Machine Leahningfor
Data Management Systems

“AI for Index Tuning;
Multi-d Indexes

Amol Deshpande
February 16, 2023

Outline

- IndexTuni‘ng using Al
» Multi-dimensional Indexes — background

. Flood and Tsunami

e

Background

— e

* Index tuning: Predict best indexes for a given dataset and workload

* AutoAdmin Main Steps

— Foreach query in the workload, identify good indexes for that query
— Combine across all queries to come up with potential "configurations”
- = Use the optimizer to decide which configuration will improve performance the most
= Key intuition: the optimizer cost models are used during optimization anyway

PROBLEM STATEMENT 2. Continuous index tuning: Given
the number of iterations K, a workload W = {(Q;, si)}, where
Q; is a query and s; is its associated weight, and a storage bud-
get B, find a sequence of configurations C* - - - CX, where the
change in configuration C* — C*-! fits in B at each iteration
k and Zf:l 3 si - cost(Q;, CX) results in the lowest execution
cost for W.

PROBLEM STATEMENT 1. Index tuning: Given a workload
W = {(Qi,si)}, where Q; is a query and s; is its associated
weight, and a storage budget B, find the set of indexes or the

configuration C that fits in B and results in the lowest execution
cost Y ; si - cost(Q;, C) for W, where cost(Q;, C) is the cost of
query Q; under configuration C.

Problem

= Regressions: New configuration worse for some queries
— Reason: Optimizer cost models are not that accurate

Q
-
=
-—

8
o

[—

o
-

-

“

oV
D

K
o

Optimizer's Estimated Cost Ratio
* Improve Comparable * Regress

Figure 1: The ratio of CPU ex-
ecution cost vs. that of opti-
mizer’s estimated cost.

— e —

Use ML?

S a—— = ——— ——

= Option 1: Learn to predict the cost of a query.plan
— Too difficult
— Later work had more success (BAO)

= Option 2:
-~ We just need to know if one plan is better than another plan
= j.e., plans corresponding to same query but different configurations

- How about we learn a “classifier”?
= Should be a much easier problem

= Option 3:
— Learn to predict the “ratio” of the two costs
= Slightly easier than Option 1

Architecture

N4

Aggregated execution stats Deploy

model

Cross-database
offline model

A

CIassifier

A

Index Tuner \
0 <P,, P,> Search Algorithm

Query-level

Regress,
Improve

Workload-

[

/

level

pHI[Q, cM
“what-if” API
Ry

|_| [Meta\cl:lata][" Query]

History

Optimizer

[Query

Cloud Database Service

\‘Execution

Execution]
DBMS Engine /

Figure 2: Overview of an architecture leveraging the
classifier trained on aggregated execution data from
multiple databases in a cloud database service.

Featurizing Plans

= Use structural as well as local features

» For each operator in the query plan, generate a feature

Table 1: Example feature channels with different ways
of weighting nodes encoding different types of infor-
mation. All estimates are from the query optimizer.

Channel

EstNodeCost
EstRowsProcessed
EstBytesProcessed
EstRows

EstBytes

Leaf WeightEst-
RowsWeightedSum
Leaf WeightEst-
BytesWeightedSum

Description

Estimated node cost as node weight (work done).

Estimated rows processed by a node as its weight (work done).
Estimated bytes processed by a node as its weight (work done).
Estimated rows output by a node as its weight (work done).
Estimated bytes output by a node as its weight (work done).
Estimated rows as leaf weight and weight sum as node weight
(structural information).

Estimated bytes as leaf weight and weight sum as node weight
(structural information).

Featurizing Plans

Est Cost: 35
Est Rows: 200

Est Cost: 20
Est Rows: 200

Index See

Est Cost: 10 Serial Est Cost: 30
Est Rows: 200 Row Est Rows: 1000
Mode

(a) Example query plan.

|
Seria LeafWeightEstRows

EstNodeCost WeightedSum

Seék - Row_Serial 200 »

Scan_Row_Serial [80 | Scan_Row_Serial |2000
H)_Row_Serial |55 *** IHJ_Row_Serial 4600
A NU_Row_Serial (0O NLU_Row_Serial
ena g
S MJ_Row_Serial m MJ_Row_Serial m

Mode

(b) Feature channels for the plan.

Figure 3: An example of encoding a query plan into a
vectorized representation called feature channels.

Feat

urizing Plans

Est Cost: 35
Est Rows: 200
Plan P,

Est Cost: 20

Est Rows: 200 Mode Ect Cost: 50 Serial

Est Rows: 1000 Row

Index Seek T Mode

Est Cost: 10 Serial Est Cost: 30 Serial
Est Rows: 200 Row Est Rows: 1000 Row
Mode Mode

Est Cost: 35
Est Rows: 200

Plan P,

Est Cost: 20

Est Rows: 1000 Mode Est Cost: 10 Serial

Est Rows: 200 Row

Index Seek Ty Index Scan T, Mode

Est Cost: 20 Serial Est Cost: 30 Serial
Est Rows: 1000 Row Est Rows: 1000 Row
Mode Mode

RowsWeighted | Scan_Row Serial

30
Scan_Row_Serial | 80
| NU_Row Serial [0 | |NU_Row_Serial
| MJ_Row Serial [0 | |MJ Row Serial

EstNodeCost | Seek Row Serial | 20 |EstNodeCost

HJ Row Serial
EstNodeCost '\ Row Serial | 0
(P2=P3) M) Row Serial |0

Seek_Row_Serial | 200
Scan_Row_Serial | 2000
H) Row_Serial 4600 HJ Row_Serial
NU_Row Serial |0 NL! Row_Serial

MJ Row_Serial 0 MJ_Row_Serial

LeafWeightEst | Seek_Row_Serial | LeafWeightEst

RowsWeighted
Sum (P,) H) Row Serial Sum (P,)

LeafWeightEstRows | 4
WeightedSum MJ_Row_Serial

(P2~ Py)

Figure 4: Example of combining the individual plan
features into a feature vector for the pair by using
a channel-wise difference. Join order change (a struc-
tural change) is reflected in the values for channels
ending with WeightedSum.

Featurizing a Pair of Plans

= Recall: our input to classifier is a pair of plans.

ExecCost(P,) — ExecCost(P;)

>
ExecCost(P;) ’

= Can concatenate the two feature vectors, but perhaps better to combine
them

— Couple of possible variations

Learnlng the C1a551f1er

» Canuse any Off- the shelf cIaSS|f|er
- Logistic regression, random forests, gradient-boosted trees, etc.

» Need for adaptation
- Too many variations from training to real world

= Options:
1. Learn a model locally for each database -- not enough data

2. Combine local models and a global model
= Use local model if the query point is close to training data points (nearest nelghbor)

3. Use the model with less uncertainty about the classification
4. Learna"“meta” model that tells us which of the two to use

Other Issues

- = g — e —

* Integrating with the index tuner
- Use the classifier to enforce no regression (or limited regression, etc)
— Still uses the “"what-if” API from the earlier paper to get plans for hypothetical configurations

= Other options for learning?

— Learn to predict the cost of an operator (using similar features)
- Learn to predict the cost of a plan
= Ineither case, use this instead of the optimizer estimate to make decisions
- Learn to predict the ratio of costs of two plans given the pair feature vector

= Use Deep Neural Networks?

Input Partially-connected layers Fully-connected layers Output

Figure 5: A partially-connected DNN architecture.

Some Results

As is evident, the classifier’s F1 score is significantly higher
compared to any other model. In particular, compared with
the query optimizer, which is used in state-of-the-art index
tuners, for unseen plans, the classifier remarkably increases

0

the F1 score by 21 percentage points, equivalent to about 5X
reduction in the error. For unseen queries, which is a much
harder problem to predict, the classifier still improves over the
optimizer by 10 percentage points, i.e., almost 2X reduction
in error. Moreover, the classifier is much more accurate com-
pared to any of the regressors. Interestingly, the operator-level

Plan Query

Train/Test Split Mode
® Optimizer O3 Operator Model ® Plan Model & Pair Model & Classifier

Figure 6: F1 score of different approaches to compare
execution costs of a pair of plans.

2t
F = p

2tp + fp + fn

Some Results

Table 3: Segmented F1 score for different models, i.e.,
Optimizer (O), Pair Model (P), and Classifier (C), with
the best F1 score for each segment in bold.

Diff Ratio 0.2-0.5 0.5-1 1-2
Plan Cost O P C O P C 9] P C 0

0-25% 0.70 0.84 0.84 0.74 092 0.93 0.85
25-50% 0.53 0.71 0.75 0.63 0.87 0.89 0.73 092 0.94 0.92
50-75% 0.53 0.77 0.84 0.62 090 0.93 0.71 0.95 0.97 0.92
75-100% 0.50 0.70 0.81 0.57 0.86 0.89 0.67 093 0.94 0.92

pair model = “plan pair regressor” from section 6.1?

Some Results

w
o
N
w
=]
o

B
o
N
o

[=2)
o

w
o
—

N
o
[
o

N
(=]

=
o

wm
Number of Queries
oy
(=]

Number of Queries
Number of Queries

o
o
o

Improve (cumulative) Regress (final) Improve (cumulative) Regress (final) Impreve (cumulative) Regress (final)
W Opt O OptTr AdaptiveDB (I AdaptivePlan « Opt OOptTr AdaptiveDB AdaptivePlan Opt QOOptTr AdaptiveDB AdaptivePlan

(a) TPC-DS 10g (b) TPC-DS 100g (c) Customer6

Figure 11: Number of queries improved at its final configuration (with regressed configuration reverted) and re-
gressed at the last iteration for query-level tuning with ten iterations.

Some D15cuss1on Polnts

— e

» What's the main take-away from this paper7

= Major concerns with the paper?

» Possible improvements?

Outline

- IndexTunihg using Al
» Multi-dimensional Indexes — background

. Flood and Tsunami

leferent Goals

= Queries on relatlons W|th multlple predlcates
-10<R.A<20and 20<R.B<30
— Can be done using two separate indexes, but far from optimal
— Can sort by R.A first, and then by R.B

= Can’t support queries on B alone

» Spatial data
— Data is points, and queries are rectangles
- Data is rectangles and queries are rectangles, etc.

» Also different types of queries
- E.g., find “nearest neighbors” to a given point

Grid Files

global partition points

one grid block

a bucket region

Fig 2.7(a) The Grid Fle ig 2. Grid block assig

https://pages.cs.wisc.edu/~zuyu/summaries/db-qual/gridFile

K-d-Trees

__—1] Root —_
X <80 X>80

Index
Y <59 Y>59 Y <90 Y>90
Structure , ,
"‘ f | | \ “'w‘ ‘
| | | | \

. .’“ ‘ | | | | \ .
Physical [[2 [012 0= Is [» [¢ |

Storage

>—
-
O
m
-
Q
£
-

Dimension X

R-Trees

Figure 14.30 An R-tree.

summary

— e

» Work pretty well in small number of dimensions

» Curse of dimensionality
— Unintuitive behavior in larger dimensions

» Require tuning to work well

» Usually hard to update |
— Most don't support transactions efficiently

Outline

S a—— = = —

- IndexTunihg using Al
» Multi-dimensional Indexes — background

* Flood and Tsunami

Flood

* For each dimension, figure out an even
partitioning (separately)
— Say 3 partitions for X, and 6 partitions forY

= For every combination of partitions, add an
entry in the lookup table to point to the
- right block

— Very similar to Grid Files

* QueryforX=5andY =10
— First find the partition for X, say 1

— ThenforY:say3
— Then the pointer to the block is in location (x-1)*6
+ Y55

Per-dimension | CDF(X)
CDF Models CDF(Y)

Lookup Table

Flood Benefits

= Workload-aware

— Number of partitions for each dimensions
dictated by the overall workload

= Efficiency

— The CDFs are much more space- and time-
efficient than a tree structured index

Dimension Y

Dimension X

9 B Optimize using workload | |

= Using 5ox smaller index size, outperformed
traditional indexes by three orders of
magnitude

Dimension Y

Dimension X

Sales: Query Time TPC-H: Query Time OSM: Query Time Perfmon: Query Time

406 843
208

662

Avg query time (ms)
Avg query time (ms)
Avg query time (ms)
Avg query time (ms)

Figure 7: Query latency of Flood on all datasets. Flood’s index is trained automatically, while other indexes are
manually tuned for optimal performance on each workload. We exclude the R*-tree when it ran out of memory.
Note the log scale.

—e— Flood Z Order ~e— UB tree —e— Hyperoctree —e— K-d tree —+— Grid File R* Tree Clustered - == Full Scan

Sales: Query Time TPC-H: Query Time OSM: Query Time Perfmon: Query Time

[
o
w

102 -

[

o
N

Ak,

2 |
10 10" 4

10! 4

Average query time (ms)
Average query time (ms)
Average query time (ms)
Average query time (ms)

e 4 ® N ° 100 | ° ._/
10 T TrrrroT TrrTTYTYT TrTTTTYT T 10 T T T T T T T T T T T T T T T T T
100kB 1MB 10MB 100MB 1GB 100kB 1MB 10MB 100MB 1GB 10GB 100k 1MB 10MB 100MB 1GB 10GB 10kB 100kB 1MB 10MB 100MB 1GB 10GB
Index size Index size Index size Index size

Figure 8: Flood (blue) sees faster performance with a smaller index, pushing the pareto frontier. Note the log scale.

Flood L1m1tat10ns

e - -
—

* Good average case perfcrmance but some queries could require
scanning large amounts data to extract small results

= Doesn’t handle correlated data well
— Most data tends to be pretty correlated across dimensions

- Flood guarantees equal partitions along each dimension, but not across
combinations |

How Tsunaml Fixes This

— e

* Do a coarse-grained partitioning first

» And then, allocate additional resources to each partition as needed

~ Grid Tree
- (Sec. 4)

. Augmented

Grids
(Sec. 5)

Dimension Y

Dimension X

Dealing with Skew

(a) Silg,lf Grid (b) Split Grids

Sales (USD)

017 2018 2019 2020 2016 2017 2018 2019

Year Year

0
n
=
n
9
©
m >
>
&=
()
=
[0
(@]
>
-]
192
o
(@)
>
-]
0
=
0]
(@]

Figure 2: A single grid cannot efficiently index a skewed 2016 2017 2018 2019 2020
query workload, but a combination of non-overlapping Year
grids can. We use this workload as a running example.

Figure 3: Query skew is computed independently for each
query type (Qy and Q,) and is defined as the statistical
distance between the empirical PDF of the queries and the
uniform distribution.

Grid Tree

= Built greedily
= Starting with..

~ root = entire dataspace and entire workload

= Make the “split” decision that most reduces the “skew” along one of the
dimensions

- Skew defined to be the distance between the distribution of queries and uniform distribution along that
dimension

Dealing with Correlations

» Key problem: too much variation across the cells
— Evenif each dimension is split evenly

* |f very strong monotaonic correlation (X almost predictsY)...
— Convert the predicate onY into a predicate on X, and only build an index on X

(a) Grid w/o FM (b) Grid w/ FM

>
c
0
1)
=
v
£
(a]

Dimension X Dimension X

Figure 5: Functional mapping creates equally-sized cells and
reduces scanned points for tight monotonic correlations. The
query is in green, scanned points are red, and the mapping
function is purple, with error bounds drawn as dashed lines.

Dealing with Correlations

—

» Otherwise use a k-d-tree-like structure to create even cells
— Except use learned functions instead of a decision tree

= Queries overY alone are more expensive

(a) Grid w/o CCDF (b) Grid w/ CCDF

S
c
>~
n
c
v
£
o

Dimension X Dimension X

Figure 6: Conditional CDFs create equally-sized cells and

reduce scanned points for generic correlations. The query is
in green, and scanned points are in red.

Dealing with Correlations

= Some possibilities (“skeletons”) ,
- [X, Y= X, Z] means that we partition on X and Z evenly, and convert any predicate onY into a predicate
on X

* Use an adaptive descent algorithm to greedily find a good skeleton and partitioning
— Very.large search space

Ex.skeleton [X,Y|X,Z](ie, CDF(X), CDF(Y|X),and CDF(Z))

One hopaway |[X,Y,Z] |X,Y|Z,Z] (X, Y- X,Z]
(X,Y—>Z2Z] [XY|X,Z|X] [X,Y|X,Z—X]

Table 2: Example skeleton over dimensions X, Y, Z, and all
skeletons one “hop” away. Restrictions are explained in
§5.2.1 and §5.2.2 (e.g., [X — Z,Y|X,Z] is not allowed).

Results

Perfmon Stocks

€ £ £ £
4 2 - 4
€ £ € €
B <] = <]
> oy Py g
@ @] @
3 3 3 S
o T o T
o o o o
> > > >
< < < <

Figure 7: Tsunami achieves up to 6X faster queries than Flood and up to 11X faster queries than the fastest non-learned index.

Some D15cuss1on Polnts

— e

» What's the main take-away from this paper7

= Major concerns with the paper?

» Possible improvements?

