Machine Learning for Data Management Systems

Learned LSMs

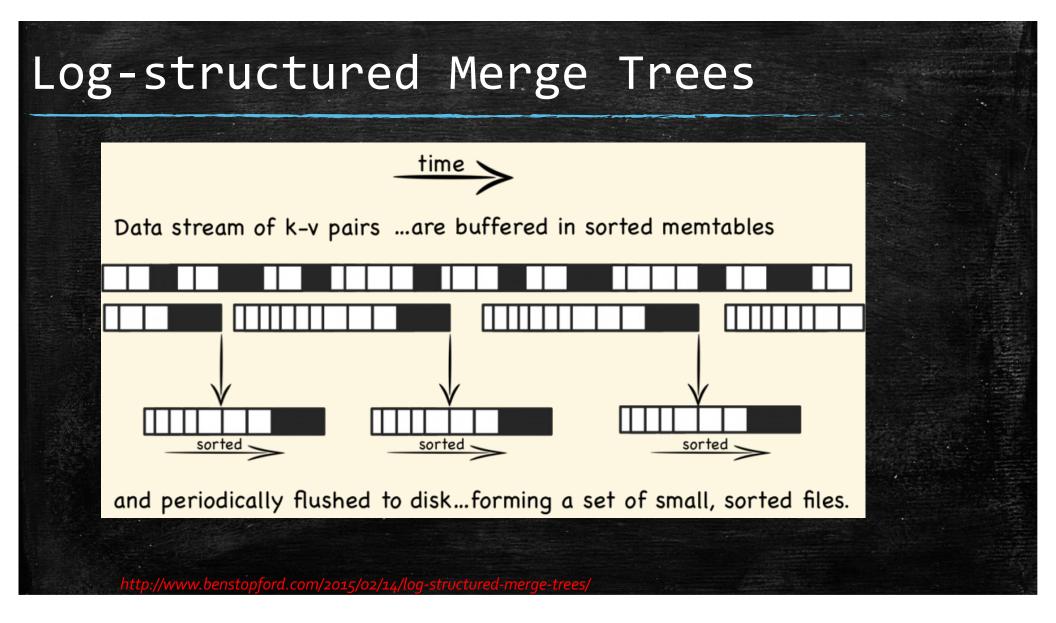
Amol Deshpande February 9, 2023

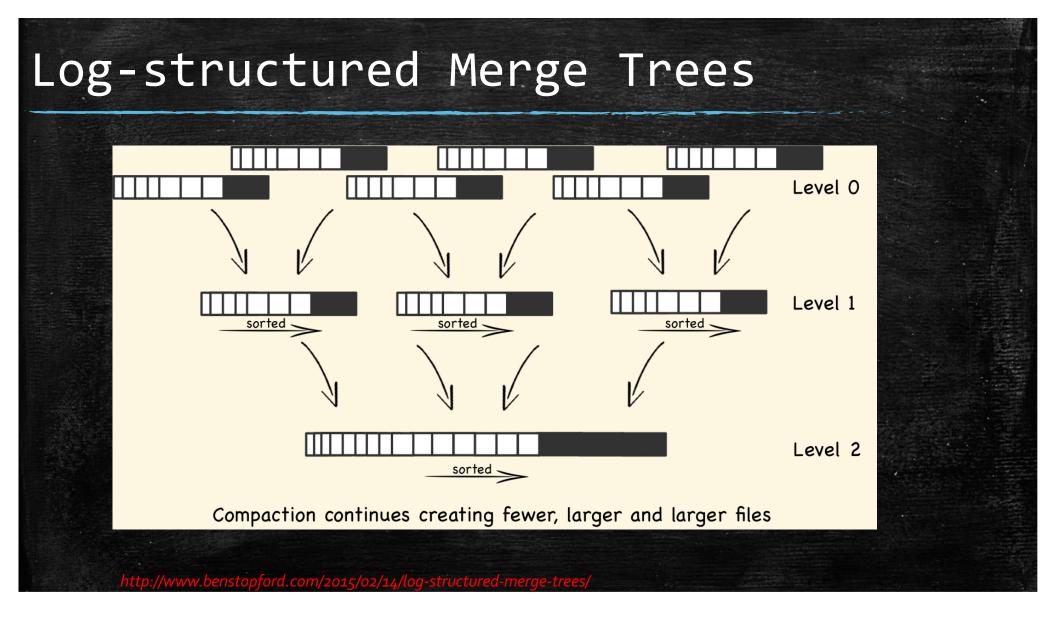
Outline

- Log-structured Merge Trees
- WiscKey \rightarrow Bourbon
- Discussion

Log-structured Merge Trees

- Very widely used today, in most modern systems
 - RocksDB, Cassandra, LevelDB, InfluxDB, Bigtable, ...
- Key insight:
 - B+-trees/Hash index etc., require "in-place" random updates
 - Have to do reorganizations when updates are made
 - Not a good idea as the gap between random and sequential increases
 - Also, not a good idea for SSDs which don't like small writes
 - Instead
 - Keep all the data sorted in memory and build red/black tree or binary tree on it
 - As you run out of memory, write out the sorted "run" to disk and never modify it again (except see below)
 - When "searching", you have to search all of "runs" -- so periodically compact them to reduce the number of runs





Log-structured Merge Trees

Benefits:

- Large sequential writes
- Compaction is done in a batched fashion and exploits the sorted nature → very fast and sequential writes as well

Drawbacks:

- Searching is expensive
- Same "key" is present in many different files
- Can use "bloom filters" to reduce the number of files touched
 - Read up if interested

WiscKey

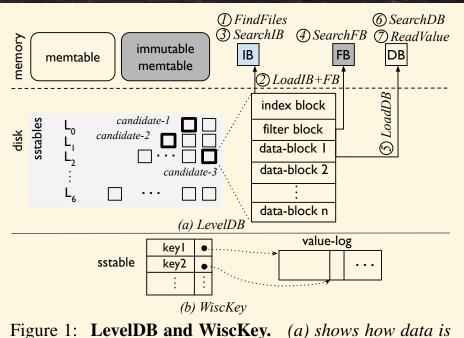


Figure 1: LevelDB and wisckey. (a) shows how data is organized in LevelDB and how a lookup is processed. The search in in-memory tables is not shown. The candidate sstables are shown in bold boxes. (b) shows how keys and values are separated in WiscKey.

WiscKey

Main Differences

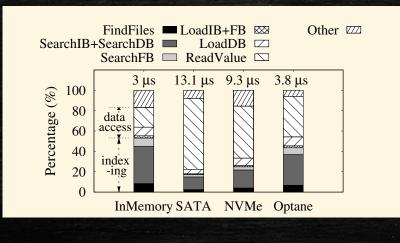
- "Values" kept in a separate log so that the SSTables/MemTables are small
 - SSTables now contain a pointer to the value
 - Improves compaction times
- Requires an extra read at the end (once you have a location of the value)
- Range queries are more expensive (values are not sorted)
- Bloomfilter for each "block" within a run?
 - The Bourbon paper suggests this, but the original paper says a BF for each run

may be present in all L_0 files (because of overlapping ranges) and within one file at each successive level. (2) *LoadIB+FB*: In each candidate sstable, an index block and a bloom-filter block are first loaded from the disk. (3) *SearchIB*: The index block is binary searched to find the data block that may contain k. (4) *SearchFB*: The filter is queried to check if k is present in the data block. (5) *LoadDB*: If the filter indicates presence, the data block is loaded. (6) *SearchDB*: The data

Outline

- Log-structured Merge Trees
- WiscKey → Bourbon
- Discussion

- How big is the indexing cost compared to overall cost?
- Indexing costs high if the data is in-memory, but not if on an SSD
 - Access costs will dominate, so not much benefit to improving indexing (about 20% assuming no cost to indexing)
 - Amdahl's law



Is there any point in building expensive indexes if there are too many write?

- Let's look at how often SSTables are deleted
 - Lower levels have decent lifetimes, but not upper levels -- especially for high write ratios
 - Interestingly: a significant fraction of SSTables live for a very short time even in lower levels
 - Compaction often propagates all the way down

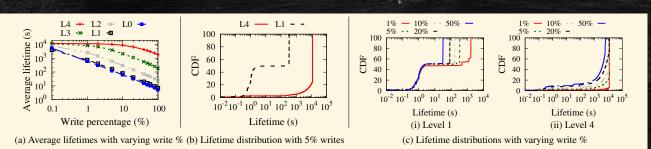
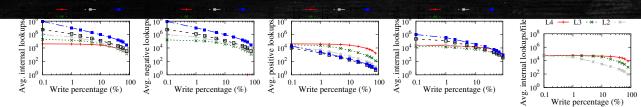
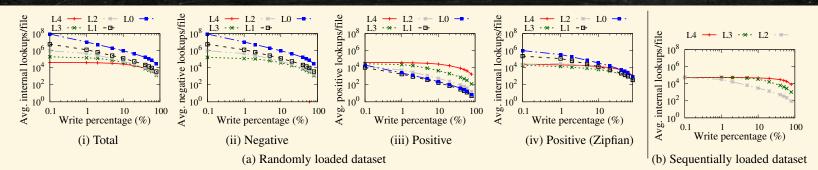
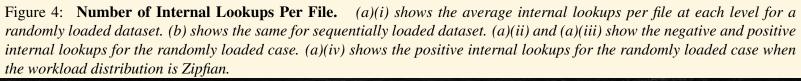


Figure 3: **SSTable Lifetimes.** (a) shows the average lifetime of sstable files in levels L_4 to L_0 . (b) shows the distribution of lifetimes of sstables in L_1 and L_4 with 5% writes. (c) shows the distribution of lifetimes of sstables for different write percentages in L_1 and L_4 .

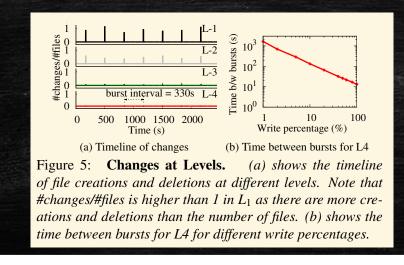


- How often will the models be used if we build them?
- Compute #lookups by levels
 - High #lookups at internal levels, but many of them are negative
 - Higher fraction of positive lookups at lower levels





- Does it make sense to build models for an entire level (i.e., all SSTables in a level)?
- Changes happen in bursts
- Fewer changes on lower levels, but still too many for write-heavy workloads



Learning Guidelines

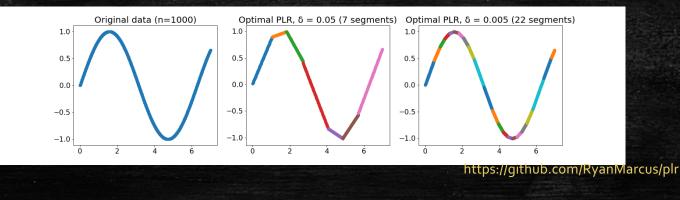
- Favor learning files at lower levels
- Wait before learning a file
 - To ensure it is not transient
- Don't neglect higher levels
- Be workload- and data-aware
- Do not learn levels for write-heavy workloads

Use Piecewise Linear Regression (PLR)

- Greedy-PLR: add one point at a time and switch to a new line if error too high
- Using the model: binary search to find the line segment, followed by a calculation for the offset, and search around the offset
 - (Radix Spline Index might work better here)

Helps that WiscKey stores values separately

- Otherwise offsetting wouldn't work as well



Level vs file learning

- Level learning only beneficial if the workload has no writes

Workload	Baseline	File model		Level model	
	time (s)	Time(s)	% model	Time(s)	% model
Mixed:	82.6	71.5	74.2	95.1	1.5
Write-heavy		$(1.16 \times)$		$(0.87 \times)$	
Mixed:	89.2	62.05	99.8	74.3	21.4
Read-heavy	09.2	$(1.44 \times)$	99.0	$(1.2 \times)$	21.4
Read-only	48.4	27.2 (1.78 ×)	100	25.2 (1.92 ×)	100

Table 1: File vs. Level Learning. The table compares the time to perform 10M operations in baseline WiscKey, file-learning, and level-learning. The numbers within the parentheses show the improvements over baseline. The table also shows the percentage of lookups that take the model path; remaining take the original path because the models are not rebuilt yet.

- How long to wait before learning?
 - Time to learn a file (approx. 4MB) around 40ms
 - Wait for 50ms (is 2-competitive compared to the optimal)
- Cost-benefit analysis to decide whether to learn
 - Lower levels may not have enough lookups to make it worthwhile
 - Use statistics to make a decision

- Putting it all together
 - It does model lookup before bloom filter
 - Unclear why -- LSMs do BFs before (in general) searching IB (AFAIK)

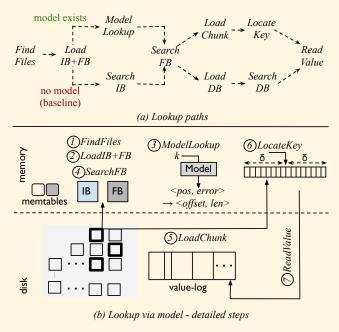


Figure 6: **BOURBON Lookups.** (a) shows that lookups can take two different paths: when the model is available (shown at the top), and when the model is not learned yet and so lookups take the baseline path (bottom); some steps are common to both paths. (b) shows the detailed steps for a lookup via a model; we show the case where models are built for files.

Evaluation

Questions to answer

- Which portions of lookup does BOURBON optimize? (§5.1)
- How does BOURBON perform with models available and no writes? How does performance change with datasets, load orders, and request distributions? (§5.2)
- How does BOURBON perform with range queries? (§5.3)
- In the presence of writes, how does BOURBON's costbenefit analyzer perform compared to other approaches that always or never re-learn? (§5.4)

ίΧ.

- Does BOURBON perform well on real benchmarks? (§5.5)
- Is BOURBON beneficial when data is on storage? (§5.6)
- Is BOURBON beneficial with limited memory? (§5.7)
- What are the error and space tradeoffs of BOURBON? $(\S{5.8})$

1.23x to 1.78x performance improvements across the datasets

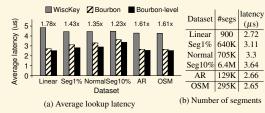


Figure 9: **Datasets.** (a) compares the average lookup latencies of BOURBON, BOURBON-level, and WiscKey for different datasets; the numbers on the top show the improvements of BOURBON over WiscKey. (b) shows the number of segments for different datasets in BOURBON.

Outline

- Log-structured Merge Trees
 Wisck ov

 Reurbon
- WiscKey → Bourbon
- Discussion