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= Are Iearned systems vulnerable to adversarlal attacks 7
— An adversary can inject data that makes it perform badly

= What are potential failure modes?
— Similar questions, but not adversarial
- What range of datasets does the learned system work well for?



Background

= Recursive Model Indexes

In-Memory Dense Array of Sorted Keys

Figure 1: An illustration of the Recursive Model Index (RMI)
with a two-stage architecture. The first stage is a single neural
network model while the second stage is series of linear
regression models on 1-out-of-N key partitions of equal size.
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Threat Model

* An adversary who wants to worsen the performance
— Perhaps better to think of failure scenarios in this scenario

= Can add a percent of “poisoning keys”

« White-box attacks

- Adversary has access to all the data, or at least enough distributional
information

— Black-box attacks are harder to do

= Metrics
— Ratio loss: MSE of poisoned vs non-poisoned dataset
- Average memory offset: how off we are from the right location



Single L1near Regre551on
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leference from prior work — when we add a poisoning
key, it shifts the CDF slightly

Linear regression objective

DEFINITION 1 (LINEAR REGRESSION ON CDFs). Let K =
{k1,- - ,kn} C K be the set of integers that correspond to the
keys of the index. Every key k; € K has its associated rank r; €
[1, n]. The linear regression model on a CDF computes a pair

of regression parameters (w, b) that minimizes the following
mean squared error (MSE) function :

m1n.£ ({ki, ri},, w,b) = min (Z:Zl (wk; + b — rl-)z) .

w,b




Normal Linear Regression

= Poisoning points can be put anywhere
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Single L1near Regre551on

P0|son|ng problem deflnltlon

DEFINITION 2 (PO1sONING LINEAR REGRESSION ON CDF).
Let K be the set of n integers that correspond to the keys and
let P be the set of p integers that comprise the poisoning points.
The augmented set on which the linear regression model is
trained is {(k{,r{), (k5,75),-* -, (k"l,, r,’z,)}, wherek; € KU P
andr] € [1,n+ p]. The goal of the adversary is to choose a set
P of size at most A so as to maximize the loss function of the
augmented set K U P which is equivalent to solving the bilevel
optimization problem:

argmaxp g |p|<A (mlnL ({kl’ l}:l:f’ w; b))




Compound Effect

* Poisoning problem definition

Regression Before Poisoning Regression After Poisoning
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Figure 2: Illustration of the compound effect of poisoning
using a single key k,, colored in red. All original keys that are
larger than k, increase their rank by one. The new regression
line, dotted red line, accumulates larger error from most of
the original points due to the adjustment of ranks.




Compound Effect

* Poisoning problem definition

Regression After Poisoning
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Algorithms

» Linear Poisoning Attack for a “single” point
- Optimal |
- Expression for loss etc., can be computed incrementally

k' KUk, (1)
) , ifkp €K

L(kp)=|mmw’b( Y (wk’+b-r")? , ifkp ¢ K

» Greedy algorithm for multiple points
- One at atime



Results for a Single LR
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Attacks on Hierarchical Model

O Focus on second-level poisoni
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In-Memory Dense Array of Sorted Keys




Attacks on Hierarchical Model

Model I.1 ¥

O Use previous multipoint regression attack to
- decide which poisoning points to insert
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Attacks on Hierarchical Model
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Attacks on Hierarchical Model
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Figure 7: Evaluation of the multi-point poisoning for RMI applied on the CDF of the unique salaries of employees from Dada

County in Miami. The X-axis represents different overall poisoning percentage where the second-stage poisoning threshold o
takes value a = 3. The third row presents the CDF.




Some D15cuss1on Polnts
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* What's the main take-away from this paper7

= Major concerns with the paper?

» Possible improvements?



