
Machine Learning for
Data Management Systems

Learned LSMs
Amol Deshpande
February 9, 2023

Outline
▪ Log-structured Merge Trees

▪ WiscKey à Bourbon

▪ Discussion

Log-structured Merge Trees
▪ Very widely used today, in most modern systems

– RocksDB, Cassandra, LevelDB, InfluxDB, Bigtable, …

▪ Key insight:
– B+-trees/Hash index etc., require ”in-place” random updates
▪ Have to do reorganizations when updates are made

– Not a good idea as the gap between random and sequential increases
– Also, not a good idea for SSDs which don’t like small writes
– Instead
▪ Keep all the data sorted in memory and build red/black tree or binary tree on it
▪ As you run out of memory, write out the sorted “run” to disk and never modify it again (except see below)
▪ When “searching”, you have to search all of ”runs” -- so periodically compact them to reduce the number of runs

Log-structured Merge Trees

http://www.benstopford.com/2015/02/14/log-structured-merge-trees/

Log-structured Merge Trees

http://www.benstopford.com/2015/02/14/log-structured-merge-trees/

Log-structured Merge Trees
▪ Benefits:

– Large sequential writes
– Compaction is done in a batched fashion and exploits the sorted

nature à very fast and sequential writes as well

▪ Drawbacks:
– Searching is expensive
– Same “key” is present in many different files
– Can use “bloom filters” to reduce the number of files touched
▪ Read up if interested

WiscKey
learned-index implementation of WiscKey (§4). BOURBON

uses piece-wise linear regression, a simple but effective
model that enables both fast training (i.e., learning) and in-
ference (i.e., lookups) with little space overhead. BOURBON

employs file learning: models are built over files given
that an LSM file, once created, is never modified in-place.
BOURBON implements a cost-benefit analyzer that dynam-
ically decides whether or not to learn a file, reducing un-
necessary learning while maximizing benefits. While most
of the prior work on learned indexes [13, 20, 31] has made
strides in optimizing stand-alone data structures, BOURBON

integrates learning into a production-quality system that is
already highly optimized. BOURBON’s implementation adds
around 5K LOC to WiscKey (which has ⇠20K LOC).

We analyze the performance of BOURBON on a range of
synthetic and real-world datasets and workloads (§5). We
find that BOURBON reduces the indexing costs of WiscKey
significantly and thus offers 1.23⇥ – 1.78⇥ faster lookups
for various datasets. Even under workloads with significant
write load, BOURBON speeds up a large fraction of lookups
and, through cost-benefit, avoids unnecessary (early) model
building. Thus, BOURBON matches the performance of an
aggressive-learning approach but performs model building
more judiciously. Finally, most of our analysis focuses on
the case where fast lookups will make the most difference,
namely when the data resides in memory (i.e., in the file-
system page cache). However, we also experiment with
BOURBON when data resides on a fast storage device (an Op-
tane SSD) or when data does not fit entirely in memory, and
show that benefits can still be realized.

This paper makes four contributions. We present the first
detailed study of how LSMs function internally with learning
in mind. We formulate a set of guidelines on how to integrate
learned indexes into an LSM (§3). We present the design and
implementation of BOURBON which incorporates learned in-
dexes into a real, highly optimized, production-quality LSM
system (§4). Finally, we analyze BOURBON’s performance in
detail, and demonstrate its benefits (§5).

2 Background

We first describe log-structured merge trees and explain how
data is organized in LevelDB. Next, we describe WiscKey, a
modified version of LevelDB that we adopt as our baseline.
We then provide a brief background on learned indexes.

2.1 LSM and LevelDB

An LSM tree is a persistent data structure used in key-value
stores to support efficient inserts and updates [39]. Unlike
B-trees that require many random writes to storage upon up-
dates, LSM trees perform writes sequentially, thus achieving
high write throughput [39].

An LSM organizes data in multiple levels, with the size
of each level increasing exponentially. Inserts are initially
buffered in an in-memory structure; once full, this structure

key2
key1

immutable
memtable

. . .

. . .

L6

ss
ta

bl
es

memtable
di

sk
m

em
or

y

. . .

(a) LevelDB

L2

L1

L0

1 FindFiles

index block

data-block 1
data-block 2

data-block n

. . .

filter block
candidate-1

candidate-2

3 SearchIB 7 ReadValue

sstable
value-log

. . .

. . .

(b) WiscKey

candidate-3

2 LoadIB+FB

5
 L

oa
dD

B

6 SearchDB
4 SearchFB

IB FB DB

. . .

Figure 1: LevelDB and WiscKey. (a) shows how data is
organized in LevelDB and how a lookup is processed. The
search in in-memory tables is not shown. The candidate ssta-
bles are shown in bold boxes. (b) shows how keys and values
are separated in WiscKey.

is merged with the first level of on-disk data. This procedure
resembles merge-sort and is referred to as compaction. Data
from an on-disk level is also merged with the successive level
if the size of the level exceeds a limit. Note that updates do
not modify existing records in-place; they follow the same
path as inserts. As a result, many versions of the same item
can be present in the tree at a time. Throughout this paper,
we refer to the levels that contain the newer data as higher
levels and the older data as lower levels.

A lookup request must return the latest version of an item.
Because higher levels contain the newer versions, the search
starts at the topmost level. First, the key is searched for in
the in-memory structure; if not found, it is searched for in
the on-disk tree starting from the highest level to the lowest
one. The value is returned once the key is found at a level.

LevelDB [22] is a widely used key-value store built us-
ing LSM. Figure 1(a) shows how data is organized in Lev-
elDB. A new key-value pair is first written to the memtable;
when full, the memtable is converted into an immutable table
which is then compacted and written to disk sequentially as
sstables. The sstables are organized in seven levels (L0 being
the highest level and L6 the lowest) and each sstable corre-
sponds to a file. LevelDB ensures that key ranges of different
sstables at a level are disjoint (two files will not contain over-
lapping ranges of keys); L0 is an exception where the ranges
can overlap across files. The amount of data at each level
increases by a factor of ten; for example, the size of L1 is
10MB, while L6 contains several 100s of GBs. If a level ex-
ceeds its size limit, one or more sstables from that level are
merged with the next level; this is repeated until all levels are
within their limits.
Lookup steps. Figure 1(a) also shows how a lookup request
for key k proceeds. 1 FindFiles: If the key is not found
in the in-memory tables, LevelDB finds the set of candidate
sstable files that may contain k. A key in the worst case

156 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

WiscKey
▪ Main Differences
– “Values” kept in a separate log so that the SSTables/MemTables are small
▪ SSTables now contain a pointer to the value
▪ Improves compaction times

– Requires an extra read at the end (once you have a location of the value)
– Range queries are more expensive (values are not sorted)
– Bloomfilter for each “block” within a run?
▪ The Bourbon paper suggests this, but the original paper says a BF for each run

may be present in all L0 files (because of overlapping ranges)
and within one file at each successive level. 2 LoadIB+FB:
In each candidate sstable, an index block and a bloom-filter
block are first loaded from the disk. 3 SearchIB: The in-
dex block is binary searched to find the data block that may
contain k. 4 SearchFB: The filter is queried to check if k is
present in the data block. 5 LoadDB: If the filter indicates
presence, the data block is loaded. 6 SearchDB: The data
block is binary searched. 7 ReadValue: If the key is found
in the data block, the associated value is read and the lookup
ends. If the filter indicates absence or if the key is not found
in the data block, the search continues to the next candidate
file. Note that blocks are not always loaded from the disk;
index and filter blocks, and frequently accessed data blocks
are likely to be present in memory (i.e., file-system cache).

We refer to these search steps at a level that occur as part
of a single lookup as an internal lookup. A single lookup
thus consists of many internal lookups. A negative internal
lookup does not find the key, while a positive internal lookup
finds the key and is thus the last step of a lookup request.

We differentiate indexing steps from data-access steps; in-
dexing steps such as FindFiles, SearchIB, SearchFB, and
SearchDB search through the files and blocks to find the
desired key, while data-access steps such as LoadIB+FB,
LoadDB, and ReadValue read the data from storage. Our
goal is to reduce the time spent in indexing.

2.2 WiscKey

In LevelDB, compaction results in large write amplification
because both keys and values are sorted and rewritten. Thus,
LevelDB suffers from high compaction overheads, affecting
foreground workloads.

WiscKey [37] (and Badger [1]) reduces this overhead by
storing the values separately; the sstables contain only keys
and pointers to the values as shown in Figure 1(b). With this
design, compaction sorts and writes only the keys, leaving
the values undisturbed, thus reducing I/O amplification and
overheads. WiscKey thus performs significantly better than
other optimized LSM implementations such as LevelDB and
RocksDB. Given these benefits, we adopt WiscKey as the
baseline for our design. Further, WiscKey’s key-value sepa-
ration enables our design to handle variable-size records; we
describe how in more detail in §4.2.

The write path of WiscKey is similar to that of LevelDB
except that values are written to a value log. A lookup in
WiscKey also involves searching at many levels and a final
read into the log once the target key is found. The size of
WiscKey’s LSM tree is much smaller than LevelDB because
it does not contain the values; hence, it can be entirely cached
in memory [37]. Thus, a lookup request involves multiple
searches in the in-memory tree, and the ReadValue step per-
forms one final read to retrieve the value.

2.3 Optimizing Lookups in LSMs

Performing a lookup in LevelDB and WiscKey requires
searching at multiple levels. Further, within each sstable,
many blocks are searched to find the target key. Given that
LSMs form the basis of many embedded key-value stores
(e.g., LevelDB, RocksDB [18]) and distributed storage sys-
tems (e.g., BigTable [8], Riak [38]), optimizing lookups in
LSMs can have huge benefits.

A recent body of work, starting with learned indexes [31],
makes a case for replacing or augmenting traditional index
structures with machine-learning models. The key idea is to
train a model (such as linear regression or neural nets) on the
input so that the model can predict the position of a record
in the sorted dataset. The model can have inaccuracies, and
thus the prediction has an associated error bound. During
lookups, if the model-predicted position of the key is correct,
the record is returned; if it is wrong, a local search is per-
formed within the error bound. For example, if the predicted
position is pos and the minimum and maximum error bounds
are d min and d max, then upon a wrong prediction, a local
search is performed between pos�d min and pos+d max.

Learned indexes can make lookups significantly faster. In-
tuitively, a learned index turns a O(log-n) lookup of a B-tree
into a O(1) operation. Empirically, learned indexes provide
1.5⇥ – 3⇥ faster lookups than B-trees [31]. Given these ben-
efits, we ask the following questions: can learned indexes for
LSMs make lookups faster? If yes, under what scenarios?

Traditional learned indexes do not support updates be-
cause models learned over the existing data would change
with modifications [13, 20, 31]. However, LSMs are attrac-
tive for their high performance in write-intensive workloads
because they perform writes only sequentially. Thus, we ex-
amine: how to realize the benefits of learned indexes while
supporting writes for which LSMs are optimized? We answer
these two questions next.

3 Learned Indexes: a Good Match for LSMs?

In this section, we first analyze if learned indexes could be
beneficial for LSMs and examine under what scenarios they
can improve lookup performance. We then provide our in-
tuition as to why learned indexes might be appropriate for
LSMs even when allowing writes. We conduct an in-depth
study based on measurements of how WiscKey functions in-
ternally under different workloads to validate our intuition.
From our analysis, we derive a set of learning guidelines.

3.1 Learned Indexes: Beneficial Regimes

A lookup in LSM involves several indexing and data-access
steps. Optimized indexes such as learned indexes can reduce
the overheads of indexing but cannot reduce data-access
costs. In WiscKey, learned indexes can thus potentially re-
duce the costs of indexing steps such as FindFiles, SearchIB,
and SearchDB, while data-access costs (e.g., ReadValue)

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 157

Outline
▪ Log-structured Merge Trees

▪WiscKey à Bourbon

▪ Discussion

Are Learned Indexes a Good Match?
▪ How big is the indexing cost compared to overall cost?

▪ Indexing costs high if the data is in-memory, but not if on an SSD
– Access costs will dominate, so not much benefit to improving indexing (about 20%

assuming no cost to indexing)
– Amdahl’s law

 0

 20

 40

 60

 80

 100

InMemory SATA NVMe Optane

3 µs 13.1 µs 9.3 µs 3.8 µs

data
access

index
-ingP

er
ce

n
ta

g
e

(%
)

FindFiles
SearchIB+SearchDB

SearchFB

LoadIB+FB
LoadDB

ReadValue

Other

Figure 2: Lookup Latency Breakdown. The figure shows
the breakdown of lookup latency in WiscKey. The first bar
shows the case when data is cached in memory. The other
three bars show the case where the dataset is stored on dif-
ferent types of SSDs. We perform 10M random lookups on
the Amazon Reviews dataset [5]; the figure shows the break-
down of the average latency (shown at the top of each bar).
The indexing portions are shown in solid colors; data access
and other portions are shown in patterns.

cannot be significantly reduced. As a result, learned in-
dexes can improve overall lookup performance if indexing
contributes to a sizable portion of the total lookup latency.
We identify scenarios where this is the case.

First, when the dataset or a portion of it is cached in mem-
ory, data-access costs are low, and so indexing costs become
significant. Figure 2 shows the breakdown of lookup la-
tencies in WiscKey. The first bar shows the case when the
dataset is cached in memory; the second bar shows the case
where the data is stored on a flash-based SATA SSD. With
caching, data-access and indexing costs contribute almost
equally to the latency. Thus, optimizing the indexing por-
tion can reduce lookup latencies by about 2⇥. When the
dataset is not cached, data-access costs dominate and thus
optimizing indexes may yield smaller benefits (about 20%).

However, learned indexes are not limited to scenarios
where data is cached in memory. They offer benefit on fast
storage devices that are currently prevalent and can do more
so on emerging faster devices. The last three bars in Figure 2
show the breakdown for three kinds of devices: flash-based
SSDs over SATA and NVMe, and an Optane SSD. As the
device gets faster, lookup latency (as shown at the top) de-
creases, but the fraction of time spent on indexing increases.
For example, with SATA SSDs, indexing takes about 17% of
the total time; in contrast, with Optane SSDs, indexing takes
44% and thus optimizing it with learned indexes can po-
tentially improve performance by 1.8⇥. More importantly,
the trend in storage performance favors the use of learned
indexes. With storage performance increasing rapidly and
emerging technologies like 3D Xpoint memory providing
very low access latencies, indexing costs will dominate and
thus learned indexes will yield increasing benefits.
Summary. Learned indexes could be beneficial when the
database or a portion of it is cached in memory. With fast
storage devices, regardless of caching, indexing contributes

to a significant fraction of the lookup time; thus, learned in-
dexes can prove useful in such cases. With storage devices
getting faster, learned indexes will be even more beneficial.

3.2 Learned Indexes with Writes

Learned indexes provide higher lookup performance com-
pared to traditional indexes for read-only analytical work-
loads. However, a major drawback of learned indexes (as
described in [31]) is that they do not support modifications
such as inserts and updates [13, 20]. The main problem with
modifications is that they alter the data distribution and so
the models must be re-learned; for write-heavy workloads,
models must be rebuilt often, incurring high overheads.

At first, it may seem like learned indexes are not a good
match for write-heavy situations for which LSMs are opti-
mized. However, we observe that the design of LSMs fits
well with learned indexes. Our key realization is that al-
though updates can change portions of the LSM tree, a large
part remains immutable. Specifically, newly modified items
are buffered in the in-memory structures or present in the
higher levels of the tree, while stable data resides at the lower
levels. Given that a large fraction of the dataset resides in
the stable, lower levels, lookups to this fraction can be made
faster with no or few re-learnings. In contrast, learning in
higher levels may be less beneficial: they change at a faster
rate and thus must be re-learned often.

We also realize that the immutable nature of sstable files
makes them an ideal unit for learning. Once learned, these
files are never updated and thus a model can be useful until
the file is replaced. Further, the data within an sstable is
sorted; such sorted data can be learned using simple models.
A level, which is a collection of many immutable files, can
also be learned as a whole using simple models. The data in
a level is also sorted: the individual sstables are sorted, and
there are no overlapping key ranges across sstables.

We next conduct a series of in-depth measurements to vali-
date our intuitions. Our experiments confirm that while a part
of our intuition is indeed true, there are some subtleties (for
example, in learning files at higher levels). Based on these
experimental results, we formulate a set of learning guide-
lines: a few simple rules that an LSM that applies learned
indexes should follow.
Experiments: goal and setup. The goal of our experiments
is to determine how long a model will be useful and how of-
ten it will be useful. A model built for a sstable file is useful
as long as the file exists; thus, we first measure and analyze
sstable lifetimes. How often a model will be used is deter-
mined by how many internal lookups it serves; thus, we next
measure the number of internal lookups to each file. Since
models can also be built for entire levels, we finally mea-
sure level lifetimes as well. To perform our analysis, we run
workloads with varying amounts of writes and reads, and
measure the lifetimes and number of lookups. We conduct
our experiments on WiscKey, but we believe our results are

158 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Are Learned Indexes a Good Match?
▪ Is there any point in building expensive indexes if there are too many write?

▪ Let’s look at how often SSTables are deleted
– Lower levels have decent lifetimes, but not upper levels -- especially for high write ratios
– Interestingly: a significant fraction of SSTables live for a very short time even in lower levels
▪ Compaction often propagates all the way down

10
0

10
1

10
2

10
3

10
4

 0.1 1 10 100A
v

er
ag

e
li

fe
ti

m
e

(s
)

Write percentage (%)

L4
L3

L2
L1

L0

 0

 20

 40

 60

 80

 100

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

C
D

F

Lifetime (s)

L4 L1

 0

 20

 40

 60

 80

 100

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

C
D

F

Lifetime (s)

1%
5%

10%
20%

50%

 0

 20

 40

 60

 80

 100

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

C
D

F

Lifetime (s)

1%
5%

10%
20%

50%

(i) Level 1 (ii) Level 4
(a) Average lifetimes with varying write % (b) Lifetime distribution with 5% writes (c) Lifetime distributions with varying write %

Figure 3: SSTable Lifetimes. (a) shows the average lifetime of sstable files in levels L4 to L0. (b) shows the distribution of
lifetimes of sstables in L1 and L4 with 5% writes. (c) shows the distribution of lifetimes of sstables for different write percentages
in L1 and L4.

10
0

10
2

10
4

10
6

10
8

 0.1 1 10 100

A
v
g
.
in

te
rn

al
 l

o
o
k
u
p
s/

fi
le

Write percentage (%)

L4
L3

L2
L1

L0

10
0

10
2

10
4

10
6

10
8

 0.1 1 10 100

A
v
g
.
n
eg

at
iv

e
lo

o
k
u
p
s/

fi
le

Write percentage (%)

L4
L3

L2
L1

L0

10
0

10
2

10
4

10
6

10
8

 0.1 1 10 100

A
v
g
.
p
o
si

ti
v
e

lo
o
k
u
p
s/

fi
le

Write percentage (%)

L4
L3

L2
L1

L0

10
0

10
2

10
4

10
6

10
8

 0.1 1 10

A
v
g
.
in

te
rn

al
 l

o
o
k
u
p
s/

fi
le

Write percentage (%)

L4
L3

L2
L1

L0

10
0

10
2

10
4

10
6

10
8

 0.1 1 10 100

A
v
g
.
in

te
rn

al
 l

o
o
k
u
p
s/

fi
le

Write percentage (%)

L4 L3 L2

(i) Total (ii) Negative (iii) Positive (iv) Positive (Zipfian)
(a) Randomly loaded dataset (b) Sequentially loaded dataset

Figure 4: Number of Internal Lookups Per File. (a)(i) shows the average internal lookups per file at each level for a
randomly loaded dataset. (b) shows the same for sequentially loaded dataset. (a)(ii) and (a)(iii) show the negative and positive
internal lookups for the randomly loaded case. (a)(iv) shows the positive internal lookups for the randomly loaded case when
the workload distribution is Zipfian.

applicable to most LSM implementations. We first load the
database with 256M key-value pairs. We then run a workload
with a single rate-limited client that performs 200M opera-
tions, a fraction of which are writes. Our workload chooses
keys uniformly at random.
Lifetime of SSTables. To determine how long a model will
be useful, we first measure and analyze the lifetimes of ssta-
bles. To do so, we track the creation and deletion times of all
sstables. For files created during the load phase, we assign
the workload-start time as their creation time; for other files,
we record the actual creation times. If the file is deleted dur-
ing the workload, then we calculate its exact lifetime. How-
ever, some files are not deleted by the end of the workload
and we must estimate their lifetimes.†

Figure 3(a) shows the average lifetime of sstable files at
different levels. We make three main observations. First, the
average lifetime of sstable files at lower levels is greater than
that of higher levels. Second, at lower percentages of writes,
even files at higher levels have a considerable lifetime; for
example, at 5% writes, files at L0 live for about 2 minutes
on an average. Files at lower levels live much longer; files
at L4 live about 150 minutes. Third, although the average
lifetime of files reduces with more writes, even with a high

†If the files are created during load, we assign the workload duration as
their lifetimes. If not, we estimate the lifetime of a file based on its creation
time (c) and the total workload time (w); the lifetime of the file is at least
w� c. We thus consider the lifetime distribution of other files that have a
lifetime of at least w�c. We then pick a random lifetime in this distribution
and assign it as this file’s lifetime.

amount of writes, files at lower levels live for a long period.
For instance, with 50% writes, files at L4 live for about 60
minutes. In contrast, files at higher level live only for a few
seconds; for example, an L0 file lives only about 10 seconds.

We now take a closer look at the lifetime distribution. Fig-
ure 3(b) shows the distributions for L1 and L4 files with 5%
writes. We first note that some files are very short-lived,
while some are long-lived. For example, in L1, the lifetime
of about 50% of the files is only about 2.5 seconds. If files
cross this threshold, they tend to live for much longer times;
almost all of the remaining L1 files live over five minutes.

Surprisingly, even at L4, which has a higher average life-
time for files, a few files are very short-lived. We observe
that about 2% of L4 files live less than a second. We find
that there are two reasons why a few files live for a very
short time. First, compaction of a Li file creates a new file in
Li+1 which is again immediately chosen for compaction to
the next level. Second, compaction of a Li file creates a new
file in Li+1, which has overlapping key ranges with the next
file that is being compacted from Li. Figure 3(c) shows that
this pattern holds for other percentages of writes too. We ob-
served that this holds for other levels as well. From the above
observations, we arrive at our first two learning guidelines.
Learning guideline - 1: Favor learning files at lower levels.
Files at lower levels live for a long period even for high write
percentages; thus, models for these files can be used for a
long time and need not be rebuilt often.
Learning guideline - 2: Wait before learning a file. A few

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 159

Are Learned Indexes a Good Match?
▪ How often will the models be used if we build them?

▪ Compute #lookups by levels
– High #lookups at internal levels, but many of them are negative
– Higher fraction of positive lookups at lower levels

10
0

10
1

10
2

10
3

10
4

 0.1 1 10 100A
v
er

ag
e

li
fe

ti
m

e
(s

)

Write percentage (%)

L4
L3

L2
L1

L0

 0

 20

 40

 60

 80

 100

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

C
D

F
Lifetime (s)

L4 L1

 0

 20

 40

 60

 80

 100

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

C
D

F

Lifetime (s)

1%
5%

10%
20%

50%

 0

 20

 40

 60

 80

 100

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

C
D

F

Lifetime (s)

1%
5%

10%
20%

50%

(i) Level 1 (ii) Level 4
(a) Average lifetimes with varying write % (b) Lifetime distribution with 5% writes (c) Lifetime distributions with varying write %

Figure 3: SSTable Lifetimes. (a) shows the average lifetime of sstable files in levels L4 to L0. (b) shows the distribution of
lifetimes of sstables in L1 and L4 with 5% writes. (c) shows the distribution of lifetimes of sstables for different write percentages
in L1 and L4.

10
0

10
2

10
4

10
6

10
8

 0.1 1 10 100

A
v
g
.
in

te
rn

al
 l

o
o
k
u
p
s/

fi
le

Write percentage (%)

L4
L3

L2
L1

L0

10
0

10
2

10
4

10
6

10
8

 0.1 1 10 100

A
v
g
.
n
eg

at
iv

e
lo

o
k
u
p
s/

fi
le

Write percentage (%)

L4
L3

L2
L1

L0

10
0

10
2

10
4

10
6

10
8

 0.1 1 10 100

A
v
g
.
p
o
si

ti
v
e

lo
o
k
u
p
s/

fi
le

Write percentage (%)

L4
L3

L2
L1

L0

10
0

10
2

10
4

10
6

10
8

 0.1 1 10

A
v
g
.
in

te
rn

al
 l

o
o
k
u
p
s/

fi
le

Write percentage (%)

L4
L3

L2
L1

L0

10
0

10
2

10
4

10
6

10
8

 0.1 1 10 100

A
v
g
.
in

te
rn

al
 l

o
o
k
u
p
s/

fi
le

Write percentage (%)

L4 L3 L2

(i) Total (ii) Negative (iii) Positive (iv) Positive (Zipfian)
(a) Randomly loaded dataset (b) Sequentially loaded dataset

Figure 4: Number of Internal Lookups Per File. (a)(i) shows the average internal lookups per file at each level for a
randomly loaded dataset. (b) shows the same for sequentially loaded dataset. (a)(ii) and (a)(iii) show the negative and positive
internal lookups for the randomly loaded case. (a)(iv) shows the positive internal lookups for the randomly loaded case when
the workload distribution is Zipfian.

applicable to most LSM implementations. We first load the
database with 256M key-value pairs. We then run a workload
with a single rate-limited client that performs 200M opera-
tions, a fraction of which are writes. Our workload chooses
keys uniformly at random.
Lifetime of SSTables. To determine how long a model will
be useful, we first measure and analyze the lifetimes of ssta-
bles. To do so, we track the creation and deletion times of all
sstables. For files created during the load phase, we assign
the workload-start time as their creation time; for other files,
we record the actual creation times. If the file is deleted dur-
ing the workload, then we calculate its exact lifetime. How-
ever, some files are not deleted by the end of the workload
and we must estimate their lifetimes.†

Figure 3(a) shows the average lifetime of sstable files at
different levels. We make three main observations. First, the
average lifetime of sstable files at lower levels is greater than
that of higher levels. Second, at lower percentages of writes,
even files at higher levels have a considerable lifetime; for
example, at 5% writes, files at L0 live for about 2 minutes
on an average. Files at lower levels live much longer; files
at L4 live about 150 minutes. Third, although the average
lifetime of files reduces with more writes, even with a high

†If the files are created during load, we assign the workload duration as
their lifetimes. If not, we estimate the lifetime of a file based on its creation
time (c) and the total workload time (w); the lifetime of the file is at least
w� c. We thus consider the lifetime distribution of other files that have a
lifetime of at least w�c. We then pick a random lifetime in this distribution
and assign it as this file’s lifetime.

amount of writes, files at lower levels live for a long period.
For instance, with 50% writes, files at L4 live for about 60
minutes. In contrast, files at higher level live only for a few
seconds; for example, an L0 file lives only about 10 seconds.

We now take a closer look at the lifetime distribution. Fig-
ure 3(b) shows the distributions for L1 and L4 files with 5%
writes. We first note that some files are very short-lived,
while some are long-lived. For example, in L1, the lifetime
of about 50% of the files is only about 2.5 seconds. If files
cross this threshold, they tend to live for much longer times;
almost all of the remaining L1 files live over five minutes.

Surprisingly, even at L4, which has a higher average life-
time for files, a few files are very short-lived. We observe
that about 2% of L4 files live less than a second. We find
that there are two reasons why a few files live for a very
short time. First, compaction of a Li file creates a new file in
Li+1 which is again immediately chosen for compaction to
the next level. Second, compaction of a Li file creates a new
file in Li+1, which has overlapping key ranges with the next
file that is being compacted from Li. Figure 3(c) shows that
this pattern holds for other percentages of writes too. We ob-
served that this holds for other levels as well. From the above
observations, we arrive at our first two learning guidelines.
Learning guideline - 1: Favor learning files at lower levels.
Files at lower levels live for a long period even for high write
percentages; thus, models for these files can be used for a
long time and need not be rebuilt often.
Learning guideline - 2: Wait before learning a file. A few

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 159

Are Learned Indexes a Good Match?
▪ Does it make sense to build models for an entire level (i.e., all SSTables in a level)?

▪ Changes happen in bursts

▪ Fewer changes on lower levels, but still too many for write-heavy workloads

files are very short-lived, even at lower levels. Thus, learning
must be invoked only after a file has lived up to a threshold
lifetime after which it is highly likely to live for a long time.
Internal Lookups at Different Levels. To determine how
many times a model will be used, we analyze the num-
ber of lookups served by the sstable files. We run a work-
load and measure the number of lookups served by files at
each level and plot the average number of lookups per file at
each level. Figure 4(a) shows the result when the dataset is
loaded in an uniform random order. The number of internal
lookups is higher for higher levels, although a large fraction
of data resides at lower levels. This is because, at higher
levels, many internal lookups are negative, as shown in Fig-
ure 4(a)(ii). The number of positive internal lookups is as
expected: higher in lower levels as shown in Figure 4(a)(iii).
This result shows that files at higher levels serve many nega-
tive lookups and thus are worth optimizing. While bloom fil-
ters may already make these negative lookups faster, the in-
dex block still needs to be searched (before the filter query).

We also conduct the same experiment with another work-
load where the access pattern follows a zipfian distribution
(most requests are to a small set of keys). Most of the re-
sults exhibit the same trend as the random workload except
for the number of positive internal lookups, as shown in Fig-
ure 4(a)(iv). Under the zipfian workload, higher level files
also serve numerous positive lookups, because the workload
accesses a small set of keys which are often updated and thus
stored in higher levels.

Figure 4(b) shows the result when the dataset is sequen-
tially loaded, i.e., keys are inserted in ascending order. In
contrast to the randomly-loaded case, there are no negative
lookups because keys of different sstable files do not overlap
even across levels; the FindFiles step finds the one file that
may contain the key. Thus, lower levels serve more lookups
and can have more benefits from learning. From these obser-
vations, we arrive at the next two learning guidelines.
Learning guideline - 3: Do not neglect files at higher lev-
els. Although files at lower levels live longer and serve many
lookups, files at higher levels can still serve many negative
lookups and in some cases, even many positive lookups.
Thus, learning files at higher levels can make both internal
lookups faster.
Learning guideline - 4: Be workload- and data-aware. Al-
though most data resides in lower levels, if the workload does
not lookup that data, learning those levels will yield less ben-
efit; learning thus must be aware of the workload. Further,
the order in which the data is loaded influences which levels
receive a large fraction of internal lookups; thus, the system
must also be data-aware. The amount of internal lookups acts
as a proxy for both the workload and load order. Based on
the amount of internal lookups, the system must dynamically
decide whether to learn a file or not.
Lifetime of Levels. Given that a level as a whole can also be
learned, we now measure and analyze the lifetimes of levels.

 0

 0

 1 L-1

 0

 1 L-2

 0

 1 L-3

 0
 1

 0 500 1000 1500 2000

L-4burst interval = 330s#
ch

an
g
es

/#
fi

le
s

Time (s)

(a) Timeline of changes

10
0

10
1

10
2

10
3

 1 10 100

T
im

e
b

/w
 b

u
rs

ts
 (

s)

Write percentage (%)

(b) Time between bursts for L4

Figure 5: Changes at Levels. (a) shows the timeline
of file creations and deletions at different levels. Note that
#changes/#files is higher than 1 in L1 as there are more cre-
ations and deletions than the number of files. (b) shows the
time between bursts for L4 for different write percentages.

Level learning cannot be applied at L0 because it is unsorted:
files in L0 can have overlapping key ranges. Once a level
is learned, any change to the level causes a re-learning. A
level changes when new sstables are created at that level, or
existing ones are deleted. Thus, intuitively, a level would
live for an equal or shorter duration than the individual ssta-
bles. However, learning at the granularity of a level has the
benefit that the candidate sstables need not be found in a sep-
arate step; instead, upon a lookup, the model just outputs the
sstable and the offset within it.

We examine the changes to a level by plotting the timeline
of file creations and deletions at L1, L2, L3, and L4 in Fig-
ure 5(a) for a 5%-write workload; we do not show L0 for the
reason above. On the y-axis, we plot the number of changes
divided by the total files present at that level. A value of
0 means there are no changes to the level; a model learned
for the level can be used as long as the value remains 0. A
value greater than 0 means that there are changes in the level
and thus the model has to re-learned. Higher values denote a
larger fraction of files are changed.

First, as expected, we observe that the fraction of files that
change reduces as we go down the levels because lower lev-
els hold a large volume of data in many files, confirming our
intuition. We also observe that changes to levels arrive in
bursts. These bursts are caused by compactions that cause
many files at a level to be rewritten. Further, these bursts
occur at almost the same time across different levels. The
reason behind this is that for the dataset we use, levels L0
through L3 are full and thus any compaction at one layer
results in cascading compactions which finally settle at the
non-full L4 level. The levels remain static between these
bursts. The duration for which the levels remain static is
longer with a lower amount of writes; for example, with 5%
writes, as shown in the figure, this period is about 5 minutes.
However, as the amount of writes increases, the lifetime of a
level reduces as shown in Figure 5(b); for instance, with 50%
writes, the lifetime of L4 reduces to about 25 seconds. From
these observations, we arrive at our final learning guideline.

Learning guideline - 5: Do not learn levels for write-heavy
workloads. Learning a level as a whole might be more appro-

160 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Learning Guidelines
▪ Favor learning files at lower levels

▪ Wait before learning a file
– To ensure it is not transient

▪ Don’t neglect higher levels

▪ Be workload- and data-aware

▪ Do not learn levels for write-heavy workloads

Bourbon Design
▪ Use Piecewise Linear Regression (PLR)
– Greedy-PLR: add one point at a time and switch to a new line if error too high
– Using the model: binary search to find the line segment, followed by a calculation for the offset, and

search around the offset
▪ (Radix Spline Index might work better here)

▪ Helps that WiscKey stores values separately
– Otherwise offsetting wouldn’t work as well

https://github.com/RyanMarcus/plr

Bourbon Design
▪ Level vs file learning
– Level learning only beneficial if the workload has no writes

priate when the amount of writes is very low or if the work-
load is read-only. For write-heavy workloads, level lifetimes
are very short and thus will induce frequent re-learnings.
Summary. We analyzed how LSMs behave internally by
measuring and analyzing the lifetimes of sstable files and
levels, and the amount of lookups served by files at different
levels. From our analysis, we derived five learning guide-
lines. We next describe how we incorporate the learning
guidelines in an LSM-based storage system.

4 Bourbon Design

We now describe BOURBON, an LSM-based store that uses
learning to make indexing faster. We first describe the model
that BOURBON uses to learn the data (§4.1). Then, we discuss
how BOURBON supports variable-size values (§4.2) and its
basic learning strategy (§4.3). We finally explain BOURBON’s
cost-benefit analyzer that dynamically makes learning deci-
sions to maximize benefit while reducing cost (§4.4).

4.1 Learning the Data

As we discussed, data can be learned at two granularities:
individual sstables or levels. Both these entities are sorted
datasets. The goal of a model that tries to learn the data is to
predict the location of a key in such a sorted dataset. For ex-
ample, if the model is constructed for a sstable file, it would
predict the file offset given a key. Similarly, a level model
would output the target sstable file and the offset within it.

Our requirements for a model is that it must have low
overheads during learning and during lookups. Further, we
would like the space overheads of the model to be small. We
find that piecewise linear regression (PLR) [4, 27] satisfies
these requirements well; thus, BOURBON uses PLR to model
the data. The intuition behind PLR is to represent a sorted
dataset with a number of line segments. PLR constructs a
model with an error bound; that is, each data point d is guar-
anteed to lie within the range [dpos � d , dpos + d], where
dpos is the predicted position of d in the dataset and d is the
error bound specified beforehand.

To train the PLR model, BOURBON uses the Greedy-PLR
algorithm [47]. Greedy-PLR processes the data points one
at a time; if a data point cannot be added to the current line
segment without violating the error bound, then a new line
segment is created and the data point is added to it. At the
end, Greedy-PLR produces a set of line segments that repre-
sents the data. Greedy-PLR runs in linear time with respect
to the number of data points.

Once the model is learned, inference is quick: first, the
correct line segment that contains the key is found (using
binary search); within that line segment, the position of the
target key is obtained by multiplying the key with the line’s
slope and adding the intercept. If the key is not present in
the predicted position, a local search is done in the range
determined by the error bound. Thus, lookups take O(log-
s) time, where s is the number of segments, in addition to a

Workload Baseline
time (s)

File model Level model
Time(s) % model Time(s) % model

Mixed:
Write-heavy 82.6 71.5

(1.16 ⇥) 74.2 95.1
(0.87 ⇥) 1.5

Mixed:
Read-heavy 89.2 62.05

(1.44 ⇥) 99.8 74.3
(1.2 ⇥) 21.4

Read-only 48.4 27.2
(1.78 ⇥) 100 25.2

(1.92 ⇥) 100

Table 1: File vs. Level Learning. The table compares the
time to perform 10M operations in baseline WiscKey, file-
learning, and level-learning. The numbers within the paren-
theses show the improvements over baseline. The table also
shows the percentage of lookups that take the model path;
remaining take the original path because the models are not
rebuilt yet.

constant time to do the local search. The space overheads of
PLR are small: a few tens of bytes for every line segment.

Other models or algorithms such as RMI [31], PGM-
Index [19], or splines [29] may also be suitable for LSMs
and may offer more benefits than PLR. We leave their explo-
ration within LSMs for future work.

4.2 Supporting Variable-size Values

Learning a model that predicts the offset of a key-value pair
is much easier if the key-value pairs are the same size. The
model then can multiply the predicted position of a key by
the size of the pair to produce the final offset. However,
many systems allow keys and values to be of arbitrary sizes.

BOURBON requires keys to be of a fixed size, while val-
ues can be of any size. We believe this is a reasonable de-
sign choice because most datasets have fixed-size keys (e.g.,
user-ids are usually 16 bytes), while value sizes vary signif-
icantly. Even if keys vary in size, they can be padded to
make all keys of the same size. BOURBON supports variable-
size values by borrowing the idea of key-value separation
from WiscKey [37]. With key-value separation, sstables in
BOURBON just contain the keys and the pointer to the values;
values are maintained in the value log separately. With this,
BOURBON obtains the offset of a required key-value pair by
getting the predicted position from the model and multiply-
ing it with the record size (which is keysize + pointersize.)
The value pointer serves as the offset into the value log from
which the value is finally read.

4.3 Level vs. File Learning

BOURBON can learn individual sstables files or entire levels.
Our analysis in the previous section showed that files live
longer than levels under write-heavy workloads, hinting that
learning at the file granularity might be the best choice. We
now closely examine this tradeoff to design BOURBON’s ba-
sic learning strategy. To do so, we compare the performance
of file learning and level learning for different workloads.
We initially load a dataset and build the models. For the read-
only workload, the models need not be re-learned. In the
mixed workloads, the models are re-learned as data changes.
The results are shown in Table 1.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 161

Bourbon Design
▪ How long to wait before learning?
– Time to learn a file (approx. 4MB) around 40ms
– Wait for 50ms (is 2-competitive compared to the optimal)

▪ Cost-benefit analysis to decide whether to learn
– Lower levels may not have enough lookups to make it worthwhile
– Use statistics to make a decision

Bourbon Design
▪ Putting it all together
– It does model lookup before bloom filter
– Unclear why -- LSMs do BFs before (in general)

searching IB (AFAIK)

Tn.b and Tp.b. Next, Tn.m and Tp.m are estimated as the aver-
age negative and positive model lookup times of other files
at the same level. Finally, Nn and Np are estimated as fol-
lows. The analyzer first takes the average negative and pos-
itive lookups for other files in that level; then, it is scaled
by a factor f = s/s̄l , where s if the size of the file and s̄l is
the average file size at this level. While estimating the above
quantities, BOURBON filters out very short-lived files.

While bootstrapping, the analyzer might not have enough
statistics collected. Therefore, initially, BOURBON runs in an
always-learn mode (with Twait still in place.) Once enough
statistics are collected, the analyzer performs the cost vs.
benefit analysis and chooses to learn a file if Cmodel < Bmodel ,
i.e., benefit of a model outweighs the cost. If multiple files
are chosen to be learned at the same time, BOURBON puts
them in a max priority queue ordered by Bmodel �Cmodel , thus
prioritizing files that would deliver the most benefit.

Our cost-benefit analyzer adopts a simple scheme of us-
ing average statistics of other files at the same level. While
this approach has worked well in our initial prototype, us-
ing more sophisticated statistics and considering workload
distributions (e.g., to account for keys with different popu-
larity) could be more beneficial. We leave such exploration
for future work.

4.5 Bourbon: Putting it All Together

We describe how the different pieces of BOURBON work to-
gether. Figure 6 shows the path of lookups in BOURBON. As
shown in (a), lookups can either be processed via the model
(if the target file is already learned), or in the baseline path
(if the model is not built yet.) The baseline path in BOURBON

is similar to the one shown in Figure 1 for LevelDB, except
that BOURBON stores the values separately and so ReadValue
reads the value from the log.

Once BOURBON learns a sstable file, lookups to that file
will be processed via the learned model as shown in Fig-
ure 6(b). 1 FindFiles: BOURBON finds the candidate ssta-
bles; this step required because BOURBON uses file learning.
2 LoadIB+FB: BOURBON loads the index and filter blocks;

these blocks are likely to be already cached. 3 Model-
Lookup: BOURBON performs a look up for the desired key
k in the candidate sstable’s model. The model outputs a pre-
dicted position of k within the file (pos) and the error bound
(d). From this, BOURBON calculates the data block that con-
tains records pos� d through pos+ d .† 4 SearchFB: The
filter for that block is queried to check if k is present. If
present, BOURBON calculates the range of bytes of the block
that must be loaded; this is simple because keys and pointers
to values are of fixed size. 5 LoadChunk: The byte range
is loaded. 6 LocateKey: The key is located in the loaded
chunk. The key will likely be present in the predicted po-

†Sometimes, records pos�d through pos+d span multiple data blocks;
in such cases, BOURBON consults the index block (which specifies the
maximum key in each data block) to find the data block for pos.

PHPWDEOHV
�SRV��HUURU!�

��
�5
HD
G9
DO
XH

���/RDG,%�)%

ȚȾȚȾȚȾȾȾȾ

GL
VN

P
HP

RU
\

ȚȾȚȾȚȾȾȾȾ

���)LQG)LOHV

,%

0RGHO

���0RGHO/RRNXS

)%

���/RDG&KXQN

�����
���6HDUFK)%

���/RFDWH.H\

YDOXH�ORJ

ȚȾȚȾȚȾȾȾȾ

ȚȾȚȾ
ȚȾȾȾ
Ⱦ

N

ĺ��RIIVHW��OHQ!

į į

0RGHO
/RRNXS

6HDUFK
,%

)LQG
)LOHV

/RDG
,%�)%

6HDUFK
)%

/RDG
&KXQN

/RFDWH
.H\

/RDG
'%

6HDUFK
'%

5HDG
9DOXH

�E��/RRNXS�YLD�PRGHO���GHWDLOHG�VWHSV

�D��/RRNXS�SDWKV

PRGHO�H[LVWV

QR�PRGHO
�EDVHOLQH�

Figure 6: BOURBON Lookups. (a) shows that lookups
can take two different paths: when the model is available
(shown at the top), and when the model is not learned yet
and so lookups take the baseline path (bottom); some steps
are common to both paths. (b) shows the detailed steps for
a lookup via a model; we show the case where models are
built for files.

sition (the midpoint of the loaded chunk); if not, BOURBON

performs a binary search in the chunk. 7 ReadValue: The
value is read from the value log using the pointer.
Possible improvements. Although BOURBON’s implemen-
tation is highly-optimized and provides many features com-
mon to real systems, it lacks a few features. For example,
in the current implementation, we do not support string keys
and key compression (although we support value compres-
sion). For string keys, one approach we plan to explore is to
treat strings as base-64 integers and convert them into 64-bit
integers, which could then adopt the same learning approach
described herein. While this approach may work well for
small keys, large keys may require larger integers (with more
than 64 bits) and thus efficient large-integer math is likely es-
sential. Also, BOURBON does not support adaptive switching
between level and file models; it is a static configuration. We
leave supporting these features to future work.

5 Evaluation

To evaluate BOURBON, we ask the following questions:
• Which portions of lookup does BOURBON optimize?

(§5.1)
• How does BOURBON perform with models available and

no writes? How does performance change with datasets,
load orders, and request distributions? (§5.2)

• How does BOURBON perform with range queries? (§5.3)

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 163

Evaluation

(a) Linear (b) Seg10% (c) Normal (d) OSM

Figure 7: Datasets. The figure shows the cumulative distri-
bution functions (CDF) of three synthetic datasets (linear,
segmented-10%, and normal) and one real-world dataset
(OpenStreetMaps). Each dataset is magnified around the
15% percentile to show a detailed view of its distribution.

• In the presence of writes, how does BOURBON’s cost-
benefit analyzer perform compared to other approaches
that always or never re-learn? (§5.4)

• Does BOURBON perform well on real benchmarks? (§5.5)
• Is BOURBON beneficial when data is on storage? (§5.6)
• Is BOURBON beneficial with limited memory? (§5.7)
• What are the error and space tradeoffs of BOURBON?

(§5.8)
Setup. We run our experiments on a 20-core Intel Xeon
CPU E5-2660 machine with 160-GB memory and a 480-
GB SATA SSD. We use 16B integer keys and 64B values,
and set the error bound of BOURBON’s PLR as 8. Unless
specified, our workloads perform 10M operations. We use a
variety of datasets. We construct four synthetic datasets: lin-
ear, segmented-1%, segmented-10% , and normal, each with
64M key-value pairs. In the linear dataset, keys are all con-
secutive. In the seg-1% dataset, there is a gap after a con-
secutive segment of 100 keys (i.e., every 1% causes a new
segment). The segmented-10% dataset is similar, but there
is a gap after 10 consecutive keys. We generate the normal
dataset by sampling 64M unique values from the standard
normal distribution N(0,1) and scale to integers. We also use
two real-world datasets: Amazon reviews (AR) [5] and New
York OpenStreetMaps (OSM) [2]. AR and OSM have 33.5M
and 21.9M key-value pairs, respectively. These datasets vary
widely in how the keys are distributed. Figure 7 shows the
distribution for a few datasets. Most of our experiments fo-
cus on the case where the data resides in memory; however,
we also analyze cases where data is present on storage.

5.1 Which Portions does BOURBON Optimize?

We first analyze which portions of the lookup BOURBON op-
timizes. We perform 10M random lookups on the AR and
OSM datasets and show the latency breakdown in Figure 8.
As expected, BOURBON reduces the time spent in index-
ing. The portion marked Search in the figure corresponds
to SearchIB and SearchDB in the baseline, versus Model-
Lookup and LocateKey in BOURBON. The steps in BOURBON

have lower latency than their baseline counterparts. Inter-
estingly, BOURBON reduces data-access costs too, because
BOURBON loads a smaller byte range than the entire block
loaded by the baseline.

 0

 1

 2

 3

 4

WiscKey Bourbon WiscKey Bourbon
AR OSM

2.9x 2.4x
2.2x 2x

A
v
g
.
la

te
n
cy

 (
 µ

s)

FindFiles
LoadIB+FB

Search
SearchFB

LoadData
ReadValue

Other

Figure 8: Latency Breakdown. The figure shows la-
tency breakdown for WiscKey and BOURBON. Search de-
notes SearchIB and SearchDB in WiscKey; the same denotes
ModelLookup and LocateKey in BOURBON. LoadData de-
notes LoadDB in WiscKey; the same denotes LoadChunk in
BOURBON. These two steps are optimized by BOURBON and
are shown in solid colors; the number next to a step shows
the factor by which it is made faster in BOURBON.

0

1

2

3

4

5

A
ve

ra
g

e
 la

te
n

cy
 (

u
s)

Dataset

Linear Seg1% NormalSeg10% AR OSM

1.78x 1.43x 1.35x 1.23x 1.61x 1.61x

WiscKey Bourbon Bourbon-level

(a) Average lookup latency

Dataset #segs latency
(µs)

Linear 900 2.72
Seg1% 640K 3.11
Normal 705K 3.3
Seg10% 6.4M 3.64

AR 129K 2.66
OSM 295K 2.65

(b) Number of segments

Figure 9: Datasets. (a) compares the average lookup laten-
cies of BOURBON, BOURBON-level, and WiscKey for different
datasets; the numbers on the top show the improvements of
BOURBON over WiscKey. (b) shows the number of segments
for different datasets in BOURBON.

5.2 Performance under No Writes

We next analyze BOURBON’s performance when the models
are already built and there are no updates. For each exper-
iment, we load a dataset and allow the system to build the
models; during the workload, we issue only lookups.

5.2.1 Datasets

To analyze how the performance is influenced by the dataset,
we run the workload on all six datasets and compare
BOURBON’s lookup performance against WiscKey. Figure 9
show the results. As shown in 9(a), BOURBON is faster than
WiscKey for all datasets; depending upon the dataset, the im-
provements vary (1.23⇥ to 1.78⇥). BOURBON provides the
most benefit for the linear dataset because it has the smallest
number of segments (one per model); with fewer segments,
fewer searches are needed to find the target line segment.
From 9(b), we observe that latencies increase with the num-
ber of segments (e.g., latency of seg-1% is greater than that
of linear). We cannot compare the number of segments in
AR and OSM with others because the size of these datasets
is significantly different.
Level learning. Given that level learning is suitable for read-
only scenarios, we configure BOURBON to use level learn-

164 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

▪ Questions to answer

▪ 1.23x to 1.78x performance improvements across the datasets

Tn.b and Tp.b. Next, Tn.m and Tp.m are estimated as the aver-
age negative and positive model lookup times of other files
at the same level. Finally, Nn and Np are estimated as fol-
lows. The analyzer first takes the average negative and pos-
itive lookups for other files in that level; then, it is scaled
by a factor f = s/s̄l , where s if the size of the file and s̄l is
the average file size at this level. While estimating the above
quantities, BOURBON filters out very short-lived files.

While bootstrapping, the analyzer might not have enough
statistics collected. Therefore, initially, BOURBON runs in an
always-learn mode (with Twait still in place.) Once enough
statistics are collected, the analyzer performs the cost vs.
benefit analysis and chooses to learn a file if Cmodel < Bmodel ,
i.e., benefit of a model outweighs the cost. If multiple files
are chosen to be learned at the same time, BOURBON puts
them in a max priority queue ordered by Bmodel �Cmodel , thus
prioritizing files that would deliver the most benefit.

Our cost-benefit analyzer adopts a simple scheme of us-
ing average statistics of other files at the same level. While
this approach has worked well in our initial prototype, us-
ing more sophisticated statistics and considering workload
distributions (e.g., to account for keys with different popu-
larity) could be more beneficial. We leave such exploration
for future work.

4.5 Bourbon: Putting it All Together

We describe how the different pieces of BOURBON work to-
gether. Figure 6 shows the path of lookups in BOURBON. As
shown in (a), lookups can either be processed via the model
(if the target file is already learned), or in the baseline path
(if the model is not built yet.) The baseline path in BOURBON

is similar to the one shown in Figure 1 for LevelDB, except
that BOURBON stores the values separately and so ReadValue
reads the value from the log.

Once BOURBON learns a sstable file, lookups to that file
will be processed via the learned model as shown in Fig-
ure 6(b). 1 FindFiles: BOURBON finds the candidate ssta-
bles; this step required because BOURBON uses file learning.
2 LoadIB+FB: BOURBON loads the index and filter blocks;

these blocks are likely to be already cached. 3 Model-
Lookup: BOURBON performs a look up for the desired key
k in the candidate sstable’s model. The model outputs a pre-
dicted position of k within the file (pos) and the error bound
(d). From this, BOURBON calculates the data block that con-
tains records pos� d through pos+ d .† 4 SearchFB: The
filter for that block is queried to check if k is present. If
present, BOURBON calculates the range of bytes of the block
that must be loaded; this is simple because keys and pointers
to values are of fixed size. 5 LoadChunk: The byte range
is loaded. 6 LocateKey: The key is located in the loaded
chunk. The key will likely be present in the predicted po-

†Sometimes, records pos�d through pos+d span multiple data blocks;
in such cases, BOURBON consults the index block (which specifies the
maximum key in each data block) to find the data block for pos.

Figure 6: BOURBON Lookups. (a) shows that lookups
can take two different paths: when the model is available
(shown at the top), and when the model is not learned yet
and so lookups take the baseline path (bottom); some steps
are common to both paths. (b) shows the detailed steps for
a lookup via a model; we show the case where models are
built for files.

sition (the midpoint of the loaded chunk); if not, BOURBON

performs a binary search in the chunk. 7 ReadValue: The
value is read from the value log using the pointer.
Possible improvements. Although BOURBON’s implemen-
tation is highly-optimized and provides many features com-
mon to real systems, it lacks a few features. For example,
in the current implementation, we do not support string keys
and key compression (although we support value compres-
sion). For string keys, one approach we plan to explore is to
treat strings as base-64 integers and convert them into 64-bit
integers, which could then adopt the same learning approach
described herein. While this approach may work well for
small keys, large keys may require larger integers (with more
than 64 bits) and thus efficient large-integer math is likely es-
sential. Also, BOURBON does not support adaptive switching
between level and file models; it is a static configuration. We
leave supporting these features to future work.

5 Evaluation

To evaluate BOURBON, we ask the following questions:
• Which portions of lookup does BOURBON optimize?

(§5.1)
• How does BOURBON perform with models available and

no writes? How does performance change with datasets,
load orders, and request distributions? (§5.2)

• How does BOURBON perform with range queries? (§5.3)

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 163

(a) Linear (b) Seg10% (c) Normal (d) OSM

Figure 7: Datasets. The figure shows the cumulative distri-
bution functions (CDF) of three synthetic datasets (linear,
segmented-10%, and normal) and one real-world dataset
(OpenStreetMaps). Each dataset is magnified around the
15% percentile to show a detailed view of its distribution.

• In the presence of writes, how does BOURBON’s cost-
benefit analyzer perform compared to other approaches
that always or never re-learn? (§5.4)

• Does BOURBON perform well on real benchmarks? (§5.5)
• Is BOURBON beneficial when data is on storage? (§5.6)
• Is BOURBON beneficial with limited memory? (§5.7)
• What are the error and space tradeoffs of BOURBON?

(§5.8)
Setup. We run our experiments on a 20-core Intel Xeon
CPU E5-2660 machine with 160-GB memory and a 480-
GB SATA SSD. We use 16B integer keys and 64B values,
and set the error bound of BOURBON’s PLR as 8. Unless
specified, our workloads perform 10M operations. We use a
variety of datasets. We construct four synthetic datasets: lin-
ear, segmented-1%, segmented-10% , and normal, each with
64M key-value pairs. In the linear dataset, keys are all con-
secutive. In the seg-1% dataset, there is a gap after a con-
secutive segment of 100 keys (i.e., every 1% causes a new
segment). The segmented-10% dataset is similar, but there
is a gap after 10 consecutive keys. We generate the normal
dataset by sampling 64M unique values from the standard
normal distribution N(0,1) and scale to integers. We also use
two real-world datasets: Amazon reviews (AR) [5] and New
York OpenStreetMaps (OSM) [2]. AR and OSM have 33.5M
and 21.9M key-value pairs, respectively. These datasets vary
widely in how the keys are distributed. Figure 7 shows the
distribution for a few datasets. Most of our experiments fo-
cus on the case where the data resides in memory; however,
we also analyze cases where data is present on storage.

5.1 Which Portions does BOURBON Optimize?

We first analyze which portions of the lookup BOURBON op-
timizes. We perform 10M random lookups on the AR and
OSM datasets and show the latency breakdown in Figure 8.
As expected, BOURBON reduces the time spent in index-
ing. The portion marked Search in the figure corresponds
to SearchIB and SearchDB in the baseline, versus Model-
Lookup and LocateKey in BOURBON. The steps in BOURBON

have lower latency than their baseline counterparts. Inter-
estingly, BOURBON reduces data-access costs too, because
BOURBON loads a smaller byte range than the entire block
loaded by the baseline.

 0

 1

 2

 3

 4

WiscKey Bourbon WiscKey Bourbon
AR OSM

2.9x 2.4x
2.2x 2x

A
v

g
.

la
te

n
cy

 (
 µ

s)

FindFiles
LoadIB+FB

Search
SearchFB

LoadData
ReadValue

Other

Figure 8: Latency Breakdown. The figure shows la-
tency breakdown for WiscKey and BOURBON. Search de-
notes SearchIB and SearchDB in WiscKey; the same denotes
ModelLookup and LocateKey in BOURBON. LoadData de-
notes LoadDB in WiscKey; the same denotes LoadChunk in
BOURBON. These two steps are optimized by BOURBON and
are shown in solid colors; the number next to a step shows
the factor by which it is made faster in BOURBON.

0

1

2

3

4

5

A
ve

ra
g
e
 la

te
n
cy

 (
u
s)

Dataset

Linear Seg1% NormalSeg10% AR OSM

1.78x 1.43x 1.35x 1.23x 1.61x 1.61x

WiscKey Bourbon Bourbon-level

(a) Average lookup latency

Dataset #segs latency
(µs)

Linear 900 2.72
Seg1% 640K 3.11
Normal 705K 3.3
Seg10% 6.4M 3.64

AR 129K 2.66
OSM 295K 2.65

(b) Number of segments

Figure 9: Datasets. (a) compares the average lookup laten-
cies of BOURBON, BOURBON-level, and WiscKey for different
datasets; the numbers on the top show the improvements of
BOURBON over WiscKey. (b) shows the number of segments
for different datasets in BOURBON.

5.2 Performance under No Writes

We next analyze BOURBON’s performance when the models
are already built and there are no updates. For each exper-
iment, we load a dataset and allow the system to build the
models; during the workload, we issue only lookups.

5.2.1 Datasets

To analyze how the performance is influenced by the dataset,
we run the workload on all six datasets and compare
BOURBON’s lookup performance against WiscKey. Figure 9
show the results. As shown in 9(a), BOURBON is faster than
WiscKey for all datasets; depending upon the dataset, the im-
provements vary (1.23⇥ to 1.78⇥). BOURBON provides the
most benefit for the linear dataset because it has the smallest
number of segments (one per model); with fewer segments,
fewer searches are needed to find the target line segment.
From 9(b), we observe that latencies increase with the num-
ber of segments (e.g., latency of seg-1% is greater than that
of linear). We cannot compare the number of segments in
AR and OSM with others because the size of these datasets
is significantly different.
Level learning. Given that level learning is suitable for read-
only scenarios, we configure BOURBON to use level learn-

164 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Outline
▪ Log-structured Merge Trees

▪ WiscKey à Bourbon

▪ Discussion

