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Bloom Filters

Simplest one: Use a single hash function -- for each key, set h(key) = 1
Standard practice: Use 3 or more hash functions

No false negatives = if the key exists, we will return 1
Need to bound “false positives”
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No updates allowed
Other data structures (e.g., counting bloom filter) that allow it
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Bloom F11ters

= Widely used in many contexts

- e.g., Indexes use them to filter searches quickly (like log-structured
merge trees)

- Network problems (e.g., routing, etc)
- — Data streams
— Can improve “joins” using them

= But, standard Bloom Filters too big
— 2.23 GB for a FPR of 0.01, for 1 billion records



Learned Bloom Filters

= Train a classification model instead

- Positive examples we have, but Negative examples are needed
— Some positive examples may get classified as negative

* Approach:
- — Check the model first -- if positive, return TRUE

— If not, consult an auxiliary Bloomfilter to confirm
= Hopefully this BF is much smaller




Learned Bloom Filters

= Results: |
- 1.7 M URLs; normal BF for 1% FPR = 2.04 MB
- Model

= 6-dimensional GRU with a 32-dimensional embedding for each character
= 0.0259MB '
- — Spillover Bloom Filter=1.31

—— BloomFilter
— W=128,E=32
— W=32,E=32
— W=16,E=32
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Sandwiched Bloom Filter
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Mitzenmacher; NeurlPS 2018

Theoretical analysis of learned bloom filters

Proposed adding another BF on top (model == learned oracle)

 Better theoretical guarantees
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Follow-up Work

* Metalearning Bloom Filters

- Uses a Recurrent Neural Network for one-shot (one-pass) learning
- Maintains a small memory (analogous to Bloom Filter Bitmap) that’s updated with new data items
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Figure 1. Overview of the Neural Bloom Filter architecture.

= Partitioned Bloom Filters; ICLR 2020

- Maintain different auxiliary BFs for different score-ranges of the model
— Figure out the “threshold” (to accept a key) automatically
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Storage Data Layouts
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* Most big datasets split by columns/rows
— Usually by date (horizontal), and then columns (vertical)

Figure 1: Blocking at Data Loading

Sun et al.; SIGMOD 14; Fine-grained data partitioning for aggressive skipping



Storage Data Layouts

— e —

* Most big datasets split by columns/rows
— Usually by date (horizontal), and then columns (vertical)
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Figure 2: Example of Blocking

Sun et al.; SIGMOD 14; Fine-grained data partitioning for aggressive skipping



Storage Data Layouts

= Most big datasets split by columns/rows
— Usually by date (horizontal), and then columns (vertical)

* Sun et al., approach
— Pick some “filters” that would be useful for skipping (i.e., commonly seen in queries)
- — Try to combine tuples into blocks that have similar feature vectors

» Use bottom-up clustering for this

- Try to maximize the zeros (more zeros =» more skipping) |

- A block tagged (3, 1, 0) =» has tuples with features 1 and 2, but no tuples with feature 3
- Serves as a “semantic” description of the block

- “Complete-ness” not guaranteed
= Atuple with features (3, 0, 0) could be in a few different blocks

Sun et al.; SIGMOD 14; Fine-grained data partitioning for aggressive skipping
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Main Ideas

* Aim for complete and semantic partitioning
» Roughly based on k-d-trees

— Partition the multi-dimensional space recursively
—In essence, build out a “decision tree” that partitions the tuples
— Each leaf partition has a clear semantic description

= Question:
— How to build this tree?



k-d-trees
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Figure 2: An example qd-tree with four leaf blocks.




Qd-Trees
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Figure 1: System Architecture.




Qd-Trees

Fields of node n Definition

n.range Hypercube describing the node’s sub-
space. 2N-dimensional array.

n.categorical_mask Map: categorical column i’s name —
|Dom;|-dim of bits. 0 means that value
is not present.

Table 1: Semantic description of a qd-tree node.

Numerical columns

root.range: [0, ]MAchu ), [0, MAX em),

left.range: [0,10%), [0, MAX\nem)
right.range:  [10%, MAX py), [0, MAX mem)
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Choosing Cuts

SELECT ... FROM R

WHERE (R.a < 10 OR R.b > 90) AND (R.c IN (0,4))

candidates: R.a <10, R.b > 90, R.c in[o, 4]

Categorical columns Advanced Cuts
(similar to features)

root.categorical_mask: (priority — [1,1,1])

o ACy: c_nationkey = s_nationkey
e ACy: 1_shipdate < 1_commitdate

o AC,: 1_commitdate < 1l_receiptdate

left.categorical_mask: (priority — [1,1,1])

right.categorical_mask: (priority — [1,0,1])



Greedy Algorlthm

NP-Hard Problem

Adapts standard decision tree algorithm

Start with root = all tuples

|terate:

— Pick the leave with the best cut among all leaves (with size > 2b)
» Best = highest benefit = most data skipped for querles
= Can cache this from iteration to iteration

- Add that cut and recurse

Optimal algorithm based on Dynamic Programming
- Too expensive



Greedy Algorithm

= Doesn’t look past the next cut

|\\

» Overall "goodness” of the tree can’t be estimated easily early on

Ql: cpu<10 OR cpu=>90
m Q2: aesk<0.01

Figure 3: A dataset with disjunctive queries. Regions se-
lected by Q1/Q2 are shown in grey/blue. The candidate cuts
are: {cpu<10, cpu=90, disk<0.01}. The first two cuts cannot
skip any query, so Greedy opts for the third cut, resulting in
a scan ratio of 50.5%. Woobnsrocx is not limited by the forms
of queries; it produces a layout with a scan ratio of 10.4%, a
48X improvement. Discussion in Section 5.1.




Deep Reinforcement Learning
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» Earlier work: decision trees for network packet classification (Liang et al.;
SIGCOMM 2019)

= Define a Markov Decision Process

~ State space: set of all possible “subspaces” of the overall data space (i.e., any possible node in the
decision tree)

— Action: how to split the node
- So we are going to learn how to split a given subspace

» Set up RL using two deep networks
- policy'network: takes a state (node) and outputs an action (stochastically)
— value network: estimates reward for a given node

— Shared weights
— Use proximal policy optimization for updates



From Neurocuts Paper
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Figure 4: (a) Classic RL system. An agent takes an ac-
tion, A;, based on the current state of the environment,
St, and applies it to the environment. This leads to a
change in the environment state (S;;;) and a reward
(R¢+1)- (b) NeuroCuts as an RL system.




Some Details

Stopping condition based on size of the node.

All rewards computed on a sample (approx. 1%): could be still quite
expensive ==

Implementation:
— Uses 2 fully connected layers, 512 units each, with ReLU activation

— Different output layers for the two networks |
— State (node) defined by a concatenation of range predicates and categorial masks

Extensions
— Advanced multi-attribute predicate-based cuts
— Allow for data overlap or duplication



Thoughts

Solving an NP-Hard problem using RL
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Should we expect this to work?

What if we were to sample a bunch of trees and try to average based on that?
= Perhaps that's what RL is doing

Failure scenarios?
— Do we expect RL to converge to a bad local optimum



Literature Survey Assignment

= Individual; Due March 25, 2023

» Pick any one of these topics and explore state of the art

- e.g., learned bloom filters, storage layouts, multi-dimensional indexes, etc.
— See later papers as well (from the schedule)
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