Machine Learning for
- Data Management Systems

Materialized Views

Amol Deshpande
February 21, 2023

Outline

* Background

= Prior Work

= Automatic View Generation using DL and RL

Views

—— =~ =

= View: Virtual expressions, used for query simplification and access control

= Substituted into the query when used

create view physics_fall_ 2009 as

. ; L select course_id
select course.course_id, sec_id, building, room_number ¢ s 11.2009
from course, section rom physics_fall_

where course.course_id = section.course_id : where building = "Watson’;
and course.dept_name = 'Physics’
and section.semester = "Fall’
and section.year = "2009’;

Materialized Views

* Pre-compute commonly used views for efficiency

- Need to keep up-to-date as the base tables change
= Usually. done through “incremental” updates
- Take extra storage space

= Same chaIIenge for any “pre-computed” summary
— Including many types of “indexes”

* Deciding whether a materialized view can be used for a given query undecidable in
general
— Lot of theoretical work on this problem
— Especially in the “data integration” context

Materialized Views

—_— —— - — i

= Question 1: Which views to materialize and what types of indexes to build
on them (view design or selection)

« Question 2: How to maintain views when base tables are updated (view
maintenance)

= Question 3: How and when to use views for a given query (view
exploitation)
- Work dating back to 1985

Outline

» Background

* Prior Work

= Automatic View Generation using DL and RL

View Exploitation

—— =~ =

- Discussion from: Optimizing Queries with Materialized Views; 1995

= Consider view:
Executive(name, dno, sal) with employees with sal > 200k
Query: select * from emp where sal > 200k and dno = 0419
Index on emp on dno =» Use the index
No index on emp on dno =» Use the view

May choose to ignore a materialized view even if the query asks for it
= Query: select * from Executive where dno = 0419 '
* Index on emp on dno =» Use the index

= Need to do this in a cost-based manner
— Have the optimizer enumerate the options and figure out the cost for each of them
— Can only be done efficiently for simpler views

View Selection

= AutoAdmin (SQL Server 2000)

Workload
Syntactic structure
selection
Microsoft
SQL

Candidate Candidate ; Server
Index Materialized i
Selection View Selection
Configuration
Simulation
and Cost
Estimation
Configuration
Enumeration

Final
Recommendation

Figure 1. Architecture of Index and Materialized View
Selection Tool

BigSubs

e =

= Selecting Subexpressions to Materialize at Datacenter Scale; VLDB 2018

= Slightly different motivation
Shared analytics clusters (e.g., in the cloud) with 10000s of jobs
Quite a bit of shared computation across them (saved upto 40% of compute cost)
Same tasks repéated again and again =» optimization will pay off
No updates considered

Another related problem:
- Multi-query optimization: optimize a group of queries together
— Little work — considered quite hard, and not well-motivated

view selection

BigSubs

. v
subexpression

reuse

online caching

Reuse opportunities

0(10) O(10K)
Scalability (workload size)

Figure 1: Approaches for computation reuse.

BigSubs Example

= S1 more common, but less benefit
= S2 has high storage cost

= If S2is picked, s1 doesn’t benefit Q3 or Q4

Eser-delmed-
| aggregate-2

Figure 3: Illustrating the subexpression selection problem.

BigSubs Approach

—_— —— - — i

= Key assumption: Focus on the query plans generated by the optimizer
- i.e., don't try to reoptimize the query given a materialized view — prior work did this
— This provide better statistics (assuming the same query was ran before)

= Choose candidate subexpressions
- — Any subexpression of any query is a valid option

= Utility of a subexpression, or a set of them, for a query

DEFINITION 2 (UTILITY OF SUBEXPRESSION). Let q; be a
query and s; one of its candidate subexpressions. We define the &
utility uij of s; for qi to be:

uij = Cp(s;) — Cace(s;) ()

DEFINITION 3 (UTILITY OF SUBEXPRESSION SET). Let q; be
a query and S be a set of candidate subexpressions. Let R;*"" be
the rewriting that leads to the highest cost reduction for q;. We
define the utility Us(q:) of S for g to be:
Us(lh‘) . Z Uij 3)

;. € Rmazc
s; ER]

BigSubs Approach

= Interacting subexpressions captured as a matrix

DEFINITION 4 (INTERACTING SUBEXPRESSIONS). Two can-
didate subexpressions si, so for query q are interacting, if the tree
corresponding to the logical plan of one is a subtree of the other.

= Problem formulation,

n
argmaxz Us(gi), with Bs < Bmax
S S R

= Asan Integer Linear Program:
maximize Z Z Uij * Yij

i=1 j=1

s.t. ij © 25 < Binas
j=1
1 m)
Yik + — Zyij czjr <1 Vie[l,n] ke [1,m]
j=1

m

Vi€ [1,n],j € [1,m]

BigSubs Approach

= |LP can’t be solved at scale

= Instead cast it as a bipartite graph labelling problem, and use a greedy heuristic on that

Initialization Iteration 1 Iteration 2

1. Initial bipartite graph 2. Probabilistically flip 3. Label edge vertices via 4. Probabilistically flip 5. Label edge vertices via
(randomly-labeled subexpres- 2 :
subexpression labels local per-query ILP subexpression labels local per-query ILP

sions, 0-labeled edges)
Figure 4: Illustrating first two iterations of subexpression selection via bipartite graph labeling. We assume each subexpression has
storage footprint ;=1 and the total budget is B,,,,=3. Subexpression labels are shown next to the vertices. For the edges, we use
solid lines when label is 1 and dashed ones otherwise. At each iteration, we mark with red the labels whose value changed.

BigSubs Approach

1E+08 W BigSubs

1E+07 B Topk-freq
Topk-utility

1E+06 B Topk-totalUtility

(machine-hours)

1E+05 B Topk-normTotalUtility
1E+04
1E+03
1E+02
1E+01

Datasize 4ogg 100GB 1B 10TB 100TB 1PB
Heuristic

Topk-freq 2.69 295 4.22 3.47 29.57 112.92
Topk-utility 1.30 1.43 3.19 6.46 60.72 207.95
Topk-totalUtility 3.38 3.72 7.52 15.30 108.50 144.38

Topk- 4.42 4.86 10.88 21.46 221.51 939.43
normTotalUtility

Figure 10: Total utility (machine-hour savings) on production
Workloadl using different selection methods and cost budgets.
Since the graph shows utility (i.e., savings), higher is better. The
table shows the improvement factor of BIGSUBS when com-
pared to the other schemes (higher factor is better).

Outline

» Background

= Prior Work

= Automatic View Generation using DL and RL

Automatic Vlew Generatlon using DL/RL

— ERSES

* Same setting as BigSubs
- Select subexpressions/views to materialize for a workload
—Ignore updates

h results ["query engine | ' Definition 7 (MVS problem): Given a query workload @

query e NS oo and a set of its possible subqueries S, we select subqueries
W°”"°ad workload views S C Sg to build materialized views Vs and then select views

PrO-ProCesS| mumy— V4§ C Vs for each query ¢ € Q as follows:

| |

: extractor cost/utlllty ; i

! queries apd m view selector : arg max Z Z Bg,v. Z O.,
E subqueries Y i SeSg, \ 6\ s

i ; ymodel §

9€Q v, eVy v EVs

s.t. si, s; are not overlapping, Vg € Q,1,j € [1,|V{|].

Fig. 3. The overview of system framework

Example

select t1.user_id,count(*) as cnt S St TS SQ:
== from (M ,’ 7ruscr7id7}.\ |
' S :-vselect user_id,memo from user_memo === action
: +. » Where dt="1010'and memo_type = 'pen')
' t1 inner join (

S ~» select user_id,action from user_action
i > Where type = 1 and dt="1010")
t2 on t1.user_id = t2.user_id
""" group by t1.user_id;
SQL Statement Abstract Syntax Tree

Aggregate(group=[{user_id_1}],cnt=[COUNT()])
* Join(condition=[EQ(user_id_1, user_id_2)], joinType=[inner])
pry * Project(user_id_1=[user_id],memo=[memo])
o Filter(condition=[AND(EQ(dt, '1010'), EQ(memo_type, 'pen’)])
R = TableScan(table=[[user_memo])
---» Project(user_id_2=[user_id],action=[action])
_82; Filter(condition=[AND(EQ(type, 1),EQ(dt, '1010)])
TableScan(table=[[user_action]])
Plan

Fig. 2. An example of a query and its subqueries

'
.

Automatlc Vlew Generatlon us1ng DL/RL

——— <

* Problem 1: How to estimate the cost of a query given a view

- BigSubs assumed statistics
— This work uses a cost estimator using DL

* Problem 2: Finding the best set of views to materialize
- BigSubs approach has some convergence issues

— Use Reinforcement Learning instead

Utility Estimation

 Features: a combination of operator information and table
information

 Build a wide linear model in parallel to a deep model

Aggregate(grou _id_1}],ci OUNT()])
Join(condition=[EQ(user_id_1, user_id_2)], joinType=[inner])
--» Project(user_id_1=[user_id],memo=[memo)) features
Filter(condition=[AND(EQ(dt, '1010'), EQ(memo_type, 'pen')]) B
> TableScan(table=[[user_memo))
Prqjecl(user_,‘id 2=[user_id],action=[action]) D non-numerical
Filter(condition=[AND (EQ(type, 1),EQ(dt, '1010")]) L
TableScan(table=[[user_action]])

numerical

features

operator
nodes

1 A. [Aggregate, user_id, cnt, COUNT] v)

1 B. [Join, EQ, user_id, user_id, inner] : wide linear
1 C. [Project, user_id, memo) 1 S2:[F.G,H] model

i D. [Filter, AND, EQ, dt, ‘1010, EQ, memo_type, ‘pen’]

{ E. [Scan, user_memo) S3:[B,C.D,E.F. G H]

iF. [Project, user_id, action]] , J:[AB.C,D,EF deep
ﬁ. {gllter. AND, EQ, type, ‘1", EQ, dt, ‘10107] model

from Plans Fig. 5. Wide-Deep Model

Utility Estimation

Algorithm 1: Wide-Deep Model Training
Input: training features (X = {(q1,v1,¢1),- - }), training
targets (Y = {Ag (q1|v1),---}), table schema
encoding part M,,, query/view plan encoding part M.,
wide part M,,, deep part M, regressor part M,.,
learning rate Ir, training epochs I, batch size bs.
(eti-A]}=== i Output: parameters 6., 0, 0w, 0a, 0, for My, Me, My,
= Mg and M,
chars one hot dense vector ; 1 extract numerical features X from {t1,t2,--};
2 extract non-numerical features X" from {(q1,v1,t1), -+ };
3forj«1---Ido
st ;C“;‘;g'e‘ - training iterations I’ = [%J:
shuf fle(X™,X")Y);
fori« 1---1' do
X" X' Y; + sample b, data from X™ X" Y,
Embedding Normalize and concatenate X" into D.;
D,, = M, (input table schema in X[");
D. = M.(query/view plans in X[*);
D, = concat(D., Dy, D.);
(TsTn} Yi € Mo(Mu(D.), Ma(D,));
&3 loss; «— MSE(Y;,Y);

LSTM K
el (S O, 0, 0,064,060, « AdamOpt(loss;,lr);

[str{1])==~

[strf-2]}= =~

Suppoquig rey)

Fig. 6. The overview of String Encoding

1 [Project, user_id, action]
2 [Filter, AND, EQ, type, ‘1’, EQ, dt, ‘1010"]
3_[Scan, user_action]

LSTM: lr

(b) an example of associated |3
(a) an example of query/view plan sequence encoding table schema encoding 15 return 6,,, 0,04, 04,0,;

Fig. 7. Non-numerical feature encoding examples

= Data to train the model?

Solving the ILP

Model as a reinforcement learning problem
Action: Select or de-select a subexpression to materialize
Reward: The (additional) utility of the resulting state

Use Deep Q-Learning Network to solve

RLView <Policy>

" = Select z; from Z
= N

<Reward> TOPREENY

Utility Change <Action>

<Environment>
<State>
Z = {z;}:zis a 0/1 variable indicating whether to materialize the subquery s;

Y = {yi; }:ysjis a 0/1 variable indicating whether to use the view vy, for the query g;

Fig. 8. The MDP Framework of the ILP Problem

Results

* One a few different synthetic-ish datasets

—_— Table V shows the end-to-end results. At first, we report the
b , th t (¢ d the lat 1) of ies.
END-TO-END RESULTS (O&B: Optimizer + BigSub, O&R: Optimizer + number (7), the cost (¢,) and the latency ({,) of raw queries
: ; : Then, for each method, we report the number (#m) and the

RLView, W&B: W-D + BigSub, W&R:W-D + RLView) .. .
overhead (0,,) of materialized views, the number (#(q|v))
Data JOB Pl P2 and the benefit (by|,,) of rewriting queries, and the latency (l;)
#q cq®) 1(s) | #q cg(B) L) | #q co(§) 1,(s) of the rewritten workload. At last, we report the associated
226 15.39 571.]6. 832 91.27 7'U7k. 5378 558.1949.9K ratio (rc), which is compu[ed as re. = b”l% In conclusion,
#(qlv) #m 0,8 [#(qlv) #m 0,(8)|F#(qlv) #m 0, (8) we can find some observations as follows: (1) Our system
182 24 104 | 231 24 1.04| 1307 162 34.49 ¢ outperforms other methods. For JOB, W&R can save 12.02%
le4 19 085 | 233 24 070 1361 156 30.25 cost while O&B only save 9.36% cost, so our system improves
140 17 046 | 224 21 0791345 174 40.79 the performance by 1202-9:36 100% = 28.4%. Similarly, the

9.36 o
148 18 053 | 250 26 093] 1300 144 2296 improvement for P1 and P2 are 212=845 » 100% = 8.8%

belv($) 15(s) 7Tc(%) |bg1v($) Ig(s) Te(%)|bgju($) 1G(s) Te(%) and 5812809 % 100% = 31.7%, res%éztively. (2) The more
248 479.12 9.36 | 8.75 6.04k 8.45 | 71.86 30.36k 6.69 accurate the cost model, the better the solution of the view
2.44 480.61 11.70 | 890 6.02k 8.98 | 75.31 30.25k 8.07 selection model. For example’ W&B and W&R save more
2.04 49547 10.27 | 8.76 6.02k 8.73 | 83.20 30.70k 7.60 cost than O&B and O&R, respectively. (3) RLView is more
2.38 482.86 12.02 | 9.32 5.98k 9.19 | 72.15 30.75k 8.81 robust than BigSub. Taking JOB for example, the ratio 7.
of BigSub is decreased by 10.27% — 9.36% = 0.91% while
RLView is only decreased by 12.02% — 11.70% = 0.32%. (4)
Building more materialized views doesn’t mean saving more
cost. In the example of JOB, O&B gets the most benefit, but

it saves the least cost because of the heavy overhead of views.

