
Machine Learning for 
Data Management Systems

AI for Index Tuning; 
Multi-d Indexes

Amol Deshpande
February 16, 2023



Outline
▪ Index Tuning using AI

▪ Multi-dimensional Indexes – background

▪ Flood and Tsunami



Background
▪ Index tuning: Predict best indexes for a given dataset and workload

▪ AutoAdmin Main Steps
– For each query in the workload, identify good indexes for that query
– Combine across all queries to come up with potential “configurations”
– Use the optimizer to decide which configuration will improve performance the most
▪ Key intuition: the optimizer cost models are used during optimization anyway



Problem
▪ Regressions: New configuration worse for some queries 
– Reason: Optimizer cost models are not that accurate



Use ML?
▪ Option 1: Learn to predict the cost of a query plan 
– Too difficult
– Later work had more success (BAO)

▪ Option 2: 
– We just need to know if one plan is better than another plan
▪ i.e., plans corresponding to same query but different configurations

– How about we learn a ”classifier”?
▪ Should be a much easier problem

▪ Option 3:
– Learn to predict the “ratio” of the two costs 
▪ Slightly easier than Option 1



Architecture

Aggregated execution stats 

Application requests

Cross-database 

offline model

Deploy 

model

Execution History

Query 

Optimizer

DBMS Engine

Query 

Execution

Metadata

Index Tuner

Classifier

Search Algorithm

Query-level

Workload-

level

Q, CH

<P1, P2>

Regress, 

Improve

Cloud Database Service

PH

͞ǁŚĂƚ-ŝĨ͟��W/

Figure 2: Overview of an architecture leveraging the
classi�er trained on aggregated execution data from
multiple databases in a cloud database service.

2.3 Architecture
Figure 2 illustrates the end-to-end architecture of an in-
dex tuner leveraging aggregated execution data in a cloud
platform, such as Azure SQL Database. Databases emit ag-
gregated query plan execution statistics through telemetry.
These statistics include the featurized plans (see Section 3.2)
from di�erent index con�gurations, which happen naturally
as indexes are changed by human administrators or auto-
mated services [24, 52]. Plans of the same query are identi�ed
with a unique query hash generated by Azure SQL Database
from the abstract syntax tree. Using di�erent plans for the
same query, we construct the pairs that provide the �nal fea-
ture vectors (see Section 3.3) and use plans’ execution cost
to assign the class label. We train a classi�er by aggregating
this data across databases, which corresponds to the o�ine
model (Section 4.1). This o�ine model is then deployed for
the index tuner to use during its search for index con�g-
urations (Section 5). The application’s queries execute in
parallel to the index tuner implementing its indexes, similar
to the auto-indexing service in Azure SQL Database [24].
These new con�gurations result in additional execution data
collected local to each database. We adapt the model to each
database (Section 4.3) by retraining the adaptive model on
these additional data at each invocation of the index tuner.

3 FEATURIZING QUERY PLAN PAIRS
3.1 Rationale
The input to the classi�cation task is a pair of query plans,
where each query plan is a tree of operators. O�-the-shelf
ML techniques rely on feature vectors of �xed dimensions.
Hence, we need to convert the pair of query plans into fea-
ture vectors. Several approaches exist to convert graphical or
tree-structured data into vectors [33, 71]. While being more
general purpose, such approaches do not leverage informa-
tion speci�c to database semantics and critical for execution
cost that query plans encode, e.g., operator type, parallelism,

execution mode, etc. To better leverage such information, we
develop a featurization, inspired by other approaches used
for DB applications (e.g.,[5, 31]), that is e�cient and results
in models with high accuracy. While some featurization as-
pects leverage the details of SQL Server, we expect the key
ideas are applicable to other database engines.
We use the following guiding principles to encode the

semantics of the query plans and other factors that contribute
to execution cost in our featurization:
• Learn across queries and databases: Be schema agnos-
tic to allow cross-database learning, leveraging execution
data from millions of databases in a cloud platform.

• Learn from the optimizer: Leverage the valuable infor-
mation presented in query plans generated by industrial-
strength query optimizers.

• Learn from information in estimated query plans:
The index tuner can search for con�gurations that have
never been implemented. Thus, execution statistics, such
as true cardinalities, are rarely available at inference time.
Featurization should not use such information.

In addition to the above principles, the feature vectors should
encode the following key types of information that provide
a way for the model to learn the classi�cation task:
• Measure of work done: The query optimizer’s estimate
for an operator’s cost or the number of rows processed by
an operator are example features for this measure.

• Structural information: Join orders or the position of
an operator in the plan is often useful, especially when
comparing two plans for the same query.

• Physical operator details: Physical operators in a plan
play a crucial role in the cost. For instance, a nested loop
join will have very di�erent cost compared to a merge join
even if they correspond to the same logical join operator.

We assume all execution data is collected on similar hard-
ware; extensions to heterogeneous hardware is future work.

3.2 Featurizing a Plan
Guided by our principle of being able to learn across plans,
queries, and databases and our goal of capturing physical
operator details, we use the physical operators supported
by SQL Server as our feature dimensions or attributes.
SQL Server supports a set of physical operators (such as
Index Scan, Table Scan, Hash Join, etc.) which are known in
advance and also do not change very frequently. A query
plan is a tree of these physical operators. Two additional
properties of physical operators are relevant to execution
cost: (a) parallelism: whether the operator is single-threaded
(serial) or multi-threaded (parallel); and (b) execution mode:
whether the operator processes one row at a time (row
mode) or a batch of data items in a vectorized manner
(batch mode). Each operator is assigned a key of the form



Featurizing Plans
▪ Use structural as well as local features

▪ For each operator in the query plan, generate a feature

Table 1: Example feature channels with di�erent ways
of weighting nodes encoding di�erent types of infor-
mation. All estimates are from the query optimizer.

Channel Description

EstNodeCost Estimated node cost as node weight (work done).
EstRowsProcessed Estimated rows processed by a node as its weight (work done).
EstBytesProcessed Estimated bytes processed by a node as its weight (work done).
EstRows Estimated rows output by a node as its weight (work done).
EstBytes Estimated bytes output by a node as its weight (work done).
LeafWeightEst-
RowsWeightedSum

Estimated rows as leaf weight and weight sum as node weight
(structural information).

LeafWeightEst-
BytesWeightedSum

Estimated bytes as leaf weight and weight sum as node weight
(structural information).

hPhysical Operatori_hExecution Modei_hParallelismi.
Execution mode is either Row or Batch, and paral-
lelism is either Serial or Parallel. Examples of such
keys are hSeek_Row_Seriali, hHashJoin_Row_Seriali,
hScan_Batch_Paralleli, etc. Since the set of physical
operators is �xed, the set of keys is also �xed.
For a given query plan, we assign a value to each key

which: (i) measures the amount of work done by the cor-
responding operators in the plan; (ii) encodes structural
information. In a plan with multiple operators having the
same key, we sum up all the values assigned to the key. If an
operator does not appear in a plan, we assign zero to the cor-
responding key, allowing a �xed dimensionality of the vector.
Di�erent ways of assigning a value to an operator encode
di�erent information and create di�erent feature channels.
Table 1 lists the di�erent feature channels, how the weights
are computed, and what information they encode. Each chan-
nel has the same dimensionality. Since channels in Table 1
have some redundancy, a subset of channels, usually two or
three, are su�cient as long as we pick channels that encode
a measure of work and structural information. We also use
the optimizer-estimated plan cost as a feature.

Table 1 shows various ways to encode the amount of work
done by an operator, such as using the optimizer’s estimate
of the node’s cost (EstNodeCost) or the estimated bytes pro-
cessed by the node (EstBytesRead). The channels withWeight-
edSum su�x encode some structural information even in the
�attened vector representation. We assign a weight to each
node which is computed recursively from the leaf nodes in
the plan to the root. Each leaf node has a weight, e.g., esti-
mated number of rows output by the node. Each node has a
height, i.e,. starting with 1 for the leaves and incremented
by 1 for each level above the leaf. The value of a node is the
sum of weight ⇥ height of all its children. Structural changes
in the plan, e.g., join order change, will likely result in di�er-
ent children weights and potentially node heights (e.g., see
Figure 4), thus resulting in di�erent feature vectors.

Figure 3 gives an example of our featurization for a simple
query plan shown in Figure 3(a). The plan joins three tables

(a) Example query plan. (b) Feature channels for the plan.

Figure 3: An example of encoding a query plan into a
vectorized representation called feature channels.

Figure 4: Example of combining the individual plan
features into a feature vector for the pair by using
a channel-wise di�erence. Join order change (a struc-
tural change) is re�ected in the values for channels
ending with WeightedSum.

and returns their result, executing single-threaded in row
mode. Each node is also annotated by the physical operator
being used as well as some optimizer-estimated measures,
such as estimated node cost, estimated rows, etc. Figure 3(b)
shows how two example channels are computed using the
raw values obtained from the plan. Consider the EstNodeCost
channel, it uses the optimizer-estimated node cost as the
weight and sums the weights of the same key in the plan. For
instance, the keys hScan_Row_Seriali corresponds to two
operators and the weight in Figure 3(b) for this key is the
sum of the weight, 50 and 30, of each operator.

3.3 Featurizing a Pair
After featurizing individual plans, we combine their features
to encode a pair of plans hP1,P2i. A key insight driving this
combination is that the classi�er is conceptually learning
to �nd the di�erence between the plans. If we rewrite the
expression in Section 2, a regression label is assigned is if:

ExecCost(P2) � ExecCost(P1)
ExecCost(P1)

> � (1)



Featurizing Plans



Featurizing Plans



Featurizing a Pair of Plans
▪ Recall: our input to classifier is a pair of plans

▪ Can concatenate the two feature vectors, but perhaps better to combine 
them
– Couple of possible variations

Table 1: Example feature channels with di�erent ways
of weighting nodes encoding di�erent types of infor-
mation. All estimates are from the query optimizer.

Channel Description

EstNodeCost Estimated node cost as node weight (work done).
EstRowsProcessed Estimated rows processed by a node as its weight (work done).
EstBytesProcessed Estimated bytes processed by a node as its weight (work done).
EstRows Estimated rows output by a node as its weight (work done).
EstBytes Estimated bytes output by a node as its weight (work done).
LeafWeightEst-
RowsWeightedSum

Estimated rows as leaf weight and weight sum as node weight
(structural information).

LeafWeightEst-
BytesWeightedSum

Estimated bytes as leaf weight and weight sum as node weight
(structural information).

hPhysical Operatori_hExecution Modei_hParallelismi.
Execution mode is either Row or Batch, and paral-
lelism is either Serial or Parallel. Examples of such
keys are hSeek_Row_Seriali, hHashJoin_Row_Seriali,
hScan_Batch_Paralleli, etc. Since the set of physical
operators is �xed, the set of keys is also �xed.
For a given query plan, we assign a value to each key

which: (i) measures the amount of work done by the cor-
responding operators in the plan; (ii) encodes structural
information. In a plan with multiple operators having the
same key, we sum up all the values assigned to the key. If an
operator does not appear in a plan, we assign zero to the cor-
responding key, allowing a �xed dimensionality of the vector.
Di�erent ways of assigning a value to an operator encode
di�erent information and create di�erent feature channels.
Table 1 lists the di�erent feature channels, how the weights
are computed, and what information they encode. Each chan-
nel has the same dimensionality. Since channels in Table 1
have some redundancy, a subset of channels, usually two or
three, are su�cient as long as we pick channels that encode
a measure of work and structural information. We also use
the optimizer-estimated plan cost as a feature.

Table 1 shows various ways to encode the amount of work
done by an operator, such as using the optimizer’s estimate
of the node’s cost (EstNodeCost) or the estimated bytes pro-
cessed by the node (EstBytesRead). The channels withWeight-
edSum su�x encode some structural information even in the
�attened vector representation. We assign a weight to each
node which is computed recursively from the leaf nodes in
the plan to the root. Each leaf node has a weight, e.g., esti-
mated number of rows output by the node. Each node has a
height, i.e,. starting with 1 for the leaves and incremented
by 1 for each level above the leaf. The value of a node is the
sum of weight ⇥ height of all its children. Structural changes
in the plan, e.g., join order change, will likely result in di�er-
ent children weights and potentially node heights (e.g., see
Figure 4), thus resulting in di�erent feature vectors.

Figure 3 gives an example of our featurization for a simple
query plan shown in Figure 3(a). The plan joins three tables

(a) Example query plan. (b) Feature channels for the plan.

Figure 3: An example of encoding a query plan into a
vectorized representation called feature channels.

Figure 4: Example of combining the individual plan
features into a feature vector for the pair by using
a channel-wise di�erence. Join order change (a struc-
tural change) is re�ected in the values for channels
ending with WeightedSum.

and returns their result, executing single-threaded in row
mode. Each node is also annotated by the physical operator
being used as well as some optimizer-estimated measures,
such as estimated node cost, estimated rows, etc. Figure 3(b)
shows how two example channels are computed using the
raw values obtained from the plan. Consider the EstNodeCost
channel, it uses the optimizer-estimated node cost as the
weight and sums the weights of the same key in the plan. For
instance, the keys hScan_Row_Seriali corresponds to two
operators and the weight in Figure 3(b) for this key is the
sum of the weight, 50 and 30, of each operator.

3.3 Featurizing a Pair
After featurizing individual plans, we combine their features
to encode a pair of plans hP1,P2i. A key insight driving this
combination is that the classi�er is conceptually learning
to �nd the di�erence between the plans. If we rewrite the
expression in Section 2, a regression label is assigned is if:

ExecCost(P2) � ExecCost(P1)
ExecCost(P1)

> � (1)



Learning the Classifier
▪ Can use any off-the-shelf classifier
– Logistic regression, random forests, gradient-boosted trees, etc.

▪ Need for adaptation
– Too many variations from training to real world

▪ Options:
1. Learn a model locally for each database -- not enough data
2. Combine local models and a global model
▪ Use local model if the query point is close to training data points (nearest neighbor)

3. Use the model with less uncertainty about the classification
4. Learn a “meta” model that tells us which of the two to use



Other Issues
▪ Integrating with the index tuner

– Use the classifier to enforce no regression (or limited regression, etc)
– Still uses the “what-if” API from the earlier paper to get plans for hypothetical configurations

▪ Other options for learning?
– Learn to predict the cost of an operator (using similar features)
– Learn to predict the cost of a plan 
▪ In either case, use this instead of the optimizer estimate to make decisions

– Learn to predict the ratio of costs of two plans given the pair feature vector

▪ Use Deep Neural Networks?



Some Results

F = 



Some Results

pair model = “plan pair regressor” from section 6.1?



Some Results



Some Discussion Points
▪ What’s the main take-away from this paper?

▪ Major concerns with the paper?

▪ Possible improvements?



Outline
▪ Index Tuning using AI

▪ Multi-dimensional Indexes – background

▪ Flood and Tsunami



Different Goals
▪ Queries on relations with multiple predicates:
– 10 < R.A < 20 and 20 < R.B < 30
– Can be done using two separate indexes, but far from optimal
– Can sort by R.A first, and then by R.B
▪ Can’t support queries on B alone

▪ Spatial data
– Data is points, and queries are rectangles
– Data is rectangles and queries are rectangles, etc.

▪ Also different types of queries
– E.g., find “nearest neighbors” to a given point



Grid Files

https://pages.cs.wisc.edu/~zuyu/summaries/db-qual/gridFile



K-d-Trees



R-Trees



Summary
▪ Work pretty well in small number of dimensions

▪ Curse of dimensionality
– Unintuitive behavior in larger dimensions

▪ Require tuning to work well

▪ Usually hard to update
– Most don’t support transactions efficiently



Outline
▪ Index Tuning using AI

▪ Multi-dimensional Indexes – background

▪ Flood and Tsunami



Flood
▪ For each dimension, figure out an even 

partitioning (separately)
– Say 3 partitions for X, and 6 partitions for Y

▪ For every combination of partitions, add an 
entry in the lookup table to point to the 
right block
– Very similar to Grid Files

▪ Query for X = 5 and Y = 10
– First find the partition for X, say 1
– Then for Y: say 3
– Then the pointer to the block is in location (x-1)*6 

+ y = 3



Flood Benefits
▪ Workload-aware
– Number of partitions for each dimensions 

dictated by the overall workload

▪ Efficiency
– The CDFs are much more space- and time-

efficient than a tree structured index

▪ Using 50x smaller index size, outperformed 
traditional indexes by three orders of 
magnitude





Flood Limitations
▪ Good average-case performance, but some queries could require 

scanning large amounts data to extract small results

▪ Doesn’t handle correlated data well
– Most data tends to be pretty correlated across dimensions
– Flood guarantees equal partitions along each dimension, but not across

combinations



How Tsunami Fixes This
▪ Do a coarse-grained partitioning first

▪ And then, allocate additional resources to each partition as needed



Dealing with Skew



Grid Tree
▪ Built greedily

▪ Starting with..
– root = entire dataspace and entire workload

▪ Make the ”split” decision that most reduces the “skew” along one of the 
dimensions
– Skew defined to be the distance between the distribution of queries and uniform distribution along that 

dimension



Dealing with Correlations
▪ Key problem: too much variation across the cells
– Even if each dimension is split evenly

▪ If very strong monotonic correlation (X almost predicts Y)…
– Convert the predicate onY into a predicate on X, and only build an index on X



Dealing with Correlations
▪ Otherwise use a k-d-tree-like structure to create even cells

– Except use learned functions instead of a decision tree

▪ Queries over Y alone are more expensive



Dealing with Correlations
▪ Some possibilities (“skeletons”)
– [X,YàX, Z] means that we partition on X and Z evenly, and convert any predicate onY into a predicate

on X

▪ Use an adaptive descent algorithm to greedily find a good skeleton and partitioning
– Very large search space



Results



Some Discussion Points
▪ What’s the main take-away from this paper?

▪ Major concerns with the paper?

▪ Possible improvements?


