
Machine Learning for
Data Management Systems

Materialized Views

Amol Deshpande
February 21, 2023

Outline
▪ Background

▪ Prior Work

▪ Automatic View Generation using DL and RL

Views
▪ View: Virtual expressions, used for query simplification and access control

▪ Substituted into the query when used

122 Chapter 4 Intermediate SQL

where <query expression> is any legal query expression. The view name is
represented by v.

Consider again the clerk who needs to access all data in the instructor relation,
except salary. The clerk should not be authorized to access the instructor relation
(we see later, in Section 4.6, how authorizations can be specified). Instead, a
view relation faculty can be made available to the clerk, with the view defined as
follows:

create view faculty as
select ID, name, dept name
from instructor;

As explained earlier, the view relation conceptually contains the tuples in the
query result, but is not precomputed and stored. Instead, the database system
stores the query expression associated with the view relation. Whenever the view
relation is accessed, its tuples are created by computing the query result. Thus,
the view relation is created whenever needed, on demand.

To create a view that lists all course sections offered by the Physics department
in the Fall 2009 semester with the building and room number of each section, we
write:

create view physics fall 2009 as
select course.course id, sec id, building, room number
from course, section
where course.course id = section.course id

and course.dept name = ’Physics’
and section.semester = ’Fall’
and section.year = ’2009’;

4.2.2 Using Views in SQL Queries

Once we have defined a view, we can use the view name to refer to the virtual
relation that the view generates. Using the view physics fall 2009, we can find
all Physics courses offered in the Fall 2009 semester in the Watson building by
writing:

select course id
from physics fall 2009
where building= ’Watson’;

View names may appear in a query any place where a relation name may appear,
The attribute names of a view can be specified explicitly as follows:

create view departments total salary(dept name, total salary) as
select dept name, sum (salary)
from instructor
group by dept name;

122 Chapter 4 Intermediate SQL

where <query expression> is any legal query expression. The view name is
represented by v.

Consider again the clerk who needs to access all data in the instructor relation,
except salary. The clerk should not be authorized to access the instructor relation
(we see later, in Section 4.6, how authorizations can be specified). Instead, a
view relation faculty can be made available to the clerk, with the view defined as
follows:

create view faculty as
select ID, name, dept name
from instructor;

As explained earlier, the view relation conceptually contains the tuples in the
query result, but is not precomputed and stored. Instead, the database system
stores the query expression associated with the view relation. Whenever the view
relation is accessed, its tuples are created by computing the query result. Thus,
the view relation is created whenever needed, on demand.

To create a view that lists all course sections offered by the Physics department
in the Fall 2009 semester with the building and room number of each section, we
write:

create view physics fall 2009 as
select course.course id, sec id, building, room number
from course, section
where course.course id = section.course id

and course.dept name = ’Physics’
and section.semester = ’Fall’
and section.year = ’2009’;

4.2.2 Using Views in SQL Queries

Once we have defined a view, we can use the view name to refer to the virtual
relation that the view generates. Using the view physics fall 2009, we can find
all Physics courses offered in the Fall 2009 semester in the Watson building by
writing:

select course id
from physics fall 2009
where building= ’Watson’;

View names may appear in a query any place where a relation name may appear,
The attribute names of a view can be specified explicitly as follows:

create view departments total salary(dept name, total salary) as
select dept name, sum (salary)
from instructor
group by dept name;

Materialized Views
▪ Pre-compute commonly used views for efficiency
– Need to keep up-to-date as the base tables change
▪ Usually done through “incremental” updates

– Take extra storage space

▪ Same challenge for any “pre-computed” summary
– Including many types of “indexes”

▪ Deciding whether a materialized view can be used for a given query undecidable in
general
– Lot of theoretical work on this problem
– Especially in the “data integration” context

Materialized Views
▪ Question 1: Which views to materialize and what types of indexes to build

on them (view design or selection)

▪ Question 2: How to maintain views when base tables are updated (view
maintenance)

▪ Question 3: How and when to use views for a given query (view
exploitation)
– Work dating back to 1985

Outline
▪ Background

▪ Prior Work

▪ Automatic View Generation using DL and RL

View Exploitation
▪ Discussion from: Optimizing Queries with Materialized Views; 1995

▪ Consider view:
– Executive(name, dno, sal) with employees with sal > 200k
– Query: select * from emp where sal > 200k and dno = 0419
– Index on emp on dno è Use the index
– No index on emp on dno è Use the view

– May choose to ignore a materialized view even if the query asks for it
▪ Query: select * from Executive where dno = 0419
▪ Index on emp on dno èUse the index

▪ Need to do this in a cost-based manner
– Have the optimizer enumerate the options and figure out the cost for each of them
– Can only be done efficiently for simpler views

View Selection
▪ AutoAdmin (SQL Server 2000)

BigSubs
▪ Selecting Subexpressions to Materialize at Datacenter Scale; VLDB 2018

▪ Slightly different motivation
– Shared analytics clusters (e.g., in the cloud) with 10000s of jobs
– Quite a bit of shared computation across them (saved upto 40% of compute cost)
– Same tasks repeated again and again è optimization will pay off
– No updates considered

▪ Another related problem:
– Multi-query optimization: optimize a group of queries together
– Little work – considered quite hard, and not well-motivated

BigSubs Example
▪ S1 more common, but less benefit

▪ S2 has high storage cost

▪ If S2 is picked, s1 doesn’t benefit Q3 or Q4

BigSubs Approach
▪ Key assumption: Focus on the query plans generated by the optimizer
– i.e., don’t try to reoptimize the query given a materialized view – prior work did this
– This provide better statistics (assuming the same query was ran before)

▪ Choose candidate subexpressions
– Any subexpression of any query is a valid option

▪ Utility of a subexpression, or a set of them, for a query

BigSubs Approach
▪ Interacting subexpressions captured as a matrix

▪ Problem formulation,

▪ As an Integer Linear Program:

BigSubs Approach
▪ ILP can’t be solved at scale

▪ Instead cast it as a bipartite graph labelling problem, and use a greedy heuristic on that

BigSubs Approach

Outline
▪ Background

▪ Prior Work

▪ Automatic View Generation using DL and RL

Automatic View Generation using DL/RL

▪ Same setting as BigSubs
–Select subexpressions/views to materialize for a workload
– Ignore updates

Example

Automatic View Generation using DL/RL

▪ Problem 1: How to estimate the cost of a query given a view
– BigSubs assumed statistics
– This work uses a cost estimator using DL

▪ Problem 2: Finding the best set of views to materialize
– BigSubs approach has some convergence issues
– Use Reinforcement Learning instead

Utility Estimation

▪ Features: a combination of operator information and table
information

▪ Build a wide linear model in parallel to a deep model

Utility Estimation

▪ Data to train the model?

Solving the ILP
▪ Model as a reinforcement learning problem

▪ Action: Select or de-select a subexpression to materialize

▪ Reward: The (additional) utility of the resulting state

▪ Use Deep Q-Learning Network to solve

Results
▪ One a few different synthetic-ish datasets

