Machine Learning for Data Management Systems

Poisoning Attacks on LI

Amol Deshpande February 23, 2023

Motivation

Are learned systems vulnerable to adversarial attacks ?
 An adversary can inject data that makes it perform badly

What are potential failure modes?
 Similar questions, but not adversarial
 What range of datasets does the learned system work well for?

Background

Recursive Model Indexes

Figure 1: An illustration of the Recursive Model Index (RMI) with a two-stage architecture. The first stage is a single neural network model while the second stage is series of linear regression models on 1-out-of-*N* key partitions of equal size.

Threat Model

- An adversary who wants to worsen the performance
 - Perhaps better to think of failure scenarios in this scenario
- Can add a percent of "poisoning keys"
- White-box attacks
 - Adversary has access to all the data, or at least enough distributional information
 - Black-box attacks are harder to do
- Metrics
 - Ratio loss: MSE of poisoned vs non-poisoned dataset
 - Average memory offset: how off we are from the right location

Single Linear Regression

 Difference from prior work – when we add a poisoning key, it shifts the CDF slightly

Linear regression objective

DEFINITION 1 (LINEAR REGRESSION ON CDFs). Let $K = \{k_1, \dots, k_n\} \subseteq \mathcal{K}$ be the set of integers that correspond to the keys of the index. Every key $k_i \in K$ has its associated rank $r_i \in [1, n]$. The linear regression model on a CDF computes a pair of regression parameters (w, b) that minimizes the following mean squared error (MSE) function :

$$\min_{w,b} \mathcal{L} \left(\{k_i, r_i\}_{i=1}^n, w, b \right) = \min_{w,b} \left(\sum_{i=1}^n (wk_i + b - r_i)^2 \right).$$

Normal Linear Regression

Poisoning points can be put anywhere

Single Linear Regression

Poisoning problem definition

DEFINITION 2 (**POISONING LINEAR REGRESSION ON CDF**). Let K be the set of n integers that correspond to the keys and let P be the set of p integers that comprise the poisoning points. The augmented set on which the linear regression model is trained is $\{(k'_1, r'_1), (k'_2, r'_2), \dots, (k'_{n'}, r'_{n'})\}$, where $k'_i \in K \cup P$ and $r'_i \in [1, n + p]$. The goal of the adversary is to choose a set P of size at most λ so as to maximize the loss function of the augmented set $K \cup P$ which is equivalent to solving the bilevel optimization problem:

$$\operatorname{arg\,max}_{P \text{ s.t. } |P| \le \lambda} \left(\min_{w,b} \mathcal{L} \left(\{k'_i, r'_i\}_{i=1}^{n+p}, w, b \right) \right)$$

Compound Effect

Poisoning problem definition

Figure 2: Illustration of the compound effect of poisoning using a single key k_p colored in red. All original keys that are larger than k_p increase their rank by one. The new regression line, dotted red line, accumulates larger error from most of the original points due to the adjustment of ranks.

Compound Effect

Poisoning problem definition

Algorithms

- Linear Poisoning Attack for a "single" point
 Optimal
 - Expression for loss etc., can be computed incrementally

$$L(k_p) = \begin{cases} \min_{w,b} \left(\sum_{k' \in K \cup k_p} (wk' + b - r')^2 \right) &, \text{ if } k_p \notin K \\ \bot &, \text{ if } k_p \in K \end{cases}$$
(1)

Greedy algorithm for multiple points

 One at a time

Results for a Single LR

KIAL APP

Focus on second-level poisoning (regression)

O Attacker controls

(1) how many keys per model (Volume)

(2) the location of poisoning keys per model

(HIGH-LEVEL) ALGORITHM

ODistribute the same number of poisoning keys per model

Move a poisoning key to the next/previous model if it increases the total error

Ouse previous multipoint regression attack to decide which poisoning points to insert

Figure 7: Evaluation of the multi-point poisoning for RMI applied on the CDF of the unique salaries of employees from Dada County in Miami. The X-axis represents different overall poisoning percentage where the second-stage poisoning threshold α takes value $\alpha = 3$. The third row presents the CDF.

Some Discussion Points

What's the main take-away from this paper?

• Major concerns with the paper?

Possible improvements?