouped
together for fast access.
Building on top of checks for predicates, the intersection

checks for queries are natural extensions.We allow a query to
be arbitrary conjunction or disjunction of unary predicates
(and of lower-level conjuncts/disjuncts). The intersection
logic for AND is simply that it intersects if all of its conjuncts
do. Likewise, an OR intersects if any of its disjuncts does.

3.4 Choosing Candidate Cuts
Prior to discussing algorithms to construct qd-tree, we de-
scribe choosing the set of allowed cuts. This set serves as the
search space for the construction algorithms.

We opt for a simple treatment. Since we are given a target
workload, of queries, we simply parse them through a stan-
dard SQL planner and take all pushed-down unary predicates
as allowed cuts. For example, from a target query:

SELECT ... FROM R
WHERE (R.a < 10 OR R.b > 90) AND (R.c IN (0,4))

three cuts are extracted: (1) R.a < 10, (2) R.b > 90, and
(3) R.c IN (0,4). We �nd that our algorithms can easily
handle a few hundreds to low thousands of candidate cuts.

4 GREEDY CONSTRUCTION OF QD-TREE
The construction of a qd-tree is an NP-hard combinatorial
optimization problem. Greedy algorithms are a typical fam-
ily of solutions that are usually e�cient and make locally
optimal choices. Hence, we start by proposing a greedy algo-
rithm to construct the qd-tree. We begin with all the tuples
in a single block, i.e., the qd-tree has a single root node that
contains all the tuples. In each iteration, we split a leaf node
whose size is larger than 21 into two child nodes, and make
sure the two children have size at least 1. When choosing the
cut for a node, we use the one that maximizes ⇠ ()), i.e., the
number of tuples skipped by the partitioning P) induced by
qd-tree) . The idea is similar to decision tree construction,
except that in decision tree learning, the predicate is chosen
using a di�erent criterion such as information gain.

To present the algorithm, we de�ne an action 0 = (?,=) as
applying cut ? to node = in a qd-tree) . The result of action
0 is denoted as) � 0 =) � (?,=). In) � 0, node = becomes
the parent of two child nodes: the left child =? contains all
the tuples in = satisfying ? , and the right child =¬? contains
all the tuples in = satisfying ¬? .

Our algorithm is presented in Algorithm 1. The main com-
putation is to choose the cut ? that maximizes the greedy
criterion⇠ ()C�1� (?,=)) for each node=. For each level of the
tree, the cost to executed the for loop is bounded by$ (|+ | |% |).
The total cost of the while loop is bounded by $ (|+ | |% |3),
where 3 is the �nal depth of the tree. log2

|+ |
1 3 < |+ |/1. In

Research 3: Machine Learning for Databases I SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

197

a categorical column, ?A8>A8C~ 2 {!$, ,"⇢⇡,��⌧� }. The
root is initialized with

root.categorical_mask: (?A8>A8C~ ! [1, 1, 1])
since any of the three values may potentially appear. If we
cut the root with ?A8>A8C~ = "⇢⇡ (say, second value in the
ordered domain), the left and right child would have the
following categorical masks:

le�.categorical_mask: (?A8>A8C~ ! [1, 1, 1])
right.categorical_mask: (?A8>A8C~ ! [1, 0, 1])

because the right child must satisfy ¬(?A8>A8C~ = "⇢⇡).
Overall, this scheme is similar to “dictionary �ltering” in
popular persistent formats such as Parquet.

Thus, (range, categorical_mask) make up a node’s seman-
tic description. We make an optimization in the case of when
data has fully been routed down a qd-tree. In this scenario,
we can freeze the tree and replace each leaf’s range with a
min-max index over the leaf’s records. The min-max index
serves to “tighten” the range hypercube.
Each node of the qd-tree has a semantic description as

described. Further, based on our routing strategy, the blocks
assigned to each leaf together have the completeness prop-
erty, i.e., for a given leaf’s semantic description, every record
satisfying the description is stored at the corresponding leaf.

3.3 Query Processing
A simple way to process queries is to directly execute them
on a dataset partitioned by the block ID (BID) �eld introduced
by qd-tree (Sec. 3.1). In this case, which requires no inter-
vention during query processing, the traditional partition-
pruning [11, 16, 30] block-level indexes (e.g., min-max) are
used for actual block-skipping on a best-e�ort basis. For fur-
ther e�ectiveness, we instead intercept queries submitted
by users and augment them to e�ectively use qd-tree for
partition pruning as follows. Queries are routed through the
qd-tree and augmented with a BID IN (...) clause that lists
the pruned set of block IDs. Modern databases can use this
explicit predicate to prune blocks, without modi�cations to
the database internals. If desired, the query routing func-
tionality can also be integrated into the DBMS to make the
process entirely transparent.
To obtain the BID list, we loop over each leaf descrip-

tion, check whether the query logically intersects with the
leaf subspace, and return the IDs of all intersecting leaves.
Concretely, for any (unary) range predicate (recall from last
section, these include {<, , >, �}), we perform a simple in-
terval intersection check against each leaf.range. For any
equality predicate (= and IN), we check the corresponding
bit vector slot in leaf.categorical_mask. Alternatively, we
could also “route” the query down the tree to reach a set
of leaves; however, we �nd scanning leaf metadata to be

e�cient enough, especially when leaf metadata is grouped
together for fast access.
Building on top of checks for predicates, the intersection

checks for queries are natural extensions.We allow a query to
be arbitrary conjunction or disjunction of unary predicates
(and of lower-level conjuncts/disjuncts). The intersection
logic for AND is simply that it intersects if all of its conjuncts
do. Likewise, an OR intersects if any of its disjuncts does.

3.4 Choosing Candidate Cuts
Prior to discussing algorithms to construct qd-tree, we de-
scribe choosing the set of allowed cuts. This set serves as the
search space for the construction algorithms.

We opt for a simple treatment. Since we are given a target
workload, of queries, we simply parse them through a stan-
dard SQL planner and take all pushed-down unary predicates
as allowed cuts. For example, from a target query:

SELECT ... FROM R
WHERE (R.a < 10 OR R.b > 90) AND (R.c IN (0,4))

three cuts are extracted: (1) R.a < 10, (2) R.b > 90, and
(3) R.c IN (0,4). We �nd that our algorithms can easily
handle a few hundreds to low thousands of candidate cuts.

4 GREEDY CONSTRUCTION OF QD-TREE
The construction of a qd-tree is an NP-hard combinatorial
optimization problem. Greedy algorithms are a typical fam-
ily of solutions that are usually e�cient and make locally
optimal choices. Hence, we start by proposing a greedy algo-
rithm to construct the qd-tree. We begin with all the tuples
in a single block, i.e., the qd-tree has a single root node that
contains all the tuples. In each iteration, we split a leaf node
whose size is larger than 21 into two child nodes, and make
sure the two children have size at least 1. When choosing the
cut for a node, we use the one that maximizes ⇠ ()), i.e., the
number of tuples skipped by the partitioning P) induced by
qd-tree) . The idea is similar to decision tree construction,
except that in decision tree learning, the predicate is chosen
using a di�erent criterion such as information gain.

To present the algorithm, we de�ne an action 0 = (?,=) as
applying cut ? to node = in a qd-tree) . The result of action
0 is denoted as) � 0 =) � (?,=). In) � 0, node = becomes
the parent of two child nodes: the left child =? contains all
the tuples in = satisfying ? , and the right child =¬? contains
all the tuples in = satisfying ¬? .

Our algorithm is presented in Algorithm 1. The main com-
putation is to choose the cut ? that maximizes the greedy
criterion⇠ ()C�1� (?,=)) for each node=. For each level of the
tree, the cost to executed the for loop is bounded by$ (|+ | |% |).
The total cost of the while loop is bounded by $ (|+ | |% |3),
where 3 is the �nal depth of the tree. log2

|+ |
1 3 < |+ |/1. In

Research 3: Machine Learning for Databases I SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

197

Numerical columns Categorical columns

6 FRAMEWORK EXTENSIONS
Having described two algorithms to construct a qd-tree, we
are now in a position to discuss extensions to our framework.

6.1 Advanced Cuts
Thus far we have assumed the candidate cuts are single-
column predicates (Section 3.4). They are desirable because
their simplicity allows for fast evaluation during tree con-
struction. Nevertheless, qd-tree can be extended to support
binary cuts of the form (a�r1, op, a�r2). Recall from Table 1
there are two components of a node’s semantic description,
and neither of them can describe a binary cut. We append a
new component to each node =’s description:

n.adv_cuts: a bit vector of size |AC|

where the constant |�⇠ | denotes the number of advanced cuts
to support and is speci�ed for each workload a priori. Each
position 8 corresponds to “does this node contain records
that satisfy advanced cut 8”, with zero indicating no and
one indicating potentially yes. This is the same semantics as
categorical_mask.
For instance, the TPC-H workload contains non-join bi-

nary �lters such as:
• �⇠0: c_nationkey = s_nationkey
• �⇠1: l_shipdate < l_commitdate
• �⇠2: l_commitdate < l_receiptdate

A vector of (0, 1, 1) thus indicates the �rst condition is de�-
nitely not met (i.e., it describes a subspace of records whose
c_nationkey does not equate s_nationkey).

Lastly, the same mechanism also handles LIKE predicates
or even stateless UDFs (with the caveat that, clearly, the
cost of evaluating the predicates depends on their inherent
complexities). The user can impose a limit on the maximum
number of advanced cuts to support.

6.2 Data Overlap
With the abundance of cheap storage in the cloud, one de-
sirable feature for an analytics system is to trade space for
potentially faster execution time. A fruitful line of work has
dedicated to this problem, e.g., materialized views, which
we review in related work. We now discuss how qd-tree can
also naturally support duplicating data.
Figure 4 shows a 2D synthetic dataset and four queries.

Naively invoking either Greedy or W�������� to construct
a qd-tree for this dataset-workload is suboptimal. Any se-
quence of cuts—recall, the cut points are query literals, i.e.,
any of the edges in the �gure—would lead to 4 blocks: one
with N+1 record, and three with N records. (This is due to
the binary nature of the cuts.) The three blocks would have
to fetch the singleton record they need from the �rst block.
Hence, a total of 3# extra tuples are read.

Figure 4: A scenario where signi�cant data skipping is
gained by replicating a single record. Each query selects# +1
records. The queries only overlap in the one tuple placed
at the center. If the space is naively cut in a binary fashion,
3 out of 4 queries each reads # extra tuples. By handling
overlap, qd-tree replicates the singleton record to all four
N-record regions, so no queries touch unnecessary records.

We extend qd-tree construction to handle such data over-
lap cases as follows. Observe that the reason the “lucky”
(# + 1)-record block is not further cut is due to the mini-
mum block size constraint, 1. We can instead launch either
of our construction algorithms with a relaxed cutting condi-
tion: allowing one of the children to have size smaller than 1.
With this change the lucky block would be further cut into
an # -record one and a block with the singleton record.
Once such a qd-tree is constructed, we loop through all

produced leaves, and partition them into two sets: those with
size � 1 and those with size < 1 (the original constraint). We
then replicate each block in the small-size set to any of its
neighbor blocks in the large-size set. We de�ne two blocks
to be neighbors if their hypercubes have # � 1 dimension
boundaries in common and the intervals at the remaining
dimension are adjacent. This ensures that, with minor modi�-
cations to node metadata, the semantic descriptions preserve
completeness. With this scheme, our algorithms could reach
the optimal partitioning for the scenario in Figure 4 at virtu-
ally no extra storage cost.
6.2.1 Data and�ery Routing. Data routing occurs as be-
fore, with a row routed to all matching blocks. Rows landing
in a replicated block are simply copied to every replica. For
query processing, the candidate set of blocks to be consid-
ered includes all blocks that overlap with the query rectan-
gle. However, we can leverage the completeness property of
blocks to prune out blocks that are redundant. For example,
a query that asks only for the centre rectangle (with the sin-
gleton record) in the example above does not have to fetch
all blocks, even though the min-max index for all four blocks
includes it. This is because of our semantic descriptions and
completeness properties: we can prune away the other blocks
because the �rst block completely covers the query rectangle.
With overlap, the set of blocks scanned when evaluating a
query may contain duplicate rows. To eliminate them, when
scanning block ID 8 , we can simply ignore tuples that match

Research 3: Machine Learning for Databases I SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

201

Advanced Cuts
(similar to features)

a categorical column, ?A8>A8C~ 2 {!$, ,"⇢⇡,��⌧� }. The
root is initialized with

root.categorical_mask: (?A8>A8C~ ! [1, 1, 1])
since any of the three values may potentially appear. If we
cut the root with ?A8>A8C~ = "⇢⇡ (say, second value in the
ordered domain), the left and right child would have the
following categorical masks:

le�.categorical_mask: (?A8>A8C~ ! [1, 1, 1])
right.categorical_mask: (?A8>A8C~ ! [1, 0, 1])

because the right child must satisfy ¬(?A8>A8C~ = "⇢⇡).
Overall, this scheme is similar to “dictionary �ltering” in
popular persistent formats such as Parquet.

Thus, (range, categorical_mask) make up a node’s seman-
tic description. We make an optimization in the case of when
data has fully been routed down a qd-tree. In this scenario,
we can freeze the tree and replace each leaf’s range with a
min-max index over the leaf’s records. The min-max index
serves to “tighten” the range hypercube.
Each node of the qd-tree has a semantic description as

described. Further, based on our routing strategy, the blocks
assigned to each leaf together have the completeness prop-
erty, i.e., for a given leaf’s semantic description, every record
satisfying the description is stored at the corresponding leaf.

3.3 Query Processing
A simple way to process queries is to directly execute them
on a dataset partitioned by the block ID (BID) �eld introduced
by qd-tree (Sec. 3.1). In this case, which requires no inter-
vention during query processing, the traditional partition-
pruning [11, 16, 30] block-level indexes (e.g., min-max) are
used for actual block-skipping on a best-e�ort basis. For fur-
ther e�ectiveness, we instead intercept queries submitted
by users and augment them to e�ectively use qd-tree for
partition pruning as follows. Queries are routed through the
qd-tree and augmented with a BID IN (...) clause that lists
the pruned set of block IDs. Modern databases can use this
explicit predicate to prune blocks, without modi�cations to
the database internals. If desired, the query routing func-
tionality can also be integrated into the DBMS to make the
process entirely transparent.
To obtain the BID list, we loop over each leaf descrip-

tion, check whether the query logically intersects with the
leaf subspace, and return the IDs of all intersecting leaves.
Concretely, for any (unary) range predicate (recall from last
section, these include {<, , >, �}), we perform a simple in-
terval intersection check against each leaf.range. For any
equality predicate (= and IN), we check the corresponding
bit vector slot in leaf.categorical_mask. Alternatively, we
could also “route” the query down the tree to reach a set
of leaves; however, we �nd scanning leaf metadata to be

e�cient enough, especially when leaf metadata is grouped
together for fast access.
Building on top of checks for predicates, the intersection

checks for queries are natural extensions.We allow a query to
be arbitrary conjunction or disjunction of unary predicates
(and of lower-level conjuncts/disjuncts). The intersection
logic for AND is simply that it intersects if all of its conjuncts
do. Likewise, an OR intersects if any of its disjuncts does.

3.4 Choosing Candidate Cuts
Prior to discussing algorithms to construct qd-tree, we de-
scribe choosing the set of allowed cuts. This set serves as the
search space for the construction algorithms.

We opt for a simple treatment. Since we are given a target
workload, of queries, we simply parse them through a stan-
dard SQL planner and take all pushed-down unary predicates
as allowed cuts. For example, from a target query:

SELECT ... FROM R
WHERE (R.a < 10 OR R.b > 90) AND (R.c IN (0,4))

three cuts are extracted: (1) R.a < 10, (2) R.b > 90, and
(3) R.c IN (0,4). We �nd that our algorithms can easily
handle a few hundreds to low thousands of candidate cuts.

4 GREEDY CONSTRUCTION OF QD-TREE
The construction of a qd-tree is an NP-hard combinatorial
optimization problem. Greedy algorithms are a typical fam-
ily of solutions that are usually e�cient and make locally
optimal choices. Hence, we start by proposing a greedy algo-
rithm to construct the qd-tree. We begin with all the tuples
in a single block, i.e., the qd-tree has a single root node that
contains all the tuples. In each iteration, we split a leaf node
whose size is larger than 21 into two child nodes, and make
sure the two children have size at least 1. When choosing the
cut for a node, we use the one that maximizes ⇠ ()), i.e., the
number of tuples skipped by the partitioning P) induced by
qd-tree) . The idea is similar to decision tree construction,
except that in decision tree learning, the predicate is chosen
using a di�erent criterion such as information gain.

To present the algorithm, we de�ne an action 0 = (?,=) as
applying cut ? to node = in a qd-tree) . The result of action
0 is denoted as) � 0 =) � (?,=). In) � 0, node = becomes
the parent of two child nodes: the left child =? contains all
the tuples in = satisfying ? , and the right child =¬? contains
all the tuples in = satisfying ¬? .

Our algorithm is presented in Algorithm 1. The main com-
putation is to choose the cut ? that maximizes the greedy
criterion⇠ ()C�1� (?,=)) for each node=. For each level of the
tree, the cost to executed the for loop is bounded by$ (|+ | |% |).
The total cost of the while loop is bounded by $ (|+ | |% |3),
where 3 is the �nal depth of the tree. log2

|+ |
1 3 < |+ |/1. In

Research 3: Machine Learning for Databases I SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

197

Choosing Cuts

candidates: R.a < 10, R.b > 90, R.c in [0, 4]

Greedy Algorithm
▪ NP-Hard Problem

▪ Adapts standard decision tree algorithm

▪ Start with root = all tuples

▪ Iterate:
– Pick the leave with the best cut among all leaves (with size > 2b)
▪ Best = highest benefit = most data skipped for queries
▪ Can cache this from iteration to iteration

– Add that cut and recurse

▪ Optimal algorithm based on Dynamic Programming
– Too expensive

Greedy Algorithm
▪ Doesn’t look past the next cut

▪ Overall “goodness” of the tree can’t be estimated easily early on

Deep Reinforcement Learning
▪ Earlier work: decision trees for network packet classification (Liang et al.;

SIGCOMM 2019)

▪ Define a Markov Decision Process
– State space: set of all possible “subspaces” of the overall data space (i.e., any possible node in the

decision tree)
– Action: how to split the node
– So we are going to learn how to split a given subspace

▪ Set up RL using two deep networks
– policy network: takes a state (node) and outputs an action (stochastically)
– value network: estimates reward for a given node
– Shared weights
– Use proximal policy optimization for updates

Figure 3: A dataset with disjunctive queries. Regions se-
lected by Q1/Q2 are shown in grey/blue. The candidate cuts
are: {cpu<10, cpu>90, disk<0.01}. The �rst two cuts cannot
skip any query, so Greedy opts for the third cut, resulting in
a scan ratio of 50.5%.W�������� is not limited by the forms
of queries; it produces a layout with a scan ratio of 10.4%, a
4.8⇥ improvement. Discussion in Section 5.1.

5.1 Motivation for RL
Routing tree construction presents several unique challenges
that we argue are good �t for RL.

First, the exact goodness of a tree is only measurable after
the whole tree is completed. Typically, a tree is completed
after dozens or hundreds of cuts. Thus, when deciding what
cut to make, we either approximate its bene�t at that single
step (e.g., a greedy criterion), or we randomly sample a cut
from some (learned, gradually re�ned) distribution, and then
accurately attribute bene�ts of each decision once the true
goodness is calculated. We will show long-term considera-
tion leads to higher quality trees than greedy consideration.
RL methods are thus a natural �t because they study the
optimization of long-term, cumulative rewards.
Second, an RL method does not make assumptions on

the query or data distribution. It requires only a black-box
learning signal, the skipping quality of a tree. To be concrete,
we now present a microbenchmark to showcase the potential
advantage due to this generality.
In Figure 3, we plot a simple dataset with two columns,

(cpu, disk).We draw 2?D ⇠ Unif[0, 100) and38B: ⇠ Unif[0, 1).
Query 1 is a disjunctive query on 2?D (perhaps looking for
anomalies at either ends), and Query 2 is a unary �lter on
38B: . Recall from last section that the optimality proofs of our
Greedy construction relies on the tree-submodularity. When
the query workload contains disjunctive range queries and
the candidate cuts are only simple range predicates, tree sub-
modularity is not satis�ed. Our Greedy algorithm is forced
to choose the cut on 38B:—since, the two cuts on 2?D provide
zero skipping capability (making either cut cannot skip Q1
nor Q2), whereas the cut on 38B: provides a non-zero gain.
This results in a layout of the following two blocks:
• Block 1: 38B: < 0.01
• Block 2: 38B: � 0.01

Thus, Q1 has to scan the large portion of unselected records
in the middle. Our deep RL agent, W��������, is able to
produce a 4.8⇥ better partitioning:
• Block 1: 38B: < 0.01
• Block 2: (38B: � 0.01) ^ (2?D > 90)
• Block 3: (38B: � 0.01) ^ (2?D < 10)
• Block 4: (38B: � 0.01) ^ (2?D 90) ^ (2?D � 10)

Hence, under this layout, both Q1 and Q2 can skip block 4,
which contains a majority of records. This showcases the
power of RL as a black-box optimization method.
Lastly, a large search space needs to be navigated. The

number of candidate cuts can be large, potentially $ (100)
or $ (1000). Further, the number of data dimensions can be
in the dozens or hundreds. Deep RL (compared to classical
RL) methods have shown successes in tackling such high-
dimensional problems For instance, OpenAI Five [34], a deep
RL agent for successfully playing Dota, considers an action
space of $ (1000) dimensions and an $ (20000)-dimensional
observation space. Our W�������� agent uses the same
scalable learning algorithm as OpenAI Five, taking advantage
of recent algorithmic advances.
We next describe the detailed design of W��������, a

deep RL agent that learns to construct qd-trees.

5.2 W��������: the Deep RL agent
To apply any RL algorithm, we �rst need to de�ne the tree
construction Markov Decision Process (MDP). The state
space, (, is de�ned to be any subspace of the entire data
space of the relation under optimization. The action space,
�, is the set of allowed cuts. Taking an action (cut) on a state
(node) produces two new states, which we append into a
queue for exploration. The queue is initialized with a root
state (the root node) when starting each tree construction.
TheW�������� agent, at its core, consists of two learn-

able networks parameterized by \ : (1) the policy network,
c\ : (! �, takes a state and emits a probability distribu-
tion over the action space (“given a node, how good are the
cuts?”), and (2) the value network, +\ : (! R, estimates the
expected cumulative reward from a given state.
Sequentially, the agent (1) takes a node = o� the explo-

ration queue, (2) evaluates its current policy, c\ (=), (3) sam-
ples an action from this output distribution, (4) applies the
sampled action (cut) on node= to produce new nodes. We use
Proximal Policy Optimization (PPO) [43] as the underlying
learning algorithm, a variation in the policy gradient family
of methods. This update rule is used as a black-box subrou-
tine and is not fundamental to the design of W��������.

Intuition. We start each episode (the construction of one
tree) with the root state (the singleton tree with a root node).
The agent takes actions and transition into next state(s).
Once a stopping condition is reached, described next, the

Research 3: Machine Learning for Databases I SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

199

Figure 3: A dataset with disjunctive queries. Regions se-
lected by Q1/Q2 are shown in grey/blue. The candidate cuts
are: {cpu<10, cpu>90, disk<0.01}. The �rst two cuts cannot
skip any query, so Greedy opts for the third cut, resulting in
a scan ratio of 50.5%.W�������� is not limited by the forms
of queries; it produces a layout with a scan ratio of 10.4%, a
4.8⇥ improvement. Discussion in Section 5.1.

5.1 Motivation for RL
Routing tree construction presents several unique challenges
that we argue are good �t for RL.

First, the exact goodness of a tree is only measurable after
the whole tree is completed. Typically, a tree is completed
after dozens or hundreds of cuts. Thus, when deciding what
cut to make, we either approximate its bene�t at that single
step (e.g., a greedy criterion), or we randomly sample a cut
from some (learned, gradually re�ned) distribution, and then
accurately attribute bene�ts of each decision once the true
goodness is calculated. We will show long-term considera-
tion leads to higher quality trees than greedy consideration.
RL methods are thus a natural �t because they study the
optimization of long-term, cumulative rewards.
Second, an RL method does not make assumptions on

the query or data distribution. It requires only a black-box
learning signal, the skipping quality of a tree. To be concrete,
we now present a microbenchmark to showcase the potential
advantage due to this generality.
In Figure 3, we plot a simple dataset with two columns,

(cpu, disk).We draw 2?D ⇠ Unif[0, 100) and38B: ⇠ Unif[0, 1).
Query 1 is a disjunctive query on 2?D (perhaps looking for
anomalies at either ends), and Query 2 is a unary �lter on
38B: . Recall from last section that the optimality proofs of our
Greedy construction relies on the tree-submodularity. When
the query workload contains disjunctive range queries and
the candidate cuts are only simple range predicates, tree sub-
modularity is not satis�ed. Our Greedy algorithm is forced
to choose the cut on 38B:—since, the two cuts on 2?D provide
zero skipping capability (making either cut cannot skip Q1
nor Q2), whereas the cut on 38B: provides a non-zero gain.
This results in a layout of the following two blocks:
• Block 1: 38B: < 0.01
• Block 2: 38B: � 0.01

Thus, Q1 has to scan the large portion of unselected records
in the middle. Our deep RL agent, W��������, is able to
produce a 4.8⇥ better partitioning:
• Block 1: 38B: < 0.01
• Block 2: (38B: � 0.01) ^ (2?D > 90)
• Block 3: (38B: � 0.01) ^ (2?D < 10)
• Block 4: (38B: � 0.01) ^ (2?D 90) ^ (2?D � 10)

Hence, under this layout, both Q1 and Q2 can skip block 4,
which contains a majority of records. This showcases the
power of RL as a black-box optimization method.
Lastly, a large search space needs to be navigated. The

number of candidate cuts can be large, potentially $ (100)
or $ (1000). Further, the number of data dimensions can be
in the dozens or hundreds. Deep RL (compared to classical
RL) methods have shown successes in tackling such high-
dimensional problems For instance, OpenAI Five [34], a deep
RL agent for successfully playing Dota, considers an action
space of $ (1000) dimensions and an $ (20000)-dimensional
observation space. Our W�������� agent uses the same
scalable learning algorithm as OpenAI Five, taking advantage
of recent algorithmic advances.
We next describe the detailed design of W��������, a

deep RL agent that learns to construct qd-trees.

5.2 W��������: the Deep RL agent
To apply any RL algorithm, we �rst need to de�ne the tree
construction Markov Decision Process (MDP). The state
space, (, is de�ned to be any subspace of the entire data
space of the relation under optimization. The action space,
�, is the set of allowed cuts. Taking an action (cut) on a state
(node) produces two new states, which we append into a
queue for exploration. The queue is initialized with a root
state (the root node) when starting each tree construction.
TheW�������� agent, at its core, consists of two learn-

able networks parameterized by \ : (1) the policy network,
c\ : (! �, takes a state and emits a probability distribu-
tion over the action space (“given a node, how good are the
cuts?”), and (2) the value network, +\ : (! R, estimates the
expected cumulative reward from a given state.
Sequentially, the agent (1) takes a node = o� the explo-

ration queue, (2) evaluates its current policy, c\ (=), (3) sam-
ples an action from this output distribution, (4) applies the
sampled action (cut) on node= to produce new nodes. We use
Proximal Policy Optimization (PPO) [43] as the underlying
learning algorithm, a variation in the policy gradient family
of methods. This update rule is used as a black-box subrou-
tine and is not fundamental to the design of W��������.

Intuition. We start each episode (the construction of one
tree) with the root state (the singleton tree with a root node).
The agent takes actions and transition into next state(s).
Once a stopping condition is reached, described next, the

Research 3: Machine Learning for Databases I SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

199

From Neurocuts Paper

Some Details
▪ Stopping condition based on size of the node

▪ All rewards computed on a sample (approx. 1%): could be still quite
expensive

▪ Implementation:
– Uses 2 fully connected layers, 512 units each, with ReLU activation
– Different output layers for the two networks
– State (node) defined by a concatenation of range predicates and categorial masks

▪ Extensions
– Advanced multi-attribute predicate-based cuts
– Allow for data overlap or duplication

Thoughts
▪ Solving an NP-Hard problem using RL

▪ Should we expect this to work?

▪ What if we were to sample a bunch of trees and try to average based on that?
– Perhaps that’s what RL is doing

▪ Failure scenarios?
– Do we expect RL to converge to a bad local optimum

Literature Survey Assignment
▪ Individual; Due March 25, 2023

▪ Pick any one of these topics and explore state of the art
– e.g., learned bloom filters, storage layouts, multi-dimensional indexes, etc.
– See later papers as well (from the schedule)

